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Abstract: Estimates based on expert judgements of quantities of interest are commonly used to
supplement or replace measurements when the latter are too expensive or impossible to obtain.
Such estimates are commonly accompanied by information about the uncertainty of the estimate,
such as a credible interval. To be considered well-calibrated, an expert’s credible intervals should cover
the true (but unknown) values a certain percentage of time, equal to the percentage specified by the
expert. To assess expert calibration, so-called calibration questions may be asked in an expert elicitation
exercise; these are questions with known answers used to assess and compare experts’ performance.
An approach that is commonly applied to assess experts’ performance by using these questions is to
directly compare the stated percentage cover with the actual coverage. We show that this approach
has statistical drawbacks when considered in a rigorous hypothesis testing framework. We generalize
the test to an equivalence testing framework and discuss the properties of this new proposal. We
show that comparisons made on even a modest number of calibration questions have poor power,
which suggests that the formal testing of the calibration of experts in an experimental setting may be
prohibitively expensive. We contextualise the theoretical findings with a couple of applications and
discuss the implications of our findings.

Keywords: credible intervals; experts” hit rates; experts’ calibration; equivalence test

1. Introduction

Expert elicitation refers to employing formal procedures for obtaining and combining
expert judgments, when existing data and models cannot provide required information for
decision making in practice [1]. Subjective estimates from experts can play an important role
in decision making within emerging contexts for which no data are available. The existing
literature of applications across widespread areas speaks to the importance of expert
elicitation in practice (see, e.g., [2]).

Expert judgements of unknown quantities of interest are often elicited in the form of
best estimates accompanied by credible intervals, which capture expert uncertainty around
the point estimates (e.g., [2-4]). Credible intervals can be elicited using a 3-step or a 4-step
question format depending on the context, as follows.

A 3-step format for eliciting quantities (a 3-step format for eliciting probabilities
rather than quantities asks for best estimates and upper and lower bounds without the
percentile operationalization. However, this situation is outside the scope of our research)
refers to the elicitation of best estimates together with an upper and lower bound, which are
often associated with an upper and lower percentile of the expert’s subjective distribution
that represents the uncertainty around the best estimate, often taken as a median (e.g., [5,6]).
The elicited intervals are often taken as central credible intervals.

A 4-step format elicits the previously mentioned three estimates together with a fourth
one that corresponds to the expert’s confidence that the true value of the yet unknown

Entropy 2022, 24, 757. https:/ /doi.org/10.3390/e24060757

https://www.mdpi.com/journal/entropy


https://doi.org/10.3390/e24060757
https://doi.org/10.3390/e24060757
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e24060757
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24060757?type=check_update&version=1

Entropy 2022, 24,757

20f15

quantity falls between the upper and the lower elicited bounds (e.g., [4,7]). This confidence
is then used to define the credible interval. If for example, an expert is 90% confident that
the true value falls between the bounds, then their upper and lower bound form a 90%
credible interval. It is important to note that on grounds of psychological theory one can
expect the four-step procedure to yield better calibration than the three-step [8]. To aid
further probabilistic modelling, it is often necessary to formalize these credible intervals as
central and hence fix the upper and lower bounds to represent given percentiles. However,
this need not be the case when coverage probabilities alone are of interest.

For the present analysis we assume that experts provide credible intervals for multiple
quantities together with a confidence level (constant for all quantities) that the true values
fall within the provided intervals. Since each question is answered with an interval,
throughout the paper we refer to expert answers as intervals.

Whenever possible, expert performance is assessed based on a number of performance
characteristics, including their calibration. For this reason, it is advisable to include calibration
questions among target questions in expert elicitation exercises (e.g., [1]); these are questions
for which the answers are, or will become known in the near future. Such questions are used
to assess the calibration of the experts using various ways of calculating calibration.

Approaches to formally evaluate calibration, or formally test whether an expert is well
calibrated vary. Cooke’s classical model [3] is often used for assessing expert calibration
when eliciting percentiles of probability distributions. However, this approach does not
align with our context, in which the bounds of the elicited intervals are not necessarily
fixed (to pre-specified percentiles).

In its simplest form, calibration is evaluated based on whether or not the experts’ stated
confidence level, which corresponds to the declared coverage for their credible intervals,
aligns with the actual coverage (when realized/true values become available). This is a
commonly used approach [4,7,9-11] that fits our context. It is often referred to as a direct
comparison between experts’ observed hit rates and the specified confidence. The observed
hit rates are the observed proportions of elicited intervals that contain the realized /true
values of a given set of quantities. We acknowledge that the direct comparison is a just a
descriptive comparison of observed hit rates and the specified confidence. However, it is
often applied in practice. Therefore, it is important and instructive to assess its properties
from a statistical point of view. Here, we argue that this direct comparison has poor
statistical characteristics that can be addressed by formalizing and re-framing it as an
equivalence-style hypothesis test.

Here, we evaluate the properties of the formalized direct comparison test with those
of the corresponding formal equivalence test of a single binomial proportion using a
simulation experiment. We undertake a power analysis that shows that the number of
observations required to provide a reasonable probability of detecting a well-calibrated
expert (using these tests) is prohibitively high when compared to the number of observa-
tions affordable in a real-life expert elicitation exercise. We then compare and discuss these
proposals when applied to two real-life expert elicited data sets.

The remainder of this paper is organized as follows. Section 2 ‘Materials and Methods’
includes sub-sections that describe the properties of the direct comparison and equivalence-
based hypothesis tests, simulation of data, and the real-life expert-elicited data sets used
in the analysis. Analyses on the simulated data and real-life data will be presented under
the ‘Results” Section 3. Finally, the ‘Discussion’ Section 4 summarizes the conclusions,
limitations, and recommendations for future studies in brief.

2. Materials and Methods
2.1. Direct Comparison as a Hypothesis Test

When evaluating calibration using the direct comparison, the experts’ hit rates are
considered as fixed or deterministic quantities, disregarding their random variation due to
the elicitation context. However, this random variation will naturally lead to variation in ex-
perts’ calibration. Acknowledging this latter variation formally may be tackled by employing
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a formal statistical testing procedure when estimating hit rates. [12] provide evidence that
model based techniques (as opposed to raw relative frequencies/counts calculations) show
great promise in the context of judgment and decision making. Furthermore, measuring
experts’ calibration needs a better estimation procedure that can produce confidence (or
credible) intervals around the estimated hit rates. Confidence intervals and hypothesis testing
are interconnected as both are inferential techniques which use the estimate of an unknown
population parameter to find a range of possible values that is likely to capture the unknown
parameter and test the strength and validity of a hypothesis. Hypothesis testing can also
be performed directly by using confidence intervals. Hence, in this paper, we develop an
equivalence-based hypothesis testing approach to test experts’ calibration (see Section 2.2).

We first embed the direct comparison in a statistical testing framework. The direct
comparison involves comparing the expert’s realized hit rate against their claimed coverage
for a small number of calibration questions (denoted by 7). Most often in applications, n
is smaller than 20. Denote the claimed coverage by P,, where 0 < P, < 1, and define x as
the number of calibration questions for which the expert’s credible interval covers the true
value. Then the direct comparison can be interpreted as a test: the expert is well-calibrated
if x = P, - n and is not well-calibrated otherwise.

Some disadvantages of this approach are immediately apparent, for example if # is not
some convenient number such that P, - n is an integer, then it is impossible for the expert
to be considered perfectly well-calibrated. Furthermore, the test suffers from a peculiar
statistical characteristic, namely it is easier for an expert to be declared well-calibrated
when 7 is small than when # is large, so the power of the test decreases with its sample size.
This unpleasant characteristic is evident in a subsequent analysis (see Section 3.1.1) after re-
framing the direct comparison to an equivalence-style hypothesis test of a single binomial
proportion in the following Section 2.2.

2.2. Equivalence-Based Hypothesis Test

The main scope of this research is to identify an appropriate statistical procedure to
evaluate expert calibration that reduces the error of identifying a poorly-calibrated expert
as well-calibrated. This error can be considered as more serious than the error of not
identifying a well-calibrated expert as well-calibrated.

Consider applying the commonly used equality test of a binomial proportion to test
expert calibration. The null and alternative hypotheses of the equality test relevant to this
context can be stated as follows.

Hy:P =P,
Hy:P # Py;

where P and P, denote the true unknown coverage and claimed coverage, respectively.

This is the usual hypothesis testing paradigm that assumes the expert is well calibrated
as the null hypothesis against the alternative hypothesis that the expert is not well calibrated.
Non-rejection of the null hypothesis does not statistically imply that the null hypothesis is
true. Hence, this form of hypothesis testing does not match with our objective of reducing
the error of identifying a not well-calibrated expert as well calibrated. For this reason, we
consider the equivalence test of a single binomial proportion instead; rather than using the
usual hypothesis testing paradigm to assume that the expert is well-calibrated as the null
hypothesis above, we consider the null hypothesis to be “the expert is not well-calibrated”
against the alternative “the expert is well-calibrated”.

We now review the exact version of the equivalence test of a single binomial proportion
presented in (Chapter 4 in [13]) in place of the large-sample approximation test. Doing
so allows to keep the flexibility for considering both small and large number of elicited
intervals in the analysis. For convenience, hereafter we refer to the equivalence test of a
single binomial proportion just as the equivalence test, and the direct comparison of hit rates
as the direct test. Further details on practically applying the equivalence tests can be found
in [14].



Entropy 2022, 24,757

40f 15

Suppose that an unknown population proportion of success P is required to be statis-
tically tested for equivalence with a reference value Pr. Equivalence can be claimed if P
remains between P; = P, — €1 and P, = P, 4 €3, where an acceptable margin of deviation
around the reference value is allowed in the test. P; and P, can be made symmetric around
P, by taking €; = €, = €, unless specific, different values are preferred for €; and ey,
which will be context dependent. In practical terms, this acceptable margin € should be
the maximum difference that one is willing to accept to declare equivalence when the data
provide enough evidence to conclude that the value of unknown P remains within € units
from that of the reference value P,.

It follows that the equivalence test includes two null hypotheses and a single al-
ternative hypothesis, from which equivalence can only be claimed by rejecting both
null hypotheses. The alternative hypothesis is defined as P < P < P, and the two
null hypotheses should be defined as 0 < P < P; and P, < P < 1. Formally:

Hy:0<P<PorPhL<P<I1
Hy:Py <P <P, where (0 <P < P, <1).

Let us now review how the equivalence test formulated above can be used in practice
to test experts’ calibration. First, we need to identify the intended coverage probability of
elicited intervals Pr and the accepted margin of deviation € around the intended coverage
probability, which defines the limits P; and P, of the alternative hypothesis H;. The test
statistic will be the number of successes out of a certain n number of Bernoulli trials, and in
this context, it will be x, the number of calibration questions for which the expert’s credible
interval covers the true value. This will then be evaluated relative to a rejection region (the
calculations/evaluations necessary for obtaining the rejection regions are implemented in
R, by Wellek, and shared as a Supplementary Materials accompanying this paper) (Cy, Cz)
that depends on the number of elicited intervals #.

When x > C; and x < C, then the null hypothesis is rejected (equivalence can be
concluded), indicating that the expert is well-calibrated at the intended coverage probability
P,. When x < Cq or x > Cy, the null hypotheses cannot be not rejected, indicating that the
expert is not well-calibrated at the intended coverage probability P,. On the boundaries of
the rejection region (i.e., x = C; or x = () the test is inconclusive and randomization is
required to take a decision (the theoretical details of computing the rejection regions of the
Wellek’s equivalence test are given in Supplementary Materials).

Recall that, in the direct test, the expert is considered well-calibrated if x = P, - n. Let
C; =P -(n—1)and C; = P, - (n+1) . Now the pattern of rejecting a hypothesis because
the corresponding test statistic is within a region (in this case, x > C; = P, - (n — 1) and
x < C; = P, - (n+ 1)) and not rejecting it otherwise is identical to the equivalence test (see,
e.g., [13]) where the rejection region is collapsed to the single value P; - n. From this point
of view, the direct test can be seen as an equivalence-style test for which the rejection region
is determined independently of testing considerations such as size and power. Therefore, it
is statistically meaningful to compare the performance of the direct test with that of the
equivalence test when assessing experts’ calibration. To perform these comparisons, we
need to assume that:

* experts have an underlying true level of calibration that is fixed for the given set of
calibration questions, and

*  exposure to calibration questions can be treated as independent and identically dis-
tributed experiments, so that the outcomes of the comparisons of the expert’s intervals
against the known values are Bernoulli random variables.

The practicability of the above assumptions can be justified as follows. Generally, the
calibration questions are prepared to assess the knowledge of experts in certain areas
through a calibration experiment that conducts within a shorter period of time. Hence, the
underlying true level of calibration of experts that depends on the knowledge in the
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corresponding areas of interest can reasonably be assumed as fixed at least for the duration
of the calibration experiment.

It is also reasonable to assume that the calibration questions should be prepared to assess
distinct knowledge in certain areas without having inter-dependencies between questions.
Hence, the outcome of a given question can reasonably be assumed independent of the
outcome of another question. Furthermore, following the first assumption, the true level
of calibration of each question can be assumed fixed in a given calibration experiment.
Therefore, the outcomes of the comparisons of experts” intervals against the known values
can be assumed to follow Bernoulli distributions as well.

To understand and compare the properties of the above described tests we will use
simulated data (see Section 2.3). To further understand what these properties translate into
or imply when it comes to real expert elicited data we will use data from two case studies
(see Section 2.4).

2.3. Simulated Data

We consider a theoretical context where the true levels of coverage of expert elicited
intervals are assumed equal to the intended coverage probabilities of elicited intervals.
This allows us to carry out a power analysis of correctly identifying well-calibrated experts,
both for the direct and equivalence tests. These power analyses will in turn provide insights
into the most appropriate statistical technique to use when intending to reduce the error of
identifying poorly calibrated experts as well-calibrated. We choose 80% and 90% intended
coverage probabilities of elicited intervals for the analysis; these choices are inspired by the
common practice in expert elicitation experiments (some of the following sub-sections are
part of the Ph.D. dissertation of [15]).

The probabilities of correctly identifying experts as well calibrated from the direct and
equivalence tests at 80% and 90% intended coverage probabilities depend on the number
of elicited intervals (corresponding to the number of calibration questions). We varied this
number to cover values from 10 to 250.

Consider simulating the data at a particular combination of a specified coverage
probability (either 80% or 90%) and a specific number of elicited intervals for a given expert
(e.g., 80% coverage probability and 50 elicited intervals). Each of the elicited intervals will
have a random outcome which may or may not fall within the interval. This randomly
generated outcome can be considered as a Bernoulli trial with a fixed probability of success
that is equal to the assumed (in our example 80%) level of intended coverage of experts’
elicited intervals. It follows that the randomly generated outcomes of all the intervals
(50 in our example) that include the realized values of quantities x (elicited as intervals from
experts) can be considered as a binomial random variable with the same fixed probability
of success (e.g., 80%) and the number of trials of the binomial distribution equal to the
assumed total number of questions for which we elicit intervals (e.g., 50). Hence, random
observations from binomial distributions can be used accordingly to generate total number
of intervals that include realized values of quantities for any given expert in the analysis.
It is important to note that even for a well-calibrated expert, the number of elicited intervals
containing the realized values is still random (a realization of a binomial distribution).

Repeated simulations for a given expert allows us to compute the proportion of experts
who are correctly identified as well-calibrated (at the specified combination of coverage
probability and number of elicited intervals). Hence, the above discussed simulation
procedure was repeated 25 times at each combination from Table 1. Here, the number
of repeats, 25, can conceptually be considered as the number of experts in the analysis.
However, it is important to carry out this analysis without considering a fixed number
of experts. Therefore, the above process was repeated 100, 000 times at each combination
mentioned above to obtain the average proportions of experts who are correctly identified as
well-calibrated from the direct and equivalence tests. These average proportions reasonably
represent the probabilities of correctly identifying well-calibrated experts (the R program
used for simulating and analyzing data can be found in a Supplementary Materials).
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Table 1. Coverage probability options and the number of elicited intervals used in simulating data.

Coverage Probability Number of Elicited Intervals (1)
80% 10 20 30 40 50 80 100 150 200 250
90% 10 20 30 40 50 80 100 150 200 250

The significance level a, and the acceptable margin of deviation € around the reference
value P; of the equivalence test were considered to be equal to 0.05. That is to say, we
consider 0.05 to be an acceptable level of significance for the statistical analysis, and we
consider a 0.05 deviation from the true level of coverage of elicited intervals to be reasonable
enough to still consider an expert as well-calibrated.

The properties of the proposed tests will be presented and compared in Section 3.1.
Before we turn to the presentation of results, we introduce two real-life data sets that will
be used to draw practical conclusions and recommendations about these proposals.

2.4. Real-Life Data

The practical aspects of evaluating experts’ calibration are essential. Ideally, calibration
tests should be as rigorous as possible from a statistical point of view, but unfortunately,
the expert data and experimental design to collect it, are not always perfectly suitable for
the most rigorous statistical analysis, due to practicalities.

As mentioned earlier, when expert elicitation experiments are conducted in practice,
a limited number of calibration questions are asked to avoid extra elicitation burden for
the experts. At least 10 calibration questions are usually recommended when eliciting
quantities. The working theory is that even though calibration scores calculated based on
so few variables will not be very reliable, at least they will pick up the major differences
between experts and will be able to identify the very poorly calibrated ones. To illustrate
the limitations of real data sets we chose two examples detailed in the next couple of
sections. The two data sets are elicited using the different question formats (3-step and
4-step) discussed in Section 1.

2.4.1. Four-Step Format Elicited Data

In this section, we very briefly introduce a data set described in detail in [16]. The data
contains experts’ estimates of future abiotic and biotic events on the Great Barrier Reef, Australia.
58 experts have answered 13 calibration questions using the 4-step elicitation format. In this
format, experts are asked for their confidence that the true value of the yet unknown
quantity falls between the upper and the lower elicited bounds. This confidence is then
used to define the credible interval. More often than not, the levels of assigned confidence
for elicited credible intervals differ per question within a given set of expert’s answers.
Hence, a transformation (usually extrapolation) is necessary to obtain credible intervals at
a same level of confidence (please see [17] for details). Even though this transformation
is necessary to allow the calculation of hit rate, it introduces another layer of noise into
an already noisy process. The calculation of experts’ calibration, using the direct test, was
undertaken in [16]. However, not all experts in this study answered all questions, and
many experts varied the levels of confidence given per question.

We will use a subset of experts and questions to evaluate the proposed tests” behavior
in Section 3.2.1. The reason to further reduce an already small data set is to avoid further
noisy signals influenced by extra assumptions needed when using transformations and
accounting for a very small number of elicited intervals.

2.4.2. Three-Step Format Elicited Data

The second data set used in this research was elicited for a Japanese geological disposal
program. For the context and exact questions, we refer the reader to [18]. Suffice to say that
21 experts have answered 16 calibration questions using the 3-step elicitation format. It is
important to note that no transformation of intervals is required in this analysis as all the
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intervals are elicited at a fixed level of 90% confidence from all the experts. In this elicitation
however, the intervals are assumed 90% central credible intervals, with no guarantee that
the experts’ estimates correspond to their internal 90% confidence. Since we are mostly
interested in how well our proposed tests identify well-calibrated experts, we use only a
subset of experts with the highest hit rates from this data set as well (see Section 3.2.2).

3. Results
3.1. Analysis of the Simulated Data
3.1.1. Power Analysis

We first analyze the power of the direct and equivalence tests to correctly identify
well-calibrated experts on eliciting 90% credible intervals. We calculate rejection regions
(Cq,Cy) for the equivalence test, for different choices of 1 (see Supplementary Materials for
R code of the Wellek’s equivalence test). These are presented in Table 2.

Table 2. Rejection regions of the equivalence test.

Number of Elicited Intervals (n) C1 C,
10 9 10
20 18 19
30 27 28
40 36 37
50 45 46
80 72 73
100 90 92
150 134 138

200 178 185
250 222 232

Using these choices for n and the corresponding rejection regions we calculated and
plotted (in Figure 1) the power of the direct and equivalence tests to correctly identify
90% well-calibrated experts at 90% true level of coverage of experts’ elicited intervals.
The observed values of power of the direct test tend to decrease as the number of elicited
intervals increases. This is a counter-intuitive result from a statistical point of view as the
power of a test would ordinarily be expected to increase with increased number of samples.
However, the probability of observing a single element decreases as the number of elements
of a sample space increases. This is the reason behind decreased power when the number
of elicited intervals is increased. On the other hand, the power of the equivalence test
increases (as intuitively expected) with the increase in the number of elicited intervals. The
power of the equivalence test is higher than the corresponding power of the direct test for
80 or more intervals.

3.1.2. Different True Levels of Coverage of Intervals

We shall further investigate the properties of the direct and equivalence tests when
testing experts’ calibration on eliciting 90% credible intervals when the true levels of cov-
erage are different than 90%. This is interesting both from a theoretical point of view, as
well as from a practical perspective, as it is often claimed (sometimes with proof offered)
that experts are either over- or under-confident. Here, we assess the outcomes of the direct
and equivalence tests when testing calibration, when eliciting 90% credible intervals at
smaller true levels of coverage. This corresponds to the situation when experts’ assess-
ments are overconfident. Figure 2 shows the probabilities of identifying the experts as 90%
well-calibrated when the true levels of coverage are between 85% and 89%. The comparison
between the tests is presented for different choices for the number of elicited intervals.
Even though larger variations from true coverage may occur in practice, here we only inves-
tigate a 0.05 deviation from true coverage probabilities. The reason behind this choice is the
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intention to expose a potential problem of the equivalence test to produce higher probabilities
of incorrectly identifying experts as well-calibrated compared to the direct test.

Experts' calibration on eliciting 90% credible intervals

iz
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. Method
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g -+ Direct

o --+- Equivalence
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Figure 1. The power of the direct and equivalence tests to correctly identify 90% well-calibrated
experts at 90% true level of coverage of elicited intervals.
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Figure 2. The probabilities of the direct and equivalence tests to identify the experts as 90% well-
calibrated when true levels of coverage of elicited intervals that are less than 90%.

As discussed above, comparatively higher values of power to correctly identify 90%
well-calibrated experts at 90% true level of coverage of elicited intervals can be obtained using
the equivalence test compared to the direct test for 80 or more intervals. A trade-off seems
to be that this is achieved at the expense of receiving comparatively higher probabilities of
incorrectly identifying the experts as 90% well-calibrated at true levels of coverage remain
between 85% and 89% from the test (see Figure 2). Furthermore, these probabilities increase
with the increase of number of elicited intervals. The alternative hypothesis of the equivalence
test P; < P < P, to declare equivalence (that is, to declare an expert as well-calibrated) at 90%
coverage probability with the acceptable margin of deviation € = 0.05 around the reference
value P = 0.9 contains values between P; = 0.85 to P, = 0.95 (refer the Section 2.2 for details).
Therefore, from the equivalence test point of view, the probabilities of identifying experts as
90% well-calibrated at different true levels of coverage of elicited intervals within this range
can be considered as the values of power (the probabilities of rejecting the null hypotheses
when they are false) of the test at corresponding values in the rejection region of the test.
Therefore, receiving comparatively higher probabilities of incorrectly identifying the experts
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as 90% well-calibrated at true levels of coverage remain between 85% and 89% here happens
due to a characteristic of the equivalence test.

Let us now focus on the type I error probabilities (the probabilities of incorrectly
accepting the alternative hypothesis when one of the null hypotheses is true) of the equiva-
lence test given in Figure 2. Observe that type I error probabilities of incorrectly identifying
the experts as 90% well calibrated are approximately equal to the size of the test 0.05 at 85%
true level of coverage of intervals which is on the border of the rejection region of the test.
Direct comparison of observed hit rates of experts’ elicited intervals with the intended
coverage probability of credible intervals without considering the random variation of hit
rates cannot be considered as testing experts’ calibration statistically.

However, we can implement the direct test as a special form of the equivalence test.
By this we mean that in each case, the rejection region is bounded above and below, and
we reject the null hypothesis if the observed value is within that region. In the case of the
direct test, the region is a single value of P = 0.9 in this instance.

If we consider the direct test as a special case of the equivalence test, then the probabil-
ities given in Figure 2 of the direct test can be considered as type I error probabilities of
incorrectly identifying the experts as 90% well-calibrated at the corresponding true levels
of coverage of elicited intervals. Observe that the direct test has higher type I error probabil-
ities of incorrectly identifying the experts as 90% well calibrated than the equivalence test
for the considered true levels of coverage that are less than 90% at 50 intervals, even though
the corresponding value of power to correctly identify well-calibrated experts was higher
than the equivalence test as shown in Figure 1. It can also be observed that these type I
error probabilities tend to decrease with an increase in the number of elicited intervals.
However, this property of decreasing probabilities over the increase of number of elicited in-
tervals is applicable to the probabilities of correctly identifying 90% well-calibrated experts
at the 90% true level of coverage of elicited intervals as well. We can overcome this problem
using the equivalence test if we can accept observing higher probabilities of incorrectly
identifying the experts as 90% well-calibrated at true levels of coverage of elicited intervals
are only within 0.05 deviation as observed above.

Even though the above problem can be overcome using the equivalence instead of the
direct test, the equivalence test has the disadvantage of needing many more elicited intervals
to obtain reasonably higher values of power to correctly identify well-calibrated experts.
However, the application of the direct test implies that a reduced the number of elicited
intervals is better (since this is how we obtain higher values of power to correctly identify
well-calibrated experts). Rigorous statistical analysis advice should not encourage a reduced
number of observations to obtain better performance of the statistical test, unless the
additional observations do not add any valid information. This is however not the case,
and hence, the results of direct test should be used cautiously.

Let us further review the outcomes of the direct test when a small number of intervals
is elicited. Figure 3 indicates another problem of the direct test, and that is an increase in
the type I error probabilities of incorrectly identifying the experts as 90% well-calibrated
at the considered true levels of coverage of elicited intervals that are less than 90% with
decreased number of elicited intervals. Observe that these probabilities are higher than
the corresponding type I error probabilities at large number of elicited intervals shown in
Figure 2 above.

Considering the direct test as a special form of the equivalence test enables the compu-
tation of the size of the test. Because the alternative hypothesis is defined using a single
value, in this instance, the power and the size of the direct test are equivalent. The only
value in the rejection region is P = 0.9. Therefore, power can only be computed at P = 0.9
as Pr (reject Hy | P = 0.9). The alternative hypothesis with a single value of P = 0.9 de-
termines the two null hypotheses tobe: Hy : 0 < P < 0.9 or 0.9 < P < 1. The maximum
type L error (or the size of the test) occurs at the border values of the null hypotheses. Here,
the border value is P = 0.9. Thus, the size of the test equals Pr (reject Hy | P = 0.9). We
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consider the fact that the size is equal to the power (in the strict sense) as another reason to
be suspicious of the direct test.

Experts' calibration on eliciting 90% credible intervals
Testing at true levels of coverage less than 90%

Num.intervals
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Figure 3. The probabilities of the direct test to identify the experts as 90% well-calibrated when true
levels of coverage of elicited intervals that are less than 90% for small number of elicited intervals.

However, the equivalence test becomes a better option when a large (larger than 50)
number of intervals is elicited. From a practical point of view, this equates with asking
at least 50 calibration questions on top of the target questions in an expert elicitation.
This is an incredible elicitation burden for the experts and, to our knowledge, it is rarely
(if ever) undertaken. It is much more realistic for elicitations to contain between 10 and
30 calibration questions.

Figure 4 compares the size of the direct and equivalence tests at small number of
elicited intervals. Observe that the size of the direct test decreases with the increase of
number of elicited intervals. Therefore, if we apply the direct test to test experts’ calibration
with small number of elicited intervals, the power of the test to correctly identify well-
calibrated experts will not be sufficiently large. However, the size of the test which is
equal to the value of the power should be considered as large from a statistical point of
view. The equivalence test has lower values of power for the considered small number of
elicited intervals with the fixed size of 0.05. If we increase the number of elicited intervals,
the power of the equivalence test will be increased accordingly with the fixed size of 0.05.
Therefore, the trade-off between the number of elicited intervals, power, and the size of the
test is an important consideration in this context.

Size of the direct and equivalence tests
0.4-

Method
@
M —* Direct
wn

& Equivalence

01-

10 20 30 40 50
MNum.intervals

Figure 4. Size of the direct and equivalence tests in testing experts’ calibration on eliciting 90%
credible intervals for small number of elicited intervals.
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Similar patterns of results to the ones above were observed when testing experts’
calibration on eliciting 80% credible intervals of quantities. More importantly, the observed
values of power to correctly identify well-calibrated experts on eliciting 80% credible in-
tervals were lower than the corresponding values on eliciting 90% credible intervals for
the considered range of number of elicited intervals for both the direct and the equiva-
lence tests. This is an acceptable result in general as the binomial probability of obtaining
0.9 proportion of success under 0.9 success probability is higher than that of obtaining
0.8 proportion of success under 0.8 success probability for a given number of trials.

According to this property of the binomial distribution, it can also be shown that the
power of the tests to correctly identify well-calibrated experts will further reduce if we
reduce the intended coverage probabilities of elicited intervals more. Hence, the power of
both the direct and the equivalence tests depends on the intended coverage probability of
elicited intervals. This is an interesting and intriguing result.

3.1.3. Improving on the Equivalence Test?

When discussing the implementation of the equivalence test using the number of inter-
vals containing true values, we mentioned that the test is inconclusive for the boundaries
of the rejection region. In these circumstances, randomization is required, and this random-
ization may be considered as another drawback. We therefore further analyze the situation
when the non-randomized equivalence test with the rejection region of C; < x < C is used.
Table 2 shows that the rejection regions for testing experts” calibration on eliciting 90%
credible intervals do not contain values greater than C; and less than C, for the number
of elicited intervals less than or equal 80. Therefore, the non-randomized equivalence test
with the rejection region of C; < x < C; can only be applied for 100 or more intervals.

According to Figure 1, the equivalence test can only be considered more effective
than the direct test for 100 or more intervals since the values of tests’ power are not
considerably different at 80 intervals. Therefore, it seems meaningful to apply and observe
the implications of the non-randomized equivalence test for 100 or more intervals.

Figure 5 plots the power of the direct and non-randomized equivalence tests. The tests
have almost equal power at 100 intervals, with increasing power of the non-randomized
equivalence test for more elicited intervals. However, its power is less than corresponding
power of the equivalence test, due to the reduction of rejection regions.

Experts' calibration on eliciting 90% credible intervals

A
0.6-

04- Method
’ - Direct

- Non-randomized

' ' ' ' '
10 20 a0 40 50 a0 100 1850 200 250

Num.intervals

Figure 5. The power of the direct and non-randomized equivalence tests to correctly identify 90%
well-calibrated experts at 90% true level of coverage of elicited intervals.

Figure 6 indicates the probabilities of the direct and non-randomized equivalence
tests to identify the experts as 90% well-calibrated when true levels of coverage of elicited
intervals that are less than 90% for large number of elicited intervals. The type I error
probabilities of incorrectly identifying the experts as 90% well-calibrated at 85% true level of
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coverage of elicited intervals of the non-randomized test are less than 0.05 for the considered
number of elicited intervals. It implies that the significance level of the non-randomized
test is less than the nominal value 0.05. Therefore, the test is conservative with reduced
power of rejecting the null hypotheses when they are false.

From this perspective, the non-randomized equivalence test offers another (better)
alternative to the direct test, when a very large number of intervals are elicited. This is a
very appealing theoretical (rather than practical) alternative.
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Figure 6. The probabilities of the direct and non-randomized equivalence tests to identify the experts
as 90% well-calibrated when true levels of coverage of elicited intervals that are less than 90%.

3.1.4. Test Properties Established through the Simulation Study

The focus of this analysis was to assess the properties of several statistical tests that
can be used to identify well calibrated experts.

The results of the above analyses show that the direct test (i.e., the direct comparison of
experts’ hit rates) has substantial methodological problems. The test has low power to correctly
identify well-calibrated experts and more importantly, the power decreases as the number of
elicited intervals increases. This is a contradictory result from a statistical point of view.

The equivalence test of a single binomial proportion can be used instead to overcome
these problems. However, power curves of the equivalence test show that many more
elicited intervals are needed in this case, which is a practical impediment. Furthermore, the
exact application of the binomial test for equivalence usually requires a randomized out-
come if the observed coverage is on the border of the rejection region, an aspect of testing
that may be distasteful to many analysts.

To summarize, testing whether experts are well calibrated or not proves to be a very
challenging problem when balancing practicalities against statistical rigour. The direct test
can be generalized to an equivalence test, which allows a formal test of the null hypothesis
that the expert is not well calibrated. However, this requires a prohibitive number of
calibration questions.

3.2. Analysis of the Real-Life Data
3.2.1. The 4-Step Elicited Data

We reduced the scope of the present analysis and only examined experts who have
answered a sufficiently large number of questions (out of the 13 questions) at either 80%
and 90% levels of confidence, to avoid extra noise, artificially introduced through more
transformations of the elicited data. The purpose of this analysis is to illustrates the
implications of applying the direct and equivalence tests for a very small (but realistic)
number of calibration questions.
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First consider the analysis for the 80% credible intervals with the data given in Table 3.
The experts ID’s are as presented in the original research.

Observe that the hit rates of these three experts are 69%, 75%, and 77%, respectively.
No expert is well-calibrated under the direct test even though the last two experts are closer
than the first one is to the intended calibration level of 80%.

Table 3. Data from [16] used in the current analysis.

Expert ID Num. Elicited Questions Num. Intervals Covering the Truth
52b 13 9
54h 12 9
64i 13 10

When applying the equivalence test, the rejection region for the first expert is (10,11).
Here, the number of intervals containing the true values is 9 which is outside the rejection
region of the test. Hence, the equivalence test fails to reject the null hypothesis that the
expert is not well-calibrated.

For the second expert, the rejection region is (9, 10) and the number of intervals con-
taining the true values is 9. In this case, the test is inconclusive. Therefore, randomization
is needed. After randomizing we cannot reject the null hypotheses (no equivalence) and
can conclude that the expert is not well-calibrated. A similar analysis was required for the
third expert, whose rejection region is (10, 11) and the number of intervals contacting the
truth is 10. The randomization procedure led to the conclusion that expert four is not a
well-calibrated expert either.

What is important to note here is that the equivalence test that considers the potential
random variation of hit rates is unable to identify two experts with 75%, and 77% hit rates
as well-calibrated at 80% intended calibration level probably due to the lack of elicited
intervals leading to lack of power of the test.

Similar analyses were carried out for the subset of experts and questions corresponding
to 90% credible intervals. In this case, a single expert (ID = 53a) answered 13 questions,
with only 5 intervals containing true values. The corresponding expert was declared not
well-calibrated from the direct test as the hit rate is 0.38%. The rejection region of the
equivalence test is (11, 12) for this analysis. Hence, the conclusion from the equivalence test
was the same. In this case, the two tests agreed and the result seems to be sensible as the
observed hit rate is considerably different than the intended level of coverage.

3.2.2. The 3-Step Elicited Data

For the present analysis we chose two experts with the highest hit rates as shown
in Table 4. This is a practically sensible choice as if the experts with the highest hit rates
cannot be declared well-calibrated, the other experts will also be declared as not well-
calibrated.

Table 4. Data from [18] used in the current analysis.

Expert ID Num. Elicited Questions Num. Intervals Covering the Truth
Expl6 16 14
Exp21 16 12

The computed hit rates are 0.875 and 0.75 for the Exp16 and Exp21, respectively.
Hence, both experts should be declared not well-calibrated at 90% confidence level, even
though the decision is marginal for expert Exp16. The rejection region of the equivalence
test with 16 questions at 90% confidence level is (14, 15). Therefore, Exp21 with 12 correctly
elicited intervals covering the truth was declared not well-calibrated using the equivalence
test. For expert Exp16, whose 14 intervals captured the truth, this value landed on the
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border of the rejection region of the equivalence test. Hence, the above discussed random-
ization procedure was applied. Based on that, the expert was declared not well-calibrated.
These two experts were nevertheless the best calibrated experts from the expert group used
in the elicitation detailed in [18]. The previous argument is also applicable to here. When
the number of elicited intervals is fairly low, the equivalence test fails to conclude that
experts are well-calibrated even though their observed hit rates are closer to the intended
levels of coverage.

3.2.3. Implications for the Real-Life Examples

The above analyses show that the application of the equivalence test could fail to
produce significant results in realistic (hence limited) elicited data sets. This relates to the
fact that the equivalence test has lower power to identify well-calibrated experts when
the number of elicited intervals is low. Therefore, even though theoretically attractive, the
proposed equivalence test needs to be tailored to more realistic situations. Before doing
that however, a meta-analysis of all existing expert elicited data sets may shed more light
on the properties of the proposed tests under sub-optimal conditions.

4. Discussion

The assessment of expert calibration cannot be done properly with a small number of
elicited intervals. This idea, generally ignored in practice, is relevant to both the direct and
the equivalence test. Furthermore, the direct test encounters theoretical difficulties that can
be addressed using the equivalence test. Therefore, we can claim that the concept of apply-
ing the equivalence-based hypothesis testing procedure is more appropriate considering its
statistical properties even though the need of a large number of elicited intervals to obtain
acceptable levels of power is not feasible in practice.

We selected 0.05 for € (the acceptable margin of deviation around the intended cov-
erage probability of elicited credible intervals) of the equivalence test. We assumed that
any less deviation from the true level of coverage is reasonable enough to consider a
given expert as well-calibrated. The margin may be reduced or increased depending on a
given context. The reduction of the margin will reduce the rejection regions of the test and
reduce the power of the test to correctly identify well-calibrated experts.

It can be justified to consider 80% and 90% intended coverage levels as they are
often used in practice. However, there is a limitation to consider only a few specific
levels of confidence where the potential range of levels to be considered is decided by the
acceptable margin of deviation around the reference value allowed in the test. It is not
statistically sensible to increase the acceptable margin further as it leads to an increase in
the type Il error and a reduction in the power of the test. Overall, even when we consider
a wider continuum, the overall conclusion of the analysis that the formal testing of the
calibration of experts in an experimental setting may be prohibitively expensive would
remain unchanged.

This does not however underrate the importance of the equivalence test in this con-
text. It has already been shown that the equivalence test has the desired properties for
large number of elicited intervals compared to the direct test. What is required further
is the development of an equivalence style test that performs well for small number of
elicited intervals. Hence, we suggest developing an equivalence style test and consider a
wider continuum when assessing its properties as a future direction of this research.
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