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Abstract: Missing covariates in regression or classification problems can prohibit the direct use of
advanced tools for further analysis. Recent research has realized an increasing trend towards the
use of modern Machine-Learning algorithms for imputation. This originates from their capability
of showing favorable prediction accuracy in different learning problems. In this work, we analyze
through simulation the interaction between imputation accuracy and prediction accuracy in regres-
sion learning problems with missing covariates when Machine-Learning-based methods for both
imputation and prediction are used. We see that even a slight decrease in imputation accuracy can
seriously affect the prediction accuracy. In addition, we explore imputation performance when
using statistical inference procedures in prediction settings, such as the coverage rates of (valid)
prediction intervals. Our analysis is based on empirical datasets provided by the UCI Machine
Learning repository and an extensive simulation study.

Keywords: missing covariates; imputation accuracy; prediction accuracy; prediction intervals;
bagging; boosting

1. Introduction

The presence of missing values in data preparation and data analysis makes the use
of state-of-the art statistical methods difficult to apply. Seeking a universal answer to
such problems was the main idea of [1], who introduced (multiple) imputation. Through
imputation, one provides data analysts (sequences) of completed datasets, based on which,
various data analysis procedures can be conducted. An alternative to imputation is the
use of so-called data adjustment methods: statistical methods that directly treat missing
instances during training or parameter estimation, such as the full-information-maximum-
likelihood method (see, e.g., [2]) or the expectation-maximization algorithm (cf. [3]).

A large disadvantage of these methods is the expertise knowledge on theoretical model
construction, where the likelihood function of parameters of interest needs to be adopted
appropriately in order to account for missing information. Such examples can be found
in [4–6], where whole statistical testing procedures were adjusted to account for missing
values. It is already well-known that more naive methods, such as list-wise deletion or
mean imputation can lead to severe estimation bias, see, e.g., [1,7–10]. Therefore, we do not
discuss these approaches further.

In the current paper, we focus on regression problems, where we do not have complete
information on the set of covariates. Missing covariates in supervised regression learning
have been part in a variety of theoretical and applicative research fields. In [10], for exam-
ple, a theoretical analysis based on maximum semiparametric likelihood for constructing
consistent regression estimates was conducted. While in [11,12] or [13], for example,
multiple imputation is used as a tool in medical research for variable selection or bias-
reduction in parameter estimation. More recent research has focused on Machine-Learning
(ML)-based imputation.
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Abstract: In educational large-scale assessment studies such as PISA, item response theory (IRT)
models are used to summarize students’ performance on cognitive test items across countries. In
this article, the impact of the choice of the IRT model on the distribution parameters of countries (i.e.,
mean, standard deviation, percentiles) is investigated. Eleven different IRT models are compared
using information criteria. Moreover, model uncertainty is quantified by estimating model error,
which can be compared with the sampling error associated with the sampling of students. The PISA
2009 dataset for the cognitive domains mathematics, reading, and science is used as an example
of the choice of the IRT model. It turned out that the three-parameter logistic IRT model with residual
heterogeneity and a three-parameter IRT model with a quadratic effect of the ability θ provided
the best model fit. Furthermore, model uncertainty was relatively small compared to sampling error
regarding country means in most cases but was substantial for country standard deviations and
percentiles. Consequently, it can be argued that model error should be included in the statistical
inference of educational large-scale assessment studies.
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1. Introduction

Item response theory (IRT) models [1] are central to analyzing dichotomous random
variables. IRT models can be regarded as a factor-analytic multivariate technique to sum-
marize a high-dimensional contingency table by a few latent factor variables of interest.
Of particular interest is the application of an IRT model in educational large-scale assess-
ment (LSA; [2]), such as the programme for international student assessment (PISA; [3]),
which summarizes the ability of students on test items in different cognitive domains.

In the official reporting of outcomes of LSA studies such as PISA, the set of test
items is represented by a unidimensional summary measure extracted by applying a uni-
dimensional IRT model. Across different LSA studies, there is no consensus on which
particular IRT model should be utilized [4–6]. In previous research, there are a few attempts
that quantity the impact of IRT model choice on distribution parameters of interest such
as country means, standard deviations, or percentiles. However, previous research did
not systematically study a large number of competing IRT models [7–9]. Our research
fills a gap because it conducts an empirical comparison involving 11 different IRT models
for scaling for PISA 2009 data in three ability domains. Moreover, we compare the model
fit of these different IRT models and quantify the variability in model uncertainty using
the model error. We compare the model error with the standard error associated with the
uncertainty due to the sampling of students.

The rest of the article is structured as follows. In Section 2, we discuss different IRT
models used for scaling. Section 3 introduces the concepts of model selection and model
uncertainty. Section 4 describes the method used to analyze PISA 2009 data. In Section 5,
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we discuss the empirical results for the PISA 2009 dataset. Finally, the paper closes with a
discussion in Section 6.

2. Item Response Models for Scaling Cognitive Test Items

In this section, we present an overview of different IRT models that are used for scaling
cognitive test data to obtain a unidimensional summary score [10–12]. In the rest of the
article, we restrict ourselves to the treatment of dichotomous items. However, the principle
can similarly be applied to polytomous items.

Let X = (X1, . . . , XI) be the vector of I dichotomous items Xi ∈ {0, 1}. A unidimen-
sional IRT model [11,12] is a statistical model for the probability distribution P(X = x)
for x ∈ {0, 1}I , where

P(X = x; γ) =
∫ ∞

−∞

I

∏
i=1

[
Pi(θ; γi)

xi (1− Pi(θ; γi))
1−xi

]
f (θ)dθ, θ ∼ F. (1)

In Equation (1), a latent variable θ is involved that can be interpreted as a unidimen-
sional summary of the test items X. The distribution of θ is modeled using a (semi)parametric
distribution F with density function f . In the rest of the article, we fix this distribution
to be standard normal, but this can be weakened [13–15]. The item response functions
(IRF) Pi(θ; γi) model the relationship of the dichotomous item with the latent variable,
and we collect all item parameters in the vector γ. In most cases, a parametric model is
utilized in the estimation of the IRF (but see [16] for a nonparametric identification), which
is indicated by the item parameter γi in Equation (1). Note that in (1), item responses
Xi are conditionally independent on θ; that is, after controlling the latent ability θ, pairs
of items Xi and Xj are conditionally uncorrelated. This property is also known as the local
dependence assumption, which can be statistically tested [12,17]. The item parameters γi
of the estimated IRFs in Equation (1) can be estimated by (marginal) maximum likelihood
(ML) using an EM algorithm [18–20]. The estimation can involve sampling weights for stu-
dents [21] and a multi-matrix design in which only a subset of items is administered to each
student [22]. In the likelihood formulation of (1), non-administered items are skipped in
the multiplication term.

In practice, the IRT model (1) is likely to be misspecified because the unidimensionality
assumption is implausible. Moreover, the parametric assumption Pi(θ; γi) of the IRF
might be incorrect. In addition, in educational LSA studies involving a large number
of countries, there will typically be country differential item functioning [23–25]; that
is, item parameters will vary across countries. In this case, applying ML using country-
invariant item parameters defines the best approximation with respect to the Kullback–
Leibler distance of the true distribution and a model-implied distribution. In this sense,
an IRT model is selected by purpose and not by reasons of model fit because it will not
even approximately fit the data (see also [26]). If country means are computed based on a
particular IRT model, the parameter of interest should be, rather, interpreted as a descriptive
statistic of interest [27]. Using a particular model does not mean that we believe that
the model (approximately) fits the data. In contrast, we think that a vector of country means
µ and item parameters γ summarize a high-dimensional contingency table P(X = x).

Locally optimal weights [28] can be used to discuss the consequences for scoring
when using a particular IRT model. A local scoring rule for the ability θ can be defined by
a weighted sum ∑I

i=1 νi(θ)Xi for abilities near θ = θ0. The ability θ is determined by ML
estimation using previously estimated item parameters. The locally optimal weights can be
derived as (see [27–29]):

νi(θ) =
P′i (θ)

Pi(θ)(1− Pi(θ))
(2)

If the local weight νi(θ) (also referred to as the local item score) varies across different
θ values, the impact of single items in the ability differs. This property can be critically
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recognized, particularly for country comparisons in LSA studies [29]. Subsequently, we
will discuss the properties of different IRT models regarding the optimal weights νi(θ).

In this article, several competitive functional forms of the IRF are compared, and their
consequences for distribution parameters (e.g., means, standard deviations, and percentiles)
for the prominent LSA study PISA are discussed. Performing such a fit index contest [30,31] does
not necessarily mean that we favor model selection based on model fit. In the next Section 2.1,
we discuss several IRFs later utilized for model comparisons. In Section 2.2, we investigate
the behavior of the estimated ability distribution under misspecified IRFs. Finally, we conclude
this section with some thoughts on the choice of the IRT model (see Section 2.3).

2.1. Different Functional Forms for IRT Models

In this section, we discuss several parametric specifications of the IRF Pi(θ) that appear
in the unidimensional IRT model defined in Equation (1).

The one-parameter logistic model (1PL; also known as the Rasch model; [32,33])
employs a logistic link function and parametrizes an item with a single parameter bi that is
called item difficulty. The model is defined by

Model 1PL: Pi(θ) =
1

1 + exp(−a θ − bi)
, (3)

where a is the common item discrimination parameter. Alternatively, one can fix the param-
eter a to 1 and estimate the standard deviation of the latent variable θ. Notably, the sum
score ∑I

i=1 xi is a sufficient statistic for θ in the 1PL model. The 1PL model has wide
applicability in educational assessment [34,35].

The 1PL model uses a symmetric link function. However, asymmetric link functions
could also be used for choosing an IRF. The cloglog link function is used in the one-
parameter cloglog (1PCL) model [36,37]:

Model 1PCL: Pi(θ) = 1− exp(− exp(a θ + bi)) . (4)

Consequently, items are differentially weighted in the estimation of θ at each θ location,
and the sum score is not a sufficient statistic. The cloglog link function has similar behavior
to the logistic link function in the 1PL model in the lower tail (i.e., for negative values of θ),
but differs from it in the upper tail.

The one-parameter loglog (1PLL) IRT model is defined by

Model 1PLL: Pi(θ) = exp(− exp(−a θ − bi)) . (5)

In contrast to the cloglog link function, the loglog function is similar to the logistic link
function in the upper tail (i.e., for positive θ values), but different from it in the lower tail.

Figure 1 compares the 1PL, 1PCL, and 1PLL models regarding the IRF Pi and the locally
optimal weight νi. The loglog IRT model (1PLL) stretches more in the lower tails than
in the lower θ tail than the logistic link function. The converse is true for the cloglog
IRT model (1PCL), which is significantly stretched in the upper θ tail. In the right panel
of Figure 1, locally optimal weights are displayed. The 1PL model has a constant weight
of 1, while the local contribution of item score for θ differs across the θ range for the 1PCL
and the 1PLL model. The 1PCL model provides a higher local item score for higher θ values
than for lower θ values. Hence, more difficult items receive lower local item scores than
easier items. In contrast, the 1PLL model results in higher local item scores for difficult
items compared to easier items. This idea is reflected in the D-scoring method [38,39].

Notably, the 1PCL and 1PLL models use asymmetric IRFs. One can try to estimate
the extent of asymmetry in IRFs by using a generalized logistic link function (also called
the Stukel link function; [40]):

Model 1PGL: Pi(θ) =
1

1 + exp(−S(a θ + bi; α1, α2))
, (6)
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where the generalized logit link function is defined as

S(x; α1, α2) =



α−1
1 (exp(α1x)− 1) if x ≥ 0 and α1 > 0

x if x ≥ 0 and α1 = 0

−α−1
1 log(1− α1x) if x ≥ 0 and α1 < 0

−α−1
2 (exp(−α2x)− 1) if x < 0 and α2 > 0

x if x < 0 and α2 = 0

α−1
2 log(1 + α2x) if x < 0 and α2 < 0

(7)
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Figure 1. Item response functions Pi (left panel) and locally optimal weights νi (right panel)
for the 1PL, 1PCL and 1PLL models.

In this 1PGL model, common shape parameters α1 and α2 for the IRFs are additionally
estimated. The 1PL, 1PCL and 1PLL models can be obtained as special cases of (6).

The four models 1PL, 1PCL, 1PLL, and 1PGL have in common that they only estimate
one parameter per item. The assumption of a common item discrimination is weakened
in the two-parameter logistic (2PL) IRT model [28], as a generalization of the 1PL model
in which the discriminations ai are now made item-specific:

Model 2PL: Pi(θ) =
1

1 + exp(−aiθ − bi)
. (8)

Note that ∑I
i=1 aixi is a sufficient statistic for θ. Hence, items Xi are differentially

weighted by the weight ai, which is determined within the statistical model.
Further, the assumption of a symmetric logistic link function might be weakened, and

a four-parameter generalized logistic (4PGL) model can be estimated:

Model 4PGL: Pi(θ) = Pi(θ) =
1

1 + exp(−S(a θ + bi; α1i, α2i))
. (9)
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In the IRT model (9), the shape parameters α1i and α2i are made item-specific.
Hence, the extent of asymmetry of the IRF is estimated for each item.

The 2PL model (8) can be generalized to the three-parameter logistic (3PL; [41]) IRT
model that assumes an item-specific lower asymptote ci larger than 0 for the IRF:

Model 3PL: Pi(θ) = ci + (1− ci)
1

1 + exp(−aiθ − bi)
. (10)

Parameter ci is often referred to as a (pseudo-)guessing parameter [42,43].
The 3PL model might be reasonable if multiple-choice items are used in the test.

The 3PL model can be generalized in the four-parameter logistic (4PL; [44–46]) model
such that it also contains upper asymptotes di smaller than 1 for the IRF:

Model 4PL: Pi(θ) = ci + (1− di − ci)
1

1 + exp(−aiθ − bi)
. (11)

The di parameter is often referred to as a slipping parameter, which characterizes
careless (incorrect) item responses [47]. In contrast to the 1PL, 2PL, or the 3PL model,
the 4PL model has not yet been applied in the operational practice of LSA studies. However,
there are a few research papers that apply the 4PL model to LSA data [48,49].

It should be mentioned that the 3PL or the 4PL model might suffer from empirical
nonidentifiability [45,50–52]. This is why prior distributions for guessing (3PL and 4PL)
and slipping (4PL) parameters are required for stabilizing model estimation. As pointed out
by an anonymous reviewer, the use of prior distributions changes the meaning of the IRT
model. However, we think that identifiability issues are of less concern in the large-sample-
size situations that are present in educational LSA studies. If item parameters are obtained
in a pooled sample of students comprising all countries, sample sizes are typically above
10,000. In this case, the empirical data will typically dominate prior distributions, and prior
distributions are therefore not needed.

In Figure 2, IRFs and locally optimal weights for the 4PL, 3PL, and 2PL models are
displayed. The item parameters for the 4PL model were ai = 1, bi0 =, ci = 0.25, and
di = 0.1. The parameters of the displayed 2PL and 3PL models were obtained by mini-
mizing the weighted squared distance between the IRF of the 4PL model and the simpler
model under the constraint that the model-implied item-means coincide under the normal
distribution assumption of θ. Importantly, it can be seen in the right panel that the 2PL
model has a constant local item score, while it is increasing for the 3PL model and it is
inversely U-shaped for the 4PL model. Hence, when using the 4PL model, it must not be too
easy or too difficult to obtain a high local item score for a student that got the item correct.

A different strand of model extensions also starts from the 2PL model but introduces
more item parameters to model asymmetry or nonlinearity while retaining the logistic link
function. The three-parameter logistic model with quadratic effects (3PLQ) additionally
includes additional quadratic effects of θ in the 2PL model [42,50]:

Model 3PLQ: Pi(θ) =
1

1 + exp(−a2iθ2 − a1iθ − bi)
. (12)

Due to the presence of the a2i parameter, asymmetric IRFs can be modeled. As
a disadvantage, the IRF in (12) must not be monotone, although this constraint can be
incorporated in the estimation [53,54].

The three-parameter model with residual heterogeneity (3PLRH) extends to the 2PL
model by including an asymmetry parameter δi [55,56]:

Model 3PLRH: Pi(θ) =
1

1 + exp
(
−{1 + exp(−δiθ)}1/2(aiθ + bi)

) . (13)
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The 3PLRH model has been successfully applied to LSA data and often resulted
in superior model fit compared to the 3PL model [57,58].
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Figure 2. Item response functions Pi (left panel) and locally optimal weights νi (right panel)
for the 4PL, 3PL and 2PL models

In Figure 3, IRFs and locally optimal weights are displayed for three parameter
specifications in the 3PLRH model (i.e., ai = 1, bi = 0, and δi = −0.5, 0, 0.5). One can see
that the introduced asymmetry parameter δi governs the behavior of the IRF in the lower
or upper tails. The displayed IRFs mimic the 1PL, 1PCL, and 1PLL models. Moreover, with
δi parameters different from zero, different locally optimal weights across the θ range are
introduced. Notably, a positive δi parameter is associated with a larger local item score
in the lower θ tail. The opposite is true for a negative δi parameter.
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Figure 3. Item response functions Pi (left panel) and locally optimal weights νi (right panel) for dif-
ferent IRFs of the 3PLRH model.
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Finally, the 3PL model is extended in the four-parameter logistic model with quadratic
effects (4PLQ), in which additional item-specific quadratic effects for θ are included [50]

Model 4PLQ: Pi(θ) = ci + (1− ci)
1

1 + exp(−ai2θ2 − ai1θ − bi)
. (14)

2.2. Ability Estimation under Model Misspecification

In this section, we study the estimation of θ when working with a misspecified IRT
model. In the treatment, we assume that there is a true IRT model with unknown IRFs.
We study the bias in estimated abilities for a fixed value of θ if misspecified IRFs are utilized.
This situation refers to the empirical application in an LSA study, in which a misspecified IRF is
estimated based on data comprising all countries, and the distribution of θ is evaluated at the
level of countries. The misspecification emerges due to incorrectly assumed functional forms
of the IRF or the presence of differential item functioning at the level of countries [24,59].

We assume that the there are true but unknown IRFs Pi(θ) = Ψ(αi(θ)) with a con-
tinuously differentiable function αi and Ψ(x) = [1 + exp(−x)]−1 denotes the logistic link
function. We assume that the local independence assumption holds in the IRT model.
For estimation, we use a misspecified IRT model with IRFs Pi(θ) = Ψ(a i(θ)) with a con-
tinuously differentiable function ai. Notably, there exists a misspecification if αi 6= ai.
In Appendix A, we derive an estimate θ1 under the misspecified IRT model if θ0 is the
data-generating ability value under the true IRT model. Hence, we derive a transforma-
tion function m(θ1) = θ0 + B(θ0), where B(θ) is the bias function that indicates the bias
in the estimated ability due to the application of the misspecified IRT model. We assume
that the item parameters under the misspecified IRT model are known (i.e., the IRFs ai(θ)
are known). Then, the ML estimate is determined based on the misspecified IRT model
taking into account that θ0 solves the maximum likelihood equation under the true IRT
model. It is assumed that the number of items I is large. Moreover, we apply two Taylor
approximations that rely on the assumption that |αi(θ)− ai(θ)| is sufficiently small.

The derivation in Appendix A (see Equation (A10)) provides

θ1 ' θ0 + A−1
I

∑
i=1

[Ψ(ai(θ0))−Ψ(αi(θ0))]α
′
i(θ0) ≡ θ0 + B(θ0) , (15)

where the bias term B is defined by B(θ) = A−1 ∑I
i=1[Ψ(ai(θ))−Ψ(αi(θ))]α

′
i(θ) and A is

determined by item information functions (see Appendix A). Equation (15) clarifies how the
misspecified IRFs enter the computation of θ. Interestingly, the extent of misspecification
Ψ(ai(θ0))−Ψ(αi(θ0) is weighted by α′i(θ0).

Equation (15) provides practical consequences when applying misspecified IRT mod-
els. For instance, θ0 might be the true country percentile, referring to a true IRT model.
If the transformation θ1 = m(θ0) is monotone, the percentile with the misspecified model
is θ1 and Equation (15) quantifies a bias for the estimated percentile. Moreover, let fc be
the density of the ability under the true IRT model for country c; then, one can determine
the bias in the country means by using (15). The true country mean of country c is given by
µc =

∫
θ fc(θ)dθ. The estimated country mean µ∗c under the misspecified model is given by

µ∗c = µc +
∫

B(θ) fc(θ)dθ . (16)

Note that the bias term B(θ) will typically be country-specific because the true IRF
Pi(θ) = Ψ(αi(θ)) are country-specific due to differential item functioning at the level
of countries. Hence, item-specific relative country effects regarding the IRF that are uni-
formly weighted in Equation (15) can be considered a desirable property.

In the case of a fitted 2PL model, it holds that ai(θ) = aiθ, and deviations Ψ(ai(θ))−
Ψ(αi(θ)) are weighted by a′i(θ) = ai in the derived bias in (15). For the 1PL model,
the deviations are equally weighted due to a′i(θ) = 1. This property might legitimate
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the use of the often ill-fitting 1PL model because model deviations are equally weighted
across items (see [27]). We elaborate on this discussion in the following Section 2.3.

2.3. A Few Remarks on the Choice of the IRT Model

In Section 2.1, we introduced several IRT models and it might be asked which criteria
should be used for selecting one among these models. We think that model-choice principles
depend on the purpose of the scaling models. Pure research purposes (e.g., understanding
cognitive processes underlying item response behavior; modeling item complexity) must be
distinguished from policy-relevant reporting practice (e.g., country rankings in educational
LSA studies). Several researchers have argued that model choice should be primarily
a matter of validity and not based on purely statistical criteria [27,60–64].

Myung et al. [63] discussed several criteria for model selection with a focus on cogni-
tion science. We would like to emphasize that these criteria might be differently weighted
if applied to educational LSA studies that are not primarily conducted for research purposes.
The concept of the interpretability of a selected IRT model means that the model parameters
must be linked to psychological processes and constructs. We think that simple unidimensional
IRT models in LSA studies are not used because one believes a unidimensional underlying
(causal) variable exists. The chosen IRT model is used for summarizing item response patterns
and for providing simple and interpretable descriptive statistics. In this sense, we have argued
elsewhere [27] that model fit should not have any relevance for model selection in LSA studies.
However, it seems in the official LSA publications such as those from PISA that information
criteria are also used for justifying the use of scaling models [5]. We would like to note that
these model comparisons are often biased in the sense that the personally preferred model is
often the winner of this fit contest, and other plausible IRT models are excluded from these con-
tests because they potentially could provide a better model fit. Information-criteria-based
model selection falls into the criterion of generalizability according to Myung et al. [63].
These criteria are briefly discussed in Section 3.1.

Notably, different IRT models imply a differential weighting of items in the sum-
mary variable θ [29,65]. This characteristic is quantified with locally optimal weights
(see Section 2.1). The differential item weighting might impair the comparison of sub-
groups. More critically, the weighing of items is, in most applications, determined by
statistical models and might, hence, have undesirable consequences because practitioners
have an implicitly defined different weighing of items in mind when composing a test
based on a single test of items. Nevertheless, our study investigates the consequences
of using different IRT models for LSA data. To sum up, which of the models should be
chosen in operational practice is a difficult question that should not be (entirely) determined
by statistical criteria.

3. Model Selection and Model Uncertainty
3.1. Model Selection

It is of particular interest to conduct model comparisons of the different scaling models
that involve different IRFs (see Section 2.1). The Akaike information criterion (AIC) and the
Bayesian information criterion (BIC) are used for conducting model comparisons in this article
(see [66–69]). Moreover, the Gilula–Haberman penalty (GHP; [70–72]) is used as an effect size
that is relatively independent of the sample size and the number of items. The GPH is defined
as GHP = AIC/(2 ∑N

p=1 Ip), where Ip is the number of estimated model parameters for person
p. The GHP can be seen as a normalized variant of the AIC. A difference in GHP larger than
0.001 is a notable difference regarding global model fit [72,73].

3.2. Model Uncertainty

Country comparisons in LSA studies such as PISA can depend on the chosen IRT model.
In this case, choosing a single best-fitting model might be questionable [74,75]. To investigate
the impact of model dependency, we discuss the framework of model uncertainty [76–86] in
this section and quantify it by a statistic that characterizes model error.
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To quantify model uncertainty, each model m is associated with a weight wm ≥ 0 and we
assume ∑M

m=1 wm = 1 [87]. To adequately represent the diversity of findings from different
models, an equal weighting of models has been criticized [88]. In contrast, particular models
in the set of all models are downweighted if they are highly dependent and produce similar
results [89–91]. We believe that model fit should not influence model weights [92]. The goal
is to represent differences between models in the model error. If the model weights were
determined by model fit, plausible but non-fitting models such as the 1PL model would receive
a model weight of zero, which is not preferred because the 1PL model should not be excluded
from the set of specified models. Moreover, if model weights are computed based on information
criteria [80], only one or a few models receive weights that differ from zero, but all other models
do not impact the statistical inference. This property is why we do not prefer Bayesian model
averaging in our application [82,93,94].

Let γ = (γ1, . . . , γM) be the vector of a statistical parameter of all models. We can
define a composite parameter γcomp as

γcomp =
M

∑
m=1

wmγm (17)

We can also define a population-level model error (ME) as

Mγcomp =

√√√√ M

∑
m=1

wm(γm − γcomp)2 (18)

Now, assume that data is available and γ̂ = (γ̂1, . . . , γM) is estimated. The esti-
mate γ̂ is multivariate normally distributed with mean γ and a covariance matrix V .
Typically, estimates of different models using the same dataset will be (strongly) positively
correlated. An estimate of the composite parameter γcomp is given as

γ̂comp =
M

∑
m=1

wmγ̂m (19)

Due to E(γ̂m) = γm, we obtain that γ̂comp is an unbiased estimate of γcomp.
The empirical model error ME is defined as

ME =

√√√√ M

∑
m=1

wm(γ̂m − γ̂comp)2 (20)

Now, it can be shown that ME2 is a positively biased estimate of M2
γcomp because

the former also contains sampling variability. Define γcomp = w>γ, where w = (w1, . . . , wM).
Similarly, we can write γ̂comp = w>γ̂. Let em be the m-th unit vector of length M that has
an entry of 1 at the m-th entry and 0 otherwise. This notation enables the representation
γm = e>mγ. Define um = em −w. From (18), we obtain

M2
γcomp =

M

∑
m=1

wm(u>mγ)2 =
M

∑
m=1

wmu>mγγ>um (21)

Furthermore, we can then rewrite the expected value of E(ME2) as (see Equation (20))

E(ME2) =M2
γcomp +

M

∑
m=1

wm(um(γ̂− γ))2 =M2
γcomp +

M

∑
m=1

wmumVu>m =M2
γcomp + B , (22)

where the second term B is a biasing term that is the estimated variation across models due
to sampling error. This term can be estimated if an estimate of the covariance matrix V
of the vector of model estimates γ̂ is available. As an alternative, the bias in E(ME2) can be
removed by estimating B in (22) with resampling techniques such as bootstrap, jackknife
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or (balanced) half sampling [21,95]. Let B̂ be an estimate of the bias; a bias-corrected model
error can be estimated by

MEbc =

√
max(ME2 − B̂, 0) (23)

One can define a total error TE that includes the sampling error SE due to person
sampling and a model error estimate MEbc:

TE =
√

SE2 + ME2
bc (24)

This total error also takes the variability in the model choice into account and allows
for broader inference. Constructed confidence intervals relying on TE will be wider than
ordinary confidence intervals that are only based on the SE.

4. Method

In our empirical application, we used data from PISA 2009 to assess the influence
of the choice of different scaling models. Similar research with substantially fewer IRT
modeling alternatives was conducted in [8,96,97].

4.1. Data

PISA 2009 data was used in this empirical application [3]. The impact of the choice
of the scaling model was investigated for the three cognitive domains mathematics, reading,
and science. In total, 35, 101, and 53 items were included in our analysis for the domains
mathematics, reading, and science, respectively. All polytomous items were dichotomously
recoded, with only the highest category being recoded as correct.

A total number of 26 countries were included in the analysis. The median sample sizes
at the country level were Med = 5398 (M = 8578.0, Min = 3628, Max = 30,905) for reading,
Med = 3761 (M = 5948.2, Min = 2510, Max = 21,379) for mathematics, and Med = 3746.5
(M = 5944.2, Min = 2501, Max = 21,344) for science.

For all analyses at the country level, student weights were taken into account. Within
a country, student weights were normalized to a sum of 5000, so that all countries con-
tributed equally to the analyses.

4.2. Analysis

We compared the fit of 11 different scaling models (see Section 2.1) in an international
calibration sample [98]. To this end, 500 students were randomly sampled from each
of the 26 countries and each of the three cognitive domains. Model comparisons were
conducted based on the resulting samples involving 13,000 students.

In the next step, the item parameters obtained from the international calibration sam-
ple were fixed in the country-specific scaling models. In this step, plausible values for
the θ distribution in each of the countries were drawn [99,100]. We did not include student
covariates when drawing plausible values. Note that sampling weights were taken into
account in this scaling step. The resulting plausible values were subsequently linearly trans-
formed such that a weighted mean of 500 and a weighted standard deviation of 100 holds
in the total sample of studies comprising all countries. Weighted descriptive statistics and
their standard errors of the θ distribution were computed according to the Rubin rules
of multiple imputation [3]. The only difference to the original PISA approach is that we
apply balanced half sampling instead of balanced repeated replication for computing stan-
dard errors (see [21,101]). Balanced half sampling has the advantage of easy computation
of the bias for model error (see Equation (23)).

For quantifying model uncertainty, model weights were assigned prior to analysis
based on the principles discussed in Section (3.2). First, because the 1PL, 2PL, and the
3PL are the most frequently used models in LSA studies, we decided that the sum of their
model weight should at least exceed 0.50. Second, the weights of models with similar
behavior (i.e., models that result in similar country means) should be decreased. These
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considerations resulted in the following weights: 1PL: 0.273, 2PL: 0.136, 3PL: 0.136; 1PCL:
0.061; 1PLL: 0.061; 1PGL: 0.061; 3PLQ: 0.068; 3PLRH: 0.068; 4PGL: 0.045; 4PL: 0.045; 4PLQ:
0.045. It is evident that a different choice of model weight will change the composite
parameter of interest and the associated model error. We did not opt for a sensitivity
analysis employing an alternative set of model weights in order to ease the presentation
of results in this paper. In order to study the importance of sampling error (SE) and
the bias-corrected model error (MEbc), we computed an error ratio (ER) that is defined by

ER = MEbc/SE. Moreover, we computed the total error as TE =
√

SE2 + ME2
bc.

All analyses were carried out with the statistical software R [102]. The different IRT
models were fitted using the xxirt() function in the R package sirt [103]. Plausible value
imputation was conducted using the R package TAM [104].

5. Results
5.1. Model Comparisons Based on Information Criteria

The 11 different scaling models were compared for the three cognitive domains mathe-
matics, reading, and science for the PISA 2009 dataset. Table 1 displays model comparisons
based on AIC, BIC, and ∆GHP, which is defined as the difference between the GHP values
of a particular model and the best-fitting model.

Based on the AIC or ∆GHP, one of the models, 4PGL, 3PLQ, 3PLRH, 3PL, 4PL, or
4PLQ, was preferred in one of the domains. If the BIC were used as a selection criterion,
the 3PLQ or the 3PLRH will always be chosen across the models. Notably, the operationally
used 2PL model had only satisfactory for the reading domain. By inspecting ∆GHP, it is
evident that the largest gain in model fit is obtained by switching from one- to two-, three-
or four-parameter models. However, the gain in model fit from the 2PL to the 3PL model is
not noteworthy.

In contrast, the gains in fitting the 3PLQ or 3PLRH can be significant. Among the one-
parameter models, it is interesting that the loglog link function resulted in a better model
fit for mathematics compared to the logistic or the cloglog link functions. This was not
the case for reading or science. Overall, the model comparison for PISA 2009 demonstrated
that the 3PLQ or 3PLRH should be preferred over the 2PL model for reasons of model fit.

Table 1. Model comparisons based on information criteria for the three ability domains—mathematics,
reading and science—in PISA 2009.

Mathematics Reading Science

Model AIC BIC ∆GHP AIC BIC ∆GHP AIC BIC ∆GHP

1PL 217510 217779 0.0059 413555 414317 0.0055 347819 348222 0.0062
1PCL 220022 220291 0.0122 414757 415519 0.0070 348756 349160 0.0077
1PLL 216882 217151 0.0043 416988 417751 0.0098 348984 349388 0.0081
1PGL 216784 217068 0.0041 413369 414146 0.0053 347804 348223 0.0062
2PL 215621 216144 0.0012 410032 411541 0.0011 344597 345389 0.0009
4PGL 215142 216188 0.0000 409163 412182 0.0000 344064 345648 0.0000
3PLQ 215153 215938 0.0000 409327 411591 0.0002 344097 345285 0.0001
3PLRH 215174 215959 0.0001 409275 411539 0.0001 344083 345271 0.0000
3PL 215486 216099 0.0009 409767 411605 0.0008 344420 345362 0.0006
4PL 215179 216060 0.0001 409296 411852 0.0002 344105 345368 0.0001
4PLQ 215168 216102 0.0001 409245 411913 0.0001 344089 345464 0.0000

Note. AIC = Akaike information criterion; BIC = Bayesian information criteria; ∆GHP = difference in Gilula–
Haberman penalty (GHP) between a particular model and the best-fitting model in terms of GHP; For model
descriptions see Section 2.1 and Equations (3) to (14). For AIC and BIC, the best-fitting model and models whose
information criteria did not deviate from the minimum value by more than 100 are printed in bold. For ∆GHP,
the model with the smallest value and models with ∆GHP values smaller than 0.0005 are printed in bold.
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5.2. Model Uncertainty for Distribution Parameters

To obtain a visual insight into the similarity of the different scaling models, we com-
puted pairwise absolute differences in the country means. We used the average of them
as a distance matrix used as the input of a hierarchical cluster analysis based on the Ward
method. Figure 4 shows the dendrogram of this cluster analysis. It can be seen that the 2PL
and 3PL provided similar results. Another cluster of models was formed by the more
complex models 3PLQ, 3PLRH, 4PGL, 4PL, and 4PLQ. Finally, the different one-parameter
models 1PLL, 1PGL, 1PL (and 1PGL) provided relatively distinct findings.
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Figure 4. Dendrogram of cluster analysis using the Ward method for 11 different scaling models based
on the distance matrix defined as average absolute differences between country means of models for
PISA 2009 reading data.

In Table 2, detailed results for 11 different scaling models for country means in PISA
2009 reading are shown The largest number of substantial deviations of country means
from the weighted mean (i.e., the composite parameter) with at least 1 were obtained
for the 1PCL model (10), 1PLL (9), and 4PLQ (9). At the level of countries, there were 11
countries in which none of the scaling models substantially differed from the weighted
mean. In contrast, there was a large number of deviations for Denmark (DNK; 9) and South
Korea (KOR; 10). The ranges in country means across different scaling models at the level
of countries varied between 0.3 (SWE; Sweden) and 7.7 (JPN; Japan), with a mean of 2.4.
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Table 2. Detailed results for all 11 different scaling models for country means in PISA 2009 reading.

CNT M rg MEbc 1PL 1PCL 1PLL 1PGL 2PL 4PGL 3PLQ 3PLRH 3PL 4PL 4PLQ

AUS 515.2 1.25 0.29 515.1 515.8 514.8 515.2 515.7 515.2 515.2 515.5 515.0 515.0 514.5
AUT 470.8 2.36 0.65 470.2 469.6 470.6 470.1 470.9 472.0 471.6 471.7 470.6 471.6 471.9
BEL 509.5 2.91 0.78 508.9 507.8 509.4 508.8 509.7 510.7 510.4 510.5 509.4 510.7 510.6
CAN 525.0 1.79 0.43 525.1 525.6 525.2 525.1 525.4 524.3 524.5 524.8 524.9 524.0 523.8
CHE 501.7 1.27 0.39 501.3 501.3 501.0 501.4 501.5 502.3 502.3 502.2 501.8 502.3 502.3
CZE 479.9 0.89 0.27 479.5 480.2 479.5 479.6 480.1 480.0 480.0 479.8 480.4 480.1 480.0
DEU 498.5 1.83 0.39 498.2 499.3 497.5 498.5 498.4 499.0 498.9 498.9 498.7 498.8 499.1
DNK 493.7 5.46 1.58 495.0 497.3 492.9 495.6 492.6 491.9 492.0 491.8 493.5 492.1 492.1
ESP 480.1 1.43 0.43 480.0 480.7 479.5 480.1 480.3 479.6 479.8 479.6 480.9 479.7 479.7
EST 501.5 2.43 0.75 501.2 502.8 500.4 501.4 502.0 500.9 501.0 501.0 502.8 500.7 500.8
FIN 539.0 1.66 0.41 539.0 538.7 539.2 538.9 538.7 539.8 539.2 539.6 538.4 539.7 540.1
FRA 498.0 4.54 1.13 497.4 495.1 499.0 497.0 497.7 499.4 499.4 499.5 497.7 499.6 499.3
GBR 494.0 1.29 0.20 494.0 494.7 493.4 494.1 494.0 494.0 494.1 494.0 494.2 493.8 493.8
GRC 480.6 3.42 0.96 481.7 479.6 482.8 481.1 480.3 479.4 480.0 479.7 480.0 479.6 479.6
HUN 494.2 1.74 0.40 494.4 495.0 493.8 494.4 494.5 493.5 493.6 493.7 494.3 493.3 493.4
IRL 496.8 2.04 0.51 496.5 497.7 495.7 496.8 497.4 496.4 496.6 496.6 497.5 496.5 496.4
ISL 501.2 0.78 0.15 501.3 501.6 501.5 501.2 501.3 501.1 500.8 501.0 500.8 501.3 501.2
ITA 486.5 1.37 0.32 486.3 485.6 486.6 486.2 486.8 486.7 487.0 486.9 486.6 486.8 486.9
JPN 521.3 7.70 1.60 522.3 517.7 525.4 521.4 520.4 521.6 521.0 520.7 519.8 522.2 522.2
KOR 539.7 4.03 1.45 541.3 541.4 541.5 541.2 538.7 538.2 538.5 538.7 538.5 537.4 537.6
LUX 472.7 4.38 1.22 471.7 470.0 473.0 471.3 473.2 474.4 474.2 474.4 472.5 474.0 474.2
NLD 509.0 1.57 0.28 509.1 509.8 508.2 509.4 508.6 508.9 509.1 508.7 508.8 509.2 509.1
NOR 503.3 0.89 0.14 503.3 503.6 503.7 503.1 503.2 503.3 503.2 503.0 503.3 503.7 503.9
POL 501.7 2.24 0.72 501.0 501.2 500.4 501.3 502.2 502.0 502.5 502.2 502.7 502.2 502.1
PRT 489.2 2.79 0.70 489.4 490.8 488.0 489.8 489.3 488.3 488.5 488.4 489.9 488.3 488.3
SWE 497.0 0.34 0.00 496.9 497.0 497.0 496.9 496.9 497.2 497.0 497.1 496.9 497.1 497.2

Note. CNT = country label (see Appendix B); M = weighted mean across different scaling models; rg = range
of estimates across models; MEbc = bias-corrected estimate of model error based on balanced half sampling
(see Equation (23)); For model descriptions see Section 2.1 and Equations (3) to (14). Country means that differ
from the weighted mean of country means of the 11 different models more than 1 are printed in bold.

In Table A1 in Appendix C, detailed results for 11 different scaling models for country
means in PISA 2009 mathematics are shown. The largest number of substantial deviations
from the weighted mean was obtained for the 1PCL (12), the 1PLL (11), and the 1PGL (9)
model. The ranges of the country means across models ranged between 0.5 and 7.9, with
a mean of 2.8.

In Table A2 in Appendix C, detailed results for 11 different scaling models for country
means in PISA 2009 science are shown. For science, many models showed a large number
of deviations. This demonstrates large model uncertainty. The ranges of the country means
across models varied between 0.6 and 7.8, with a mean of 2.8.

In Table 3, results and model uncertainty of 11 different scaling models for country
means and standard deviations in PISA 2009 reading are shown. The unadjusted model
error had an average of M = 0.66. The bias-corrected model error MEbc was slightly smaller,
with M = 0.62. On average, the error ratio was 0.24, indicating that the larger portion
of uncertainty is due to sampling error compared to model error.

The estimated country standard deviations for reading were much more model-
dependent. The bias-corrected model error has an average of 0.96 (ranging between
0.00 and 2.68). This was also pronounced in the error ratio, which had an average of 0.60.
The maximum error ratio was 2.05 for Finland (FIN; with a model error of 9.8), indicating
that the model error was twice as large as the sampling error. Overall, model error turned
out to be much more important for the standard deviation than the mean.
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Table 3. Results and model uncertainty of 11 different scaling models for country means and country
standard deviations in PISA 2009 reading.

Country Mean Country Standard Deviation

CNT N M rg SE ME MEbc ER TE M rg SE ME MEbc ER TE

AUS 14,247 515.2 1.2 2.51 0.32 0.29 0.12 2.52 104.7 2.6 1.45 0.68 0.64 0.44 1.59
AUT 6585 470.8 2.4 3.34 0.69 0.65 0.19 3.40 104.6 6.8 2.16 1.66 1.64 0.76 2.71
BEL 8500 509.5 2.9 2.49 0.80 0.78 0.32 2.61 107.5 3.1 1.92 0.69 0.65 0.34 2.02
CAN 23,200 525.0 1.8 1.49 0.45 0.43 0.29 1.55 95.6 4.6 1.12 1.18 1.18 1.05 1.62
CHE 11,801 501.7 1.3 2.72 0.42 0.39 0.14 2.75 99.7 0.8 1.67 0.23 0.00 0.00 1.67
CZE 6059 479.9 0.9 3.17 0.32 0.27 0.09 3.18 95.2 1.3 1.86 0.39 0.20 0.11 1.87
DEU 4975 498.5 1.8 3.05 0.42 0.39 0.13 3.08 100.1 1.3 2.01 0.30 0.00 0.00 2.01
DNK 5920 493.7 5.5 2.10 1.58 1.58 0.75 2.63 88.0 3.5 1.31 0.70 0.68 0.52 1.48
ESP 25,828 480.1 1.4 2.12 0.44 0.43 0.20 2.17 91.9 4.6 1.18 1.16 1.13 0.96 1.64
EST 4726 501.5 2.4 2.70 0.77 0.75 0.28 2.80 85.5 3.8 1.71 0.85 0.82 0.48 1.89
FIN 5807 539.0 1.7 2.27 0.43 0.41 0.18 2.30 91.5 9.8 1.31 2.68 2.68 2.05 2.98
FRA 4280 498.0 4.5 3.92 1.16 1.13 0.29 4.08 112.2 1.8 2.92 0.55 0.41 0.14 2.95
GBR 12,172 494.0 1.3 2.47 0.25 0.20 0.08 2.47 99.6 2.8 1.34 0.77 0.73 0.55 1.53
GRC 4966 480.6 3.4 4.26 1.01 0.96 0.23 4.37 99.8 5.4 2.09 1.46 1.38 0.66 2.50
HUN 4604 494.2 1.7 3.62 0.46 0.40 0.11 3.64 94.8 2.7 2.78 0.67 0.58 0.21 2.84
IRL 3931 496.8 2.0 3.24 0.55 0.51 0.16 3.28 98.8 4.2 2.63 1.24 1.19 0.45 2.89
ISL 3628 501.2 0.8 1.67 0.23 0.15 0.09 1.68 102.0 3.5 1.40 1.03 0.96 0.68 1.69
ITA 30,905 486.5 1.4 1.61 0.33 0.32 0.20 1.64 101.4 3.7 1.35 0.81 0.77 0.57 1.55
JPN 6082 521.3 7.7 3.71 1.62 1.60 0.43 4.04 107.3 8.0 3.16 1.59 1.52 0.48 3.50
KOR 4989 539.7 4.0 3.10 1.51 1.45 0.47 3.42 84.2 8.4 1.76 2.23 2.02 1.15 2.68
LUX 4622 472.7 4.4 1.19 1.23 1.22 1.02 1.70 109.3 8.0 1.21 2.01 1.99 1.65 2.33
NLD 4760 509.0 1.6 5.58 0.35 0.28 0.05 5.59 95.1 4.1 1.89 1.12 1.01 0.54 2.14
NOR 4660 503.3 0.9 2.61 0.22 0.14 0.06 2.61 96.8 3.7 1.55 0.98 0.93 0.60 1.81
POL 4917 501.7 2.2 2.72 0.72 0.72 0.26 2.81 92.8 3.6 1.32 0.90 0.84 0.63 1.56
PRT 6298 489.2 2.8 3.17 0.71 0.70 0.22 3.25 91.8 3.2 1.75 0.74 0.71 0.40 1.89
SWE 4565 497.0 0.3 3.00 0.09 0.00 0.00 3.00 103.6 1.7 1.63 0.42 0.27 0.17 1.66

Note. CNT = country label (see Appendix B); N = sample size; M = weighted mean across different scaling
models; rg = range of estimates across models; SE = standard error (computed with balanced half sampling); ME
= estimated model error (see Equation (20)); MEbc = bias-corrected estimate of model error based on balanced
half sampling (see Equation (23)); ER = error ratio defined as MEbc/SE; TE = total error computed by TE =√

SE2 + ME2
bc (see Equation (24)).

In Table 4, results and model uncertainty of 11 different scaling models for country 10th
and 90th percentiles in PISA 2009 reading are shown. For the 10th percentile Q10, the error
ratio was on average 0.60, with a range between 0.13 and 2.61. The average error ratio was
even larger for the 90th percentile Q90 (M = 0.84, Min = 0.23, Max = 2.16). Hence, quantile
comparisons across countries can be sensitive to the choice of the IRT scaling model.

In Table A3 in Appendix C, results and model uncertainty of 11 different scaling mod-
els for country means and standard deviations in PISA 2009 mathematics are shown.
As for reading, the error ratio was on average smaller for country means (M = 0.24,
Max = 0.66) than for country standard deviations (M = 0.77, Max = 1.58). Nevertheless,
the additional uncertainty associated with model uncertainty is too large to be ignored
in statistical inference. For example, South Korea (KOR) had a range of 15.7 for the standard
deviation across models, which corresponds to an error of 3.75 and an error ratio of 1.58.

In Table A4 in Appendix C, results and model uncertainty of 11 different scaling models
for country 10th and 90th percentiles in PISA 2009 mathematics are shown.
The error ratios for the 10th and the 90th percentiles were similar (Q10: M = 0.66; Q90:
M = 0.65). In general, the relative increase in uncertainty due to model error for percentiles
was similar to the standard deviation.

In Table A5 in Appendix C, results and model uncertainty of 11 different scaling
models for country means and standard deviations in PISA 2009 science are shown.
As for reading and mathematics, the importance of model error was relatively small
for country means (M = 0.27 for the error ratio). However, it reached 0.72 for Denmark with
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a bias-corrected model error of 1.89. For country standard deviations, the error ratio was
larger (M = 0.53, Min = 0.00, Max = 1.50).

In Table A6 in Appendix C, results and model uncertainty of 11 different scaling
models for country 10th and 90th percentiles in PISA 2009 science are shown. The influence
of model error on percentiles was slightly smaller in science than in reading or mathematics.
The average error ratios were M = 0.44 (Q10) and M = 0.57 (Q90), but the maximum error
ratios of 1.53 (Q10) and 2.04 (Q90) indicated that model error was more important than
sampling error for some countries.

Table 4. Results and model uncertainty of 11 different scaling models for country 10th and 90th
percentiles in PISA 2009 reading.

Country 10th Percentile Country 90th Percentile

CNT N M rg SE ME MEbc ER TE M rg SE ME MEbc ER TE

AUS 14,247 379.5 5.5 2.98 1.52 1.49 0.50 3.33 646.8 11.2 3.33 3.10 3.04 0.91 4.51
AUT 6585 332.9 20.5 4.82 5.37 5.32 1.10 7.18 602.8 4.8 3.64 1.26 1.07 0.30 3.79
BEL 8500 369.0 7.7 4.09 2.15 2.08 0.51 4.59 644.7 16.8 2.78 4.24 4.24 1.52 5.07
CAN 23,200 400.8 4.9 2.40 1.42 1.41 0.59 2.78 646.7 11.9 1.92 3.00 3.00 1.56 3.56
CHE 11,801 370.5 7.5 3.68 1.83 1.77 0.48 4.09 627.7 10.9 3.36 3.11 3.09 0.92 4.56
CZE 6059 357.5 8.4 4.67 2.19 2.13 0.46 5.14 603.3 6.2 3.18 1.58 1.53 0.48 3.53
DEU 4975 366.0 7.5 4.79 1.95 1.81 0.38 5.12 624.4 9.2 2.73 2.64 2.58 0.95 3.76
DNK 5920 378.2 4.1 2.82 0.96 0.91 0.32 2.96 604.0 4.7 2.57 1.45 1.43 0.56 2.94
ESP 25,828 359.0 8.7 3.24 2.18 2.12 0.66 3.87 595.1 3.0 1.86 0.78 0.74 0.40 2.00
EST 4726 390.9 7.3 3.83 1.81 1.76 0.46 4.21 610.7 6.2 3.17 1.50 1.46 0.46 3.49
FIN 5807 419.2 10.0 2.90 2.45 2.45 0.85 3.80 653.3 21.6 2.66 5.75 5.75 2.16 6.34
FRA 4280 350.5 13.8 5.93 3.68 3.59 0.60 6.93 638.6 16.3 4.92 3.88 3.82 0.78 6.23
GBR 12,172 365.9 9.9 3.00 2.57 2.57 0.86 3.95 621.7 5.0 3.01 1.45 1.39 0.46 3.31
GRC 4966 350.5 16.2 6.24 3.51 3.29 0.53 7.05 607.5 3.6 3.06 1.03 0.97 0.32 3.21
HUN 4604 368.6 7.0 6.08 1.56 1.40 0.23 6.24 613.4 4.5 4.08 1.21 1.12 0.28 4.23
IRL 3931 370.0 9.6 5.61 2.45 2.38 0.43 6.09 619.7 5.7 2.84 1.31 1.24 0.44 3.10
ISL 3628 366.3 6.0 2.67 1.40 1.28 0.48 2.96 628.2 11.2 2.33 2.84 2.76 1.18 3.62
ITA 30,905 352.4 12.2 2.65 2.67 2.65 1.00 3.75 613.7 7.7 1.86 2.01 2.00 1.07 2.73
JPN 6082 381.0 4.8 7.46 1.17 1.01 0.14 7.52 652.9 25.9 3.39 5.73 5.67 1.68 6.60
KOR 4989 430.5 13.8 4.18 3.53 3.31 0.79 5.33 644.5 14.7 3.51 3.68 3.60 1.02 5.03
LUX 4622 328.3 24.5 2.42 6.36 6.31 2.61 6.76 609.8 5.9 1.83 1.63 1.55 0.85 2.40
NLD 4760 386.8 3.5 5.84 0.91 0.73 0.13 5.89 632.7 12.9 5.35 3.47 3.36 0.63 6.31
NOR 4660 377.1 3.5 3.47 0.85 0.77 0.22 3.55 625.7 13.7 3.28 3.45 3.45 1.05 4.76
POL 4917 381.9 5.0 3.25 1.25 1.24 0.38 3.48 620.5 12.8 3.18 3.46 3.43 1.08 4.68
PRT 6298 369.9 6.6 4.51 1.43 1.34 0.30 4.70 606.8 3.5 3.20 0.83 0.74 0.23 3.29
SWE 4565 363.1 8.8 3.97 2.19 2.13 0.54 4.51 627.6 7.9 3.60 2.13 2.06 0.57 4.15

Note. CNT = country label (see Appendix B); N = sample size; M = weighted mean across different scaling
models; rg = range of estimates across models; SE = standard error (computed with balanced half sampling); ME
= estimated model error (see Equation (20)); MEbc = bias-corrected estimate of model error based on balanced
half sampling (see Equation (23)); ER = error ratio defined as MEbc/SE; TE = total error computed by TE =√

SE2 + ME2
bc (see Equation (24)).

To investigate the impact of the choice of model weights in our analysis (see Section 4.2),
we additionally conducted a sensitivity analysis for the reading domain by using uniform
model weights (weighting scheme W2). That is, we weighted each of the 11 scaling models
by wm = 1/11 = 0.091 (m = 1, . . . , 11). We studied changes in country means and country
standard deviations regarding the composite mean, standard errors (SE), and model errors
(MEbc). The results are displayed in Table 5.
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Table 5. Sensitivity analysis for country means and country standard deviations for original and
uniform model weighting for PISA 2009 reading

Country Mean Country Standard Deviation

M SE MEbc M SE MEbc

CNT W1 W2 W1 W2 W1 W2 W1 W2 W1 W2 W1 W2

AUS 515.2 515.2 2.51 2.51 0.29 0.33 104.7 104.7 1.45 1.46 0.64 0.74
AUT 470.8 471.0 3.34 3.33 0.65 0.74 104.6 104.3 2.16 2.18 1.64 1.90
BEL 509.5 509.7 2.49 2.49 0.78 0.90 107.5 107.6 1.92 1.91 0.65 0.74
CAN 525.0 524.8 1.49 1.49 0.43 0.53 95.6 95.8 1.12 1.13 1.18 1.34
CHE 501.7 501.8 2.72 2.73 0.39 0.43 99.7 99.7 1.67 1.68 0.00 0.00
CZE 479.9 479.9 3.17 3.16 0.27 0.20 95.2 95.2 1.86 1.86 0.20 0.15
DEU 498.5 498.7 3.05 3.04 0.39 0.44 100.1 100.1 2.01 2.00 0.00 0.03
DNK 493.7 493.4 2.10 2.10 1.58 1.75 88.0 87.8 1.31 1.33 0.68 0.84
ESP 480.1 480.0 2.12 2.11 0.43 0.44 91.9 91.5 1.18 1.16 1.13 1.34
EST 501.5 501.4 2.70 2.70 0.75 0.77 85.5 85.3 1.71 1.72 0.82 0.99
FIN 539.0 539.2 2.27 2.31 0.41 0.46 91.5 92.4 1.31 1.31 2.68 3.14
FRA 498.0 498.3 3.92 3.93 1.13 1.35 112.2 112.1 2.92 2.92 0.41 0.49
GBR 494.0 494.0 2.47 2.47 0.20 0.25 99.6 99.4 1.34 1.35 0.73 0.82
GRC 480.6 480.3 4.26 4.23 0.96 1.00 99.8 99.4 2.09 2.06 1.38 1.55
HUN 494.2 494.0 3.62 3.61 0.40 0.47 94.8 94.6 2.78 2.78 0.58 0.66
IRL 496.8 496.7 3.24 3.21 0.51 0.52 98.8 98.3 2.63 2.60 1.19 1.38
ISL 501.2 501.2 1.67 1.68 0.15 0.14 102.0 102.3 1.40 1.41 0.96 1.07
ITA 486.5 486.6 1.61 1.61 0.32 0.36 101.4 101.5 1.35 1.34 0.77 0.87
JPN 521.3 521.3 3.71 3.71 1.60 1.79 107.3 107.7 3.16 3.16 1.52 1.96
KOR 539.7 539.4 3.10 3.13 1.45 1.48 84.2 84.7 1.76 1.78 2.02 2.33
LUX 472.7 473.0 1.19 1.19 1.22 1.38 109.3 108.9 1.21 1.23 1.99 2.29
NLD 509.0 509.0 5.58 5.62 0.28 0.32 95.1 95.5 1.89 1.90 1.01 1.17
NOR 503.3 503.4 2.61 2.63 0.14 0.20 96.8 97.2 1.55 1.56 0.93 1.14
POL 501.7 501.8 2.72 2.73 0.72 0.67 92.8 93.0 1.32 1.34 0.84 0.96
PRT 489.2 489.0 3.17 3.16 0.70 0.83 91.8 91.5 1.75 1.74 0.71 0.88
SWE 497.0 497.0 3.00 3.00 0.00 0.00 103.6 103.4 1.63 1.64 0.27 0.32

Note. CNT = country label (see Appendix B); M = weighted mean across different scaling models; rg = range
of estimates across models; SE = standard error (computed with balanced half sampling); MEbc = bias-corrected
estimate of model error based on balanced half sampling (see Equation (23)); W1 = model weighting used in the
main analysis (see Section 4.2 and results in other tables); W2 = uniform weighting of models.

For the composite estimate of the country mean, we only observed tiny differences
between the proposed model weighting W1 and the uniform weighting W2. The absolute
difference in country means was 0.14 on average (SD = 0.11) and ranged between 0.01
and 0.36 (South Korea, KOR). The average absolute difference for the change in country
standard deviations was also small (M = 0.26; SD = 0.20). Notably, there were almost no
changes in the standard error for country means and country standard deviations for the
weighting methods. However, the model error slightly increased with uniform weighting
from M = 0.62 to M = 0.68 for country means and from 0.96 to 1.12 for country standard
deviation. In conclusion, one can state that employing a different weighting scheme might
not strongly change the composite estimate or the standard error but can have importance
regarding the quantified model uncertainty in the model error MEbc.

6. Discussion

Overall, our findings demonstrate that uncertainty regarding IRT scaling model influ-
ences country means. This kind of uncertainty is too large to be neglected in reporting.
For some of the countries, the model error exceeded the sampling error. In this case, con-
fidence intervals based on standard errors for the sampling of students might be overly narrow.

A different picture emerged for standard deviations and percentiles. In this case,
the choice of the IRT model turned out to be much more important. Estimated error ra-
tios were, on average, between 0.40 and 0.80, indicating that the model error introduced
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a non-negligible amount of uncertainty in parameters of interest. However, the importance
of model error compared to sampling error was even larger for some of the countries. In par-
ticular, distribution parameters for high- and low-performing countries were substantially
affected by the choice of the IRT model.

In our analysis, we only focused on 11 scaling models studied in the literature.
However, semi- or nonparametric IRT models could alternatively be utilized [16,53,105–107],
and their impact on distribution parameters could be an exciting topic for future research. If
more parameters in an IRT model were included, we expect an even larger impact of model
choice on distribution parameters.

In our analysis, we did not use student covariates for drawing plausible values [100,108].
It could be that the impact of the choice of the IRT model would be smaller if relevant student
covariates were included [109]. Future research can provide answers to this important question.
As a summary of our research (see also Section 2.3), we would like to argue that model
uncertainty should also be reported in educational LSA studies. This could be particularly
interesting because the 1PL, 2PL, or the 3PL models are applied in the studies. In model
comparisons, we have shown that the 3PL with residual heterogeneity (3PLRH) and
the 3PL with quadratic effects of θ (3PLQ) were superior to alternatives. If the 2PL model
is preferred over the 1PL model for reasons of model fit, three-parameter models must be
preferred for the same reason. However, a central question might be whether the 3PLRH
should be implemented in the operational practice of LSA. Technically, it would be certainly
feasible, and there is no practical added complexity compared to the 2PL or the 3PL model.

Interestingly, some specified IRT models have the same number of item parameters
but a different ability to fit the item response data. For example, the 3PL and the 3PLRH
models have the same number of parameters, but the 3PLRH is often preferred in terms
of model fit. This underlines that the choice of the functional form is also relevant, not only
the number of item parameters [30].

Frequently, the assumed IRT models will be grossly misspecified for educational LSA
data. The misspecification could lie in the functional form of the IRFs or the assumption of
invariant item parameters across countries. The reliance of ML estimation on misspecified
IRT models might be questioned. As an alternative, (robust) limited-information (LI)
estimation methods [110] can be used. Notably, ML and LI methods result in a different
weighing of model errors [111]. If differential item functioning (DIF) across countries
is critical, IRT models can also be separately estimated in each country, and the results
brought onto a common international metric through linking methods [112,113]. In the case
of a small sample size at the country level, regularization approaches for more complex
IRT models can be employed to stabilize estimation [114,115]. Linking methods have the
advantage of a clear definition of model loss regarding country DIF [116–118] compared
to joint estimation with ML or LI estimation [119].

As pointed out by an anonymous reviewer, applied psychometric researchers seem
to have a tendency to choose the best fitting model with little care for whether that choice
is appropriate in the particular research context. We have argued elsewhere that the 1PL
model compared to other IRT models with more parameters is more valid because of its
equal weighting of items [27]. If Pandora’s box is opened via the argument of choosing
a more complex IRT model due to improved model fit, we argue for a specification of differ-
ent IRT models and an integrated assessment of model uncertainty, as has been proposed
in this article. In this approach, however, the a priori choice of model weights has to be
carefully conducted.
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Appendix A. Ability Estimation in Misspecified IRT Models

Let Pi(θ) = Ψ(ai(θ)) be the true but unknown IRF, where Ψ is the logistic link function
and ai is a differentiable function. If the IRFs are known, the latent ability θ can be obtained
be maximizing the following log-likelihood function

l(θ) =
I

∑
i=1
{xi log Ψ(ai(θ)) + (1− xi) log(1−Ψ(ai(θ)))} . (A1)

The maximization of Equation (A1) provides the estimating equation

l1(θ0) =
∂l
∂θ

∣∣∣
θ=θ0

=
I

∑
i=1

(xi −Ψ(ai(θ0)))a′i(θ0) = 0 , (A2)

where a′i denotes the first derivative of ai. Note that

E{l1(θ0)} =
I

∑
i=1

(Ψ(ai(θ0))−Ψ(ai(θ0)))a′i(θ0) = 0 , (A3)

Now assume that misspecified IRFs P∗i (θ) = Ψ(αi(θ)) instead of Pi(θ) are used.
The following estimating equation provides an ability estimate θ1:

l∗1 (θ1) =
I

∑
i=1

(xi −Ψ(αi(θ1)))α
′
i(θ1) = 0 . (A4)

We make use of the following Taylor approximations

α′i(θ1) ' α′i(θ0) + α′′i (θ0)(θ1 − θ0) and (A5)

Ψ(αi(θ1)) ' Ψ(αi(θ0)) + I(αi(θ0))α
′
i(θ0)(θ1 − θ0) , (A6)

where I(x) = Ψ(x)(1−Ψ(x)). Set ∆θ = θ1 − θ0. We obtain by inserting (A5) and (A6) in (A4)

l∗1 (θ1) '
I

∑
i=1

[
xi −Ψ(αi(θ0))− I(αi(θ0))α

′
i(θ0)∆θ

][
αi(θ0) + α′i(θ0)∆θ

]
= 0 . (A7)
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We can now determine the bias ∆θ by solving E(l∗1 (θ1)) = 0 for θ1 and taking
E(l1(θ0)) = 0 into account. Moreover, we take the expectation and ignore the squared term
in ∆θ (i.e., ∆θ ' 0). Then, we compute from (A7)

E
{

l∗1 (θ1)
}

= E

{
I

∑
i=1

[
xi −Ψ(αi(θ0))− I(αi(θ0))α

′
i(θ0)∆θ

][
α′i(θ0) + α′′i (θ0)∆θ

]}

=
I

∑
i=1

[
Ψ(ai(θ0))−Ψ(αi(θ0))− I(αi(θ0))α

′
i(θ0)∆θ

][
α′i(θ0) + α′′i (θ0)∆θ

]
=

I

∑
i=1

[Ψ(ai(θ0))−Ψ(αi(θ0))]α
′
i(θ0)− ∆θ

I

∑
i=1

{
I(αi(θ0))

[
α′i(θ0)

]2 − [Ψ(ai(θ0))−Ψ(αi(θ0))]α
′′
i (θ0)

}
= 0

(A8)

Finally, we obtain from (A8)

θ1 = θ0 +

I

∑
i=1

[Ψ(ai(θ0))−Ψ(αi(θ0))]α
′
i(θ0)

I

∑
i=1

{
I(αi(θ0))

[
α′i(θ0)

]2 − [Ψ(ai(θ0))−Ψ(αi(θ0))]α
′′
i (θ0)

} . (A9)

We can further approximate the term in (A9) to

θ1 ' θ0 + A−1
I

∑
i=1

[Ψ(ai(θ0))−Ψ(αi(θ0))]α
′
i(θ0) (A10)

where A = ∑I
i=1 I(αi(θ0))

[
α′i(θ0)

]2.

Appendix B. Country Labels for PISA 2009 Study

The following country labels were used in the Results Section 5 for the PISA 2009 analysis:

AUS = Australia; AUT = Austria; BEL = Belgium; CAN = Canada; CHE = Switzerland;
CZE = Czech Republic; DEU = Germany; DNK = Denmark; ESP = Spain; EST = Estonia;
FIN = Finland; FRA = France; GBR = United Kingdom; GRC = Greece; HUN = Hun-
gary; IRL = Ireland; ISL = Iceland; ITA = Italy; JPN = Japan; KOR = Republic of Korea;
LUX = Luxembourg; NLD = Netherlands; NOR = Norway; POL = Poland; PRT = Portugal;
SWE = Sweden.

Appendix C. Additional Results for PISA 2009 Mathematics and Science

In Table A1, detailed results for 11 different scaling models for country means in PISA
2009 mathematics are shown. In Table A2, detailed results for 11 different scaling models
for country means in PISA 2009 science are shown.

In Table A3, results and model uncertainty of 11 different scaling models for country
means and standard deviations in PISA 2009 mathematics are shown. In Table A4, results
and model uncertainty of 11 different scaling models for country 10th and 90th percentiles
in PISA 2009 mathematics are shown. In Table A5, results and model uncertainty of 11
different scaling models for country means and standard deviations in PISA 2009 science
are shown. In Table A6, results and model uncertainty of 11 different scaling models
for country 10th and 90th percentiles in PISA 2009 science are shown.
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Table A1. Detailed results for all 11 different scaling models for country means in PISA 2009 mathe-
matics.

CNT M rg MEbc 1PL 1PCL 1PLL 1PGL 2PL 4PGL 3PLQ 3PLRH 3PL 4PL 4PLQ

AUS 511.2 0.72 0.02 511.3 510.9 510.8 511.1 511.4 511.4 511.2 511.2 511.5 511.2 511.3
AUT 492.5 2.90 0.71 492.7 491.2 494.1 493.9 492.7 492.4 492.3 492.9 491.2 492.1 492.1
BEL 512.4 2.99 0.86 513.0 511.3 514.2 514.2 511.6 512.2 512.4 512.1 511.5 512.3 512.2
CAN 523.0 2.17 0.62 522.5 521.9 522.7 522.9 523.8 523.1 523.1 523.2 524.0 523.0 523.0
CHE 533.5 6.22 1.44 532.5 529.0 535.0 535.2 533.9 534.5 534.4 534.4 533.4 534.9 534.6
CZE 488.1 1.21 0.20 488.2 488.9 487.8 487.7 488.5 487.8 487.8 488.0 488.0 487.7 487.7
DEU 508.9 2.46 0.89 509.7 508.9 510.4 510.3 508.1 508.3 507.9 508.2 508.0 508.1 508.0
DNK 497.4 3.52 0.93 498.0 499.7 496.3 496.6 497.6 496.2 496.4 496.2 497.9 496.4 496.4
ESP 478.9 0.53 0.06 479.1 479.0 478.8 478.8 478.6 479.1 478.9 479.0 478.6 478.9 478.9
EST 508.1 5.35 1.35 507.6 510.8 505.5 505.4 508.9 507.8 507.9 507.7 509.9 507.9 507.9
FIN 538.1 5.13 1.27 539.3 541.1 538.2 537.9 537.9 536.5 536.4 536.8 538.2 536.0 536.2
FRA 490.8 1.79 0.50 491.3 490.0 491.6 491.8 490.0 490.4 490.7 490.6 490.4 490.5 490.5
GBR 486.9 2.30 0.53 486.6 486.9 485.3 485.9 487.1 487.1 487.3 487.1 487.6 487.3 487.3
GRC 458.0 3.95 0.97 458.6 457.6 459.9 459.2 457.3 458.3 458.0 458.2 456.0 457.9 457.8
HUN 483.4 1.11 0.00 483.5 484.1 483.1 483.0 483.5 483.5 483.2 483.4 483.1 483.3 483.4
IRL 482.6 1.97 0.55 482.1 482.1 481.6 482.0 483.1 483.0 483.0 482.7 483.6 483.2 483.2
ISL 501.0 3.02 0.74 501.5 503.0 500.1 500.2 500.7 500.0 500.4 500.1 501.3 500.3 500.4
ITA 478.0 0.88 0.18 478.1 478.6 478.1 477.8 477.7 478.2 478.2 478.2 477.8 478.2 478.2
JPN 529.9 3.06 1.11 528.4 529.1 529.1 528.9 530.5 531.3 531.1 531.0 530.5 531.4 531.3
KOR 544.7 7.87 2.45 541.6 540.0 546.4 545.8 545.6 546.7 547.5 547.1 545.6 547.7 547.8
LUX 483.4 1.55 0.46 483.8 482.8 484.1 484.0 482.7 483.7 483.3 483.7 482.5 483.4 483.5
NLD 521.5 1.98 0.51 522.0 522.6 521.4 521.5 521.2 520.8 520.8 520.8 521.5 520.6 520.7
NOR 493.3 4.11 0.87 493.4 495.6 491.5 491.6 493.5 492.9 493.0 492.8 493.9 493.0 493.0
POL 487.0 1.22 0.15 487.1 488.0 486.8 486.7 487.1 486.9 486.9 486.8 486.8 487.0 486.9
PRT 480.1 2.26 0.49 479.8 478.7 479.7 480.0 480.3 480.7 480.8 481.0 480.2 480.8 480.7
SWE 487.4 1.44 0.47 488.1 488.3 487.4 487.6 486.8 487.2 487.0 487.0 486.9 487.0 487.1

Note. CNT = country label (see Appendix B); M = weighted mean across different scaling models; rg = range
of estimates across models; MEbc = bias-corrected estimate of model error based on balanced half sampling
(see Equation (23)); For model descriptions see Section 2.1 and Equations (3) to (14). Country means that differ
from the weighted mean of country means of the 11 different models more than 1 are printed in bold.

Table A2. Detailed results for all 11 different scaling models for country means in PISA 2009 science.

CNT M rg MEbc 1PL 1PCL 1PLL 1PGL 2PL 4PGL 3PLQ 3PLRH 3PL 4PL 4PLQ

AUS 517.6 2.73 0.83 518.4 518.1 519.2 518.3 516.7 517.3 517.1 517.2 516.5 517.2 517.1
AUT 488.1 1.11 0.18 487.9 488.6 487.6 488.0 488.4 488.3 488.4 488.7 487.9 488.3 488.2
BEL 498.1 2.37 0.55 497.8 496.6 498.9 497.7 498.5 498.6 498.5 498.5 498.2 498.7 498.6
CAN 519.6 0.65 0.09 519.6 519.5 520.0 519.6 519.4 519.6 519.6 519.5 519.6 519.4 519.6
CHE 509.2 0.96 0.35 508.7 508.8 508.9 508.7 509.5 509.6 509.7 509.7 509.4 509.6 509.6
CZE 494.1 2.89 0.98 495.1 495.7 494.5 495.2 493.5 493.0 492.8 492.9 493.6 492.9 492.9
DEU 513.9 2.13 0.53 514.2 514.9 514.7 514.2 514.0 513.3 513.1 513.5 513.7 513.1 512.8
DNK 488.3 4.70 1.89 490.3 490.9 489.6 490.4 486.2 486.6 486.5 486.4 486.8 486.7 486.6
ESP 478.2 2.07 0.42 478.2 479.0 477.0 478.4 478.1 477.8 477.9 477.7 478.7 478.0 478.0
EST 517.5 1.00 0.23 517.4 517.2 517.9 517.3 517.4 517.6 517.2 517.4 518.2 517.4 517.2
FIN 546.5 3.54 0.79 547.1 546.3 549.0 546.9 546.0 546.4 546.0 546.1 545.5 546.3 546.1
FRA 488.2 3.74 1.02 487.2 485.9 488.3 487.1 488.9 489.3 489.6 489.5 488.8 489.3 489.5
GBR 505.0 1.12 0.28 504.7 504.8 505.2 504.7 504.9 505.8 505.4 505.4 504.7 505.5 505.6
GRC 461.4 4.51 1.26 460.3 458.3 461.6 460.0 462.4 462.8 462.5 462.5 462.1 462.5 462.5
HUN 494.6 5.05 1.36 495.8 498.0 493.5 496.1 493.9 492.9 493.0 493.0 494.5 493.0 493.1
IRL 497.0 0.95 0.27 497.3 497.4 497.4 497.3 496.7 496.8 496.5 496.7 496.7 496.5 496.6
ISL 487.6 3.34 1.09 486.5 487.4 485.5 486.6 488.8 488.4 488.2 488.4 488.8 488.1 488.2
ITA 479.7 0.57 0.17 479.9 479.5 479.5 479.9 479.8 479.5 479.4 479.3 479.7 479.3 479.3
JPN 534.6 7.85 2.29 532.4 530.2 534.6 532.1 536.1 536.3 537.6 536.9 535.0 538.1 537.6
KOR 530.6 3.57 1.42 529.1 529.0 529.1 529.2 531.0 532.0 532.5 532.4 531.5 532.3 532.4
LUX 474.8 3.49 0.87 474.2 472.6 475.1 474.0 475.3 476.1 476.0 476.1 474.6 475.7 475.7
NLD 514.2 2.63 0.93 515.2 515.6 514.8 515.2 513.6 513.1 513.0 513.2 513.4 513.0 513.1
NOR 491.0 3.24 1.10 492.2 492.6 491.2 492.3 490.5 489.4 489.6 489.4 490.6 489.6 489.7
POL 499.6 3.08 0.70 500.0 501.7 498.6 500.2 499.3 499.0 498.9 499.0 499.7 498.7 498.9
PRT 483.4 4.41 0.88 483.2 485.3 480.9 483.5 483.8 483.0 483.1 482.9 484.4 483.1 483.1
SWE 487.3 1.54 0.34 487.1 486.3 487.2 487.0 487.5 487.6 487.9 487.7 487.5 487.9 487.9

Note. CNT = country label (see Appendix B); M = weighted mean across different scaling models; rg = range
of estimates across models; MEbc = bias-corrected estimate of model error based on balanced half sampling
(see Equation (23)); For model descriptions see Section 2.1 and Equations (3) to (14). Country means that differ
from the weighted mean of country means of the 11 different models more than 1 are printed in bold.
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Table A3. Results and model uncertainty of 11 different scaling models for country means and
country standard deviations in PISA 2009 mathematics.

Country Mean Country Standard Deviation

CNT N M rg SE ME MEbc ER TE M rg SE ME MEbc ER TE

AUS 9889 511.2 0.7 2.75 0.19 0.02 0.01 2.75 101.5 2.7 1.82 0.89 0.83 0.45 2.00
AUT 4575 492.5 2.9 3.17 0.80 0.71 0.22 3.25 105.1 6.0 2.05 1.76 1.68 0.82 2.65
BEL 5978 512.4 3.0 2.39 0.88 0.86 0.36 2.54 111.5 4.2 2.20 1.36 1.32 0.60 2.56
CAN 16,040 523.0 2.2 1.70 0.62 0.62 0.37 1.81 93.5 5.5 1.28 1.73 1.73 1.35 2.16
CHE 8157 533.5 6.2 3.59 1.45 1.44 0.40 3.87 105.2 7.2 1.85 2.33 2.29 1.23 2.94
CZE 4223 488.1 1.2 3.16 0.32 0.20 0.06 3.16 98.9 2.8 2.10 0.93 0.86 0.41 2.27
DEU 3503 508.9 2.5 3.45 0.91 0.89 0.26 3.56 104.6 2.3 2.27 0.86 0.73 0.32 2.38
DNK 4088 497.4 3.5 2.86 0.95 0.93 0.33 3.01 91.9 1.8 1.78 0.36 0.08 0.05 1.79
ESP 17,920 478.9 0.5 2.21 0.20 0.06 0.03 2.21 95.4 6.1 1.64 1.63 1.60 0.98 2.29
EST 3279 508.1 5.3 2.82 1.37 1.35 0.48 3.13 83.5 5.9 1.96 1.60 1.56 0.80 2.50
FIN 4019 538.1 5.1 2.22 1.32 1.27 0.57 2.56 87.8 8.4 1.82 2.61 2.59 1.42 3.17
FRA 2965 490.8 1.8 3.67 0.59 0.50 0.14 3.71 104.7 4.6 2.77 1.34 1.26 0.45 3.05
GBR 8431 486.9 2.3 2.77 0.59 0.53 0.19 2.82 94.2 3.1 1.75 0.90 0.82 0.47 1.93
GRC 3445 458.0 3.9 4.13 1.03 0.97 0.23 4.24 97.6 9.6 2.38 2.88 2.82 1.18 3.69
HUN 3177 483.4 1.1 4.04 0.26 0.00 0.00 4.04 97.8 5.4 3.42 1.69 1.69 0.49 3.82
IRL 2745 482.6 2.0 2.89 0.61 0.55 0.19 2.94 88.3 5.0 2.02 1.41 1.36 0.67 2.44
ISL 2510 501.0 3.0 2.14 0.76 0.74 0.35 2.26 95.0 2.5 2.09 0.69 0.61 0.29 2.18
ITA 21,379 478.0 0.9 2.09 0.24 0.18 0.09 2.10 98.0 5.5 1.40 1.32 1.32 0.94 1.92
JPN 4207 529.9 3.1 3.77 1.15 1.11 0.29 3.93 101.7 7.9 2.61 2.61 2.54 0.97 3.64
KOR 3447 544.7 7.9 3.71 2.52 2.45 0.66 4.45 94.0 15.7 2.38 3.90 3.75 1.58 4.45
LUX 3197 483.4 1.6 1.88 0.53 0.46 0.24 1.94 103.6 5.1 1.78 1.36 1.30 0.73 2.21
NLD 3318 521.5 2.0 5.19 0.56 0.51 0.10 5.22 96.4 4.5 2.06 1.57 1.49 0.73 2.54
NOR 3230 493.3 4.1 2.76 0.88 0.87 0.32 2.89 92.6 2.8 1.47 0.85 0.74 0.50 1.65
POL 3401 487.0 1.2 2.99 0.28 0.15 0.05 2.99 95.4 5.9 1.90 2.46 2.44 1.28 3.10
PRT 4391 480.1 2.3 2.99 0.54 0.49 0.16 3.03 97.7 4.7 1.93 1.53 1.49 0.77 2.44
SWE 3139 487.4 1.4 3.02 0.53 0.47 0.15 3.06 99.3 3.5 1.91 1.14 1.08 0.57 2.19

Note. CNT = country label (see Appendix B); N = sample size; M = weighted mean across different scaling
models; rg = range of estimates across models; SE = standard error (computed with balanced half sampling); ME
= estimated model error (see Equation (20)); MEbc = bias-corrected estimate of model error based on balanced
half sampling (see Equation (23)); ER = error ratio defined as MEbc/SE; TE = total error computed by TE =√

SE2 + ME2
bc (see Equation (24)).

Table A4. Results and model uncertainty of 11 different scaling models for country 10th and 90th
percentiles in PISA 2009 mathematics.

Country 10th Percentile Country 90th Percentile

CNT N M rg SE ME MEbc ER TE M rg SE ME MEbc ER TE

AUS 9889 380.2 2.2 3.12 0.76 0.61 0.20 3.18 641.9 8.4 4.06 2.65 2.56 0.63 4.80
AUT 4575 355.5 16.2 4.22 4.74 4.60 1.09 6.25 627.1 7.3 3.86 2.24 2.09 0.54 4.39
BEL 5978 367.0 5.8 4.46 1.69 1.53 0.34 4.71 654.9 14.9 2.94 4.67 4.66 1.59 5.51
CAN 16,040 402.3 4.6 2.75 1.50 1.50 0.54 3.13 643.7 10.2 2.01 3.15 3.15 1.57 3.73
CHE 8157 393.9 3.6 4.29 1.14 0.97 0.23 4.40 666.6 20.3 4.16 5.76 5.71 1.37 7.07
CZE 4223 361.9 9.7 4.80 2.91 2.85 0.59 5.58 617.3 2.2 3.91 0.63 0.30 0.08 3.92
DEU 3503 371.8 6.7 5.12 1.89 1.85 0.36 5.45 642.6 11.6 3.75 3.83 3.75 1.00 5.30
DNK 4088 379.2 4.5 3.49 1.66 1.51 0.43 3.80 616.1 3.5 3.69 1.19 1.14 0.31 3.86
ESP 17,920 354.4 13.3 3.44 3.75 3.70 1.08 5.05 600.8 4.9 2.73 1.12 1.06 0.39 2.92
EST 3279 401.7 8.8 4.28 2.31 2.24 0.52 4.83 616.7 6.6 3.66 1.80 1.68 0.46 4.03
FIN 4019 425.0 8.7 3.39 2.66 2.61 0.77 4.28 650.9 13.8 3.12 4.60 4.57 1.47 5.54
FRA 2965 354.3 10.9 5.45 2.82 2.72 0.50 6.09 623.9 7.8 4.85 3.40 3.28 0.68 5.86
GBR 8431 366.8 6.3 3.32 2.16 2.09 0.63 3.92 609.5 2.0 3.93 0.58 0.26 0.07 3.94
GRC 3445 332.4 22.8 5.63 6.55 6.44 1.14 8.55 584.0 6.7 4.64 1.77 1.69 0.36 4.94
HUN 3177 356.7 12.3 6.07 3.57 3.57 0.59 7.04 608.5 6.4 6.03 1.63 1.51 0.25 6.21
IRL 2745 368.0 8.0 4.45 2.36 2.22 0.50 4.97 594.6 5.1 3.39 1.54 1.47 0.43 3.70
ISL 2510 378.3 3.4 3.70 1.25 1.05 0.28 3.84 622.2 4.7 3.46 1.70 1.60 0.46 3.82
ITA 21,379 351.5 11.3 2.47 3.41 3.41 1.38 4.21 604.3 4.4 2.89 0.91 0.83 0.29 3.01
JPN 4207 397.8 7.2 6.31 2.15 2.02 0.32 6.63 658.7 16.7 4.17 4.97 4.85 1.16 6.40
KOR 3447 424.9 10.6 4.52 3.22 2.92 0.65 5.38 666.7 32.2 5.09 8.04 7.88 1.55 9.38
LUX 3197 348.5 14.1 3.54 4.12 4.03 1.14 5.36 615.8 3.3 2.51 1.27 1.14 0.46 2.75
NLD 3318 396.9 4.6 5.92 1.18 0.92 0.16 6.00 645.8 10.1 5.02 3.31 3.22 0.64 5.96
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Table A4. Cont.

Country 10th Percentile Country 90th Percentile

CNT N M rg SE ME MEbc ER TE M rg SE ME MEbc ER TE

NOR 3230 373.7 5.1 3.44 1.86 1.72 0.50 3.85 612.9 4.1 3.26 0.90 0.75 0.23 3.35
POL 3401 364.0 13.2 3.60 4.71 4.71 1.31 5.93 610.3 7.2 4.09 2.61 2.50 0.61 4.79
PRT 4391 354.5 12.0 3.47 3.68 3.64 1.05 5.02 607.0 2.6 4.22 0.74 0.49 0.12 4.25
SWE 3139 359.6 10.0 3.74 3.31 3.25 0.87 4.95 616.0 3.5 3.99 1.13 1.00 0.25 4.11

Note. CNT = country label (see Appendix B); N = sample size; M = weighted mean across different scaling
models; rg = range of estimates across models; SE = standard error (computed with balanced half sampling); ME
= estimated model error (see Equation (20)); MEbc = bias-corrected estimate of model error based on balanced
half sampling (see Equation (23)); ER = error ratio defined as MEbc/SE; TE = total error computed by TE =√

SE2 + ME2
bc (see Equation (24)).

Table A5. Results and model uncertainty of 11 different scaling models for country means and
country standard deviations in PISA 2009 science.

Country Mean Country Standard Deviation

CNT N M rg SE ME MEbc ER TE M rg SE ME MEbc ER TE

AUS 9864 517.6 2.7 2.72 0.84 0.83 0.30 2.84 104.9 3.4 1.75 0.65 0.58 0.33 1.84
AUT 4577 488.1 1.1 3.64 0.29 0.18 0.05 3.64 105.7 2.2 2.91 0.63 0.53 0.18 2.96
BEL 5938 498.1 2.4 2.51 0.55 0.55 0.22 2.57 106.7 2.4 1.98 0.61 0.57 0.29 2.06
CAN 16,075 519.6 0.7 1.81 0.15 0.09 0.05 1.81 93.8 3.6 1.24 0.94 0.91 0.74 1.54
CHE 8215 509.2 1.0 3.01 0.40 0.35 0.12 3.03 98.9 2.1 1.82 0.48 0.35 0.19 1.86
CZE 4252 494.1 2.9 3.43 1.00 0.98 0.29 3.57 99.1 1.1 2.66 0.30 0.00 0.00 2.66
DEU 3477 513.9 2.1 3.08 0.55 0.53 0.17 3.12 103.3 5.3 2.25 1.09 1.05 0.47 2.48
DNK 4101 488.3 4.7 2.62 1.92 1.89 0.72 3.23 95.2 3.6 1.98 1.11 1.09 0.55 2.26
ESP 17,876 478.2 2.1 2.18 0.46 0.42 0.19 2.22 87.9 4.0 1.64 1.00 0.97 0.59 1.90
EST 3272 517.5 1.0 2.75 0.31 0.23 0.08 2.76 87.3 4.1 1.91 1.09 1.06 0.56 2.18
FIN 4016 546.5 3.5 2.48 0.84 0.79 0.32 2.61 92.8 10.9 1.55 2.35 2.33 1.50 2.80
FRA 2960 488.2 3.7 3.91 1.10 1.02 0.26 4.04 105.3 4.1 3.09 1.27 1.15 0.37 3.29
GBR 8413 505.0 1.1 2.78 0.36 0.28 0.10 2.79 102.6 1.9 1.85 0.64 0.58 0.31 1.94
GRC 3452 461.4 4.5 4.10 1.26 1.26 0.31 4.29 96.8 8.8 2.22 2.05 2.00 0.90 2.99
HUN 3193 494.6 5.0 3.46 1.43 1.36 0.39 3.72 89.8 2.5 2.92 0.59 0.50 0.17 2.97
IRL 2738 497.0 1.0 3.31 0.36 0.27 0.08 3.32 99.4 1.7 2.81 0.50 0.33 0.12 2.83
ISL 2501 487.6 3.3 2.01 1.09 1.09 0.54 2.28 99.5 5.1 1.89 1.17 1.13 0.60 2.20
ITA 21,344 479.7 0.6 1.82 0.21 0.17 0.09 1.83 99.1 5.9 1.49 1.20 1.20 0.81 1.91
JPN 4222 534.6 7.8 3.76 2.29 2.29 0.61 4.40 106.7 10.3 3.15 2.72 2.69 0.85 4.14
KOR 3451 530.6 3.6 3.30 1.42 1.42 0.43 3.59 86.9 7.9 1.93 2.41 2.34 1.21 3.04
LUX 3195 474.8 3.5 1.94 0.91 0.87 0.45 2.12 107.9 6.5 1.53 1.63 1.58 1.03 2.20
NLD 3323 514.2 2.6 5.77 0.98 0.93 0.16 5.85 99.7 4.7 2.32 1.20 1.11 0.48 2.57
NOR 3204 491.0 3.2 2.67 1.15 1.10 0.41 2.88 93.2 3.2 1.65 0.81 0.74 0.45 1.81
POL 3397 499.6 3.1 2.72 0.73 0.70 0.26 2.81 92.7 2.3 1.93 0.58 0.52 0.27 2.00
PRT 4336 483.4 4.4 3.06 0.89 0.88 0.29 3.19 86.0 4.2 1.54 0.89 0.85 0.55 1.76
SWE 3157 487.3 1.5 2.85 0.39 0.34 0.12 2.87 102.4 2.2 1.58 0.50 0.38 0.24 1.63

Note. CNT = country label (see Appendix B); N = sample size; M = weighted mean across different scaling
models; rg = range of estimates across models; SE = standard error (computed with balanced half sampling); ME
= estimated model error (see Equation (20)); MEbc = bias-corrected estimate of model error based on balanced
half sampling (see Equation (23)); ER = error ratio defined as MEbc/SE; TE = total error computed by TE =√

SE2 + ME2
bc (see Equation (24)).

Table A6. Results and model uncertainty of 11 different scaling models for country 10th and 90th
percentiles in PISA 2009 science.

Country 10th Percentile Country 90th Percentile

CNT N M rg SE ME MEbc ER TE M rg SE ME MEbc ER TE

AUS 9864 383.3 3.8 3.19 1.09 1.01 0.32 3.34 650.3 12.7 4.07 2.85 2.76 0.68 4.92
AUT 4577 350.9 7.9 5.68 2.39 2.29 0.40 6.13 621.7 3.8 4.29 1.05 0.90 0.21 4.38
BEL 5938 358.7 7.1 4.18 1.96 1.96 0.47 4.62 632.9 11.5 2.89 2.28 2.25 0.78 3.66
CAN 16,075 398.5 1.4 2.59 0.51 0.36 0.14 2.62 638.7 10.2 2.25 2.43 2.39 1.06 3.29
CHE 8215 379.4 3.4 3.95 1.11 0.94 0.24 4.06 634.2 8.2 3.83 2.01 2.00 0.52 4.32
CZE 4252 366.8 6.1 5.49 1.49 1.36 0.25 5.66 621.4 4.0 4.26 1.03 0.93 0.22 4.36
DEU 3477 379.8 2.3 4.87 0.83 0.36 0.07 4.88 645.4 12.5 3.50 2.43 2.38 0.68 4.23
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Table A6. Cont.

Country 10th Percentile Country 90th Percentile

CNT N M rg SE ME MEbc ER TE M rg SE ME MEbc ER TE

DNK 4101 366.8 6.5 3.64 1.98 1.92 0.53 4.12 610.9 6.4 3.59 2.48 2.45 0.68 4.34
ESP 17,876 365.2 7.1 3.45 1.68 1.65 0.48 3.82 590.3 3.8 2.49 0.98 0.90 0.36 2.65
EST 3272 404.3 3.1 4.05 1.06 0.99 0.24 4.16 629.1 9.5 3.32 2.06 2.02 0.61 3.89
FIN 4016 426.8 8.9 3.41 2.11 2.07 0.61 3.98 665.1 21.2 3.05 4.61 4.56 1.49 5.48
FRA 2960 349.7 14.1 6.26 3.65 3.43 0.55 7.14 619.2 6.0 4.70 1.39 1.26 0.27 4.87
GBR 8413 372.5 6.5 3.56 1.74 1.69 0.47 3.94 635.8 9.4 3.86 2.70 2.62 0.68 4.67
GRC 3452 336.7 20.4 6.02 4.52 4.43 0.74 7.47 584.8 5.3 4.01 1.43 1.31 0.33 4.22
HUN 3193 378.8 2.5 6.41 0.82 0.37 0.06 6.42 609.8 4.9 3.77 1.19 1.11 0.30 3.93
IRL 2738 370.3 7.3 5.60 2.08 1.93 0.34 5.93 623.2 4.3 4.01 1.09 1.01 0.25 4.13
ISL 2501 357.8 10.4 3.77 2.56 2.48 0.66 4.51 613.3 3.7 2.78 1.12 1.04 0.37 2.97
ITA 21,344 350.7 14.0 2.87 2.85 2.85 1.00 4.04 605.7 2.2 2.13 0.61 0.57 0.27 2.21
JPN 4222 390.5 5.6 7.55 1.48 1.26 0.17 7.66 663.4 27.8 3.40 6.97 6.94 2.04 7.72
KOR 3451 417.4 6.3 3.83 2.02 1.86 0.49 4.26 639.9 16.7 4.45 4.91 4.91 1.10 6.63
LUX 3195 334.6 18.6 2.98 4.62 4.55 1.53 5.44 612.2 1.6 2.67 0.49 0.18 0.07 2.68
NLD 3323 385.4 3.7 6.36 1.34 1.08 0.17 6.45 642.4 11.2 5.48 2.52 2.44 0.45 6.00
NOR 3204 371.1 5.8 3.31 1.42 1.32 0.40 3.56 611.3 3.5 3.58 1.23 1.07 0.30 3.74
POL 3397 380.6 3.7 3.81 0.93 0.86 0.22 3.90 619.7 3.6 3.51 1.06 0.93 0.26 3.63
PRT 4336 373.7 5.4 3.67 1.31 1.17 0.32 3.85 595.4 6.9 3.46 1.27 1.24 0.36 3.68
SWE 3157 355.5 10.4 3.42 2.27 2.20 0.64 4.07 617.5 7.3 3.62 1.81 1.75 0.48 4.02

Note. CNT = country label (see Appendix B); N = sample size; M = weighted mean across different scaling
models; rg = range of estimates across models; SE = standard error (computed with balanced half sampling); ME
= estimated model error (see Equation (20)); MEbc = bias-corrected estimate of model error based on balanced
half sampling (see Equation (23)); ER = error ratio defined as MEbc/SE; TE = total error computed by TE =√

SE2 + ME2
bc (see Equation (24)).
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