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Abstract: Network alignment is a fundamental task in network analysis. In the biological field, where
the protein–protein interaction (PPI) is represented as a graph, network alignment allowed the discov-
ery of underlying biological knowledge such as conserved evolutionary pathways and functionally
conserved proteins throughout different species. A recent trend in network science concerns network
embedding, i.e., the modelling of nodes in a network as a low-dimensional feature vector. In this
survey, we present an overview of current PPI network embedding alignment methods, a comparison
among them, and a comparison to classical PPI network alignment algorithms. The results of this
comparison highlight that: (i) only five network embeddings for network alignment algorithms
have been applied in the biological context, whereas the literature presents several classical network
alignment algorithms; (ii) there is a need for developing an evaluation framework that may enable
a unified comparison between different algorithms; (iii) the majority of the proposed algorithms
perform network embedding through matrix factorization-based techniques; (iv) three out of five
algorithms leverage external biological resources, while the remaining two are designed for domain
agnostic network alignment and tested on PPI networks; (v) two algorithms out of three are stated to
perform multi-network alignment, while the remaining perform pairwise network alignment.

Keywords: network embedding; network alignment; PPI

1. Introduction

Different complex systems can be modelled as networks [1]. For instance, interactions
between proteins inside an organism are modelled as protein–protein interaction (PPI)
networks. A comparative analysis of PPI networks across different species is known as
network alignment (NA) [2]. NA searches for the best fit among the nodes of compared
networks with the aim to find network regions of high similarity [3]. The regions with
high similarity correspond to interaction patterns that are conserved during evolution.
This enables us to transfer biological knowledge from well-studied species, i.e., yeast,
to species whose studies are still ongoing, such as humans. In fact, by aligning the PPI
network of yeast with the PPI network of the human, it is possible to infer the function of
human proteins based on the function of their aligned counterparts in the yeast network.
Consequently, this leads to new discoveries in system biology. Diverse network alignment
approaches have been used in the biological domain [4]. According to the type of input,
the network alignment approaches can be categorized as pairwise or multiple alignment,
whereas, according to the scope of node mapping desired, the network alignment methods
can be classified as global network alignment (GNA) or Llocal network alignment (LNA). GNA
algorithms search for the best alignment of entire networks, whereas LNA algorithms
produce the aligned pairs of small sub-networks. As introduced before, the network
alignment methods can be classified based on the number of networks on which they build
the alignment, i.e., pairwise network alignment (PNA) and multiple network alignment (MNA).
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PNA algorithms build the alignment of two networks and enable us to detect the same
regions among the analyzed networks. MNA algorithms align three or more networks with
each other and build an alignment consisting of aligned node clusters.

Despite the existence of different approaches, there are some issues related to network
representation that still need to be solved. The network representation enables us to
highlight important interactions between entities compared to the analysis of each one.

However, the traditional network modelling still presents critical problems in large-
scale network analysis. A first issue is related to high computational complexity. In fact, in
large networks, the high number of nodes and edges affects most of the analysis algorithms
in their iterative or combinatorial steps. Thus, these methods result in high computational
complexity, and they cannot be applied to large-scale networks. A second issue is related
to the lack of parallel and distributed algorithms for the analysis of traditional network
representation. Although these methods are suitable to analyze large-scale data, the
parallelization of classical network alignment causes high costs among servers and degrades
the speed-up ratio, due to the network topological characteristics. The third issue is related
to the inapplicability of machine learning methods to analyze large-scale networks. The
reason is that these methods require the representation of data as independent vectors in
a vector space. Instead, in the classical network representation, the nodes are dependent
on each other according to such degree. Thus, in a large network, the high dimensionality
derived from many nodes causes the analysis to be problematic.

On the other hand, it is widely recognized that a fundamental role in predictive
analytics is played by data representation [5]. One of the reasons linked to the popularity
and the effectiveness of deep learning algorithms is that while solving a specific task, deep
learning algorithms jointly aim at learning a latent representation of the data, without
strongly relying on hand-crafted feature engineering, typical of classic machine learning
and data mining processes.

Inspired by the success achieved in different domains, and especially in Natural
Language Processing (NLP), several methods have been proposed to learn a meaning-
ful and dense mapping of graphs in lower-dimensional, latent vector spaces. Here, the
representation is deemed to be meaningful if it represents each node in a network as a
low-dimensional feature vector such that the network structure is preserved, while dense
implies that the vector space is sought to have a smaller dimension than the number of
nodes in the starting graph. The learned mapping is also known as network embedding or
network representation.

Although several network embedding methods have shown state-of-the-art perfor-
mance in different tasks such as, for instance, link prediction, node clustering, and node
classification, some works have questioned whether representation learning should lead to
some improvements in the context of inter-network problems, of which network alignment
is one of the most representative [6,7].

The main focus of the present paper is to review existing representational learning
approaches for the problem of aligning pairwise or multiple PPI networks. To this end,
we will start by presenting an overview of classical PPI network alignment techniques,
providing a traditional classification and describing the common framework used to eval-
uate classical network alignment techniques. Then, we will review five approaches that
leverage different network embedding techniques for the network alignment (NE-NA) of
PPI networks. All the considered NE-NA algorithms present two main blocks, the first of
which generates a node embedding of the considered networks in the same vector space,
while the second one exploits node representations to perform the alignment. On the basis
of the embedding, the considered algorithms may be classified into matrix factorization
and diffusion methods, while the alignment block may rely on geometric or optimization
approaches. Another main issue strictly related to the NE-NA problem may be related to
the lack of a common framework to compare performance. For this reason, the present
review will focus on the evaluation metrics and compare them with the alignment evalua-
tion metrics typical of a classical setting. The paper is organized as follows: in Section 2,
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an overview of the existing literature reviews on network representation is presented, and
the main differences among them and the present review are highlighted; in Section 3, the
classical framework of network alignment is discussed, while in Section 4, the problem
of representation learning is tackled, with a major focus on the overview of five different
algorithms that have addressed the problem of exploiting network embedding (NE) for
network alignment (NA) in the context of PPI networks. In Section 5, the main differences
among classical NA and NE-NA approaches are discussed, and a qualitative comparative
review is carried out for the five NE-NA algorithms considered. Finally, Section 6 concludes
the paper.

2. Related Surveys and Differences

The literature contains different works that explore the network embedding problem.
To date, not many works provide a comprehensive survey of representation learning and
most of them concern non-biomedical tasks such as social networks and citation networks.

In this section, we explore the works that introduced only the representation learning
and the network representation learning, and then we examine the works that proposed a
taxonomy for machine learning on graphs and the analytical task. The fist work on network
representation learning (NRL) was presented by Luis G. Moyano [8]. The author intro-
duced some key notions of representation learning and an overview of the most widespread
methods for NRL. Finally, Moyano described the application of NRL in various fields. Sub-
sequently, Hamilton et al. [9] provided a review of advancements in representation learning
approaches for machine learning on graphs by introducing matrix factorization-based meth-
ods, random-walk based algorithms, and the graph neural network-based approach for
embedding subgraphs. Furthermore, for the first time, they presented the main applications
of node embeddings, i.e., visualization, clustering, node classification, and link prediction.
With their work, Zhang et al. [10] introduced two important innovations. At first, they
provided a review of the state-of-the-art network representation learning techniques. On
the basis of this, they proposed a new taxonomy with the goal to summarize existing
techniques and to illustrate the advantages and disadvantages of different algorithms.
Then, Zhang et al. provided a summary of protocols used for validating the effectiveness
of NRL techniques and of commonly used benchmark datasets that also include biological
networks. Finally, they presented analytic tasks, such as node classification, link prediction,
clustering, visualization, and recommendation. Later, three works introduced important
advances. Chen et al. [11] provided an overview of network embedding by focusing on
supervised and unsupervised learning for homogeneous and heterogeneous networks.
Furthermore, the authors presented a detailed review of several representative applications
of network embeddings. Goyal et al. [12] proposed a taxonomy of graph embedding
techniques covering three main categories of approaches: factorization, random walks, and
deep learning. Furthermore, they compared the performance of the surveyed methods
on both synthetic and real datasets, as well as providing a broad classification of graph
embedding applications: network compression, visualization, clustering, link prediction,
and node classification. Moreover, the authors made publicly available an open-source
library for implementing all the presented methods, including their evaluation metrics. Cui
et al. [13] discussed the relationship and the critical differences between classical graph
embedding and network embedding. Furthermore, they reviewed network embedding
methods by focusing on the approaches that preserve the network structure and properties,
as well as providing an evaluation of these methods applied on different network datasets.
Moreover, they introduced the concept of advanced information preserving network em-
bedding, which consists of two parts: one is to learn the network representation while
preserving its structure; the other is to align the resulting embedded network to a target-task
network using a network embedding algorithm (e.g., to predict the anchor links across
social networks).

A benchmark of some of the most popular real-world networks used in the network
embedding literature was provided. Their related datasets are divided into four groups
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(i.e., social, citation, language, biological networks), according to the nature of the networks.
Evaluation tasks, commonly used in network embedding, are summarized (i.e., node
classification, link prediction, clustering, and visualization).

Furthermore, they proposed two taxonomies of graph embedding based on problem
settings (i.e., embedding input and embedding output) and categorized the literature based
on embedding techniques. The authors provided a categorization of the applications that
graph embedding enables and, for each category, they presented application scenarios as a
reference.

Nelson et al. [7] provided a a discussion with a biological slant by reviewing different
approaches for graph embedding, including spectral-based, diffusion-based, and deep-
learning-based methods, as well as presenting their application in a variety of biological
applications ranging from protein network alignment and protein function prediction to
community detection and network denoising.

Yue et al. [14] investigated the effectiveness and potential of advanced graph em-
bedding methods and their applications in three important biomedical link prediction
tasks, namely drug–disease association (DDA) prediction, drug–drug interaction (DDI)
prediction, and protein–protein interaction (PPI) prediction, and two node classification
tasks, namely medical term semantic-type classification and protein function prediction.
The authors included seven benchmarks on datasets for all the addressed prediction tasks
and used them to evaluate eleven representative graph embedding methods. Moreover,
they provided some guidelines for the choice of embedding method. Furthermore, they
presented an easy-to-use Python package developed for facilitating the study of various
graph embedding methods on biomedical tasks.

As can be deduced from the reported literature, a limited number of surveys have
shed light on the graph embedding approach according to a biological perspective.

Nelson et al. and Yue et al. are the only studies that provide graph embedding
evaluations and analyses on biomedical networks. However, both have some limitations
and gaps. The first provides a review of graph embedding methods by comparing their
application to biological issues.

However, some of the selected methods are highly dependent on the considered
biomedical task and may not be generalized to other tasks. The latter conducts a comparison
of the most representative graph embedding methods on meaningful biomedical link
prediction tasks, including protein–protein interaction (PPI) prediction. However, because
of the broad scope of the addressed issue, a in-depth examination entirely focused on PPI
network embedding may be helpful for researchers and practitioners.

Furthermore, none of the considered surveys address the issue of network embedding
in order to learn a network representation that best fits the goal of aligning different
biological networks. This work aims to fill this gap providing a comprehensive survey
on network embedding methods best-suited to the comparative analysis of PPI networks
through network alignment techniques.

3. Network Alignment

Network alignment (NA) is a computational technique widely used for the compara-
tive analysis of PPI networks between species, in order to discover the similarities between
the molecular systems of different organisms. Network alignment is a common problem
that seeks to determine how to best fit one network into another network. This ’fit’ can be
quantified by assigning the amount of conserved, and hence aligned, edges. Otherwise, a
measure of node conservation (NC) quantifies the similarity between pairs of nodes from
different networks. In other words, intuitively, a good alignment should both map similar
nodes to each other and preserve many edges. Thus, the problem of graph alignment
consists of the mapping between two or more graphs to maximize an associated cost
function (also known as quality of alignment) that represents the similarity among nodes
or edges. Conventionally, given two graphs, G1 = {V1, E1} and G2 = {V2, E2}, the graph
alignment searches an alignment function f : V1 → V2, where V1,2 are a set of nodes, that
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maximizes the quality of alignment. The size of this search space is large, as it consists of
all possible mappings between the nodes of the compared networks. The computational
intractability of the above problem, which arises from the NP-completeness [15] of the
underlying subgraph, or the subgraph isomorphism issue, requires the development of heuris-
tics (approximate approaches) to solve the problem. The alignment quality is a function
of cost that measures the level of similarity of the analyzed network, and it is defined
as follows: Q(G1, G2, f ). Q conveys the correspondence among the input networks on a
precise alignment f . Thus, the Q definition highly affects the mapping approach [16]. In the
literature, there exist different network alignment algorithms that investigate approximate
solutions. The network alignment algorithms can be categorized according to the number
of input networks, i.e., pairwise and multiple alignment, and the goal of node matching,
i.e., local or global alignment.

3.1. Global or Local Alignment

In general, network alignment can be classified as global alignment and local alignment.
Global network alignment (GNA) algorithms search for the best mapping that covers

all nodes of the input networks by generating a one-to-one node mapping. This strategy
considers only the topology of input graphs, leaving out the similarity among small re-
gions (representing conserved motifs). In general, GNAs exploit a two-step schema to
build the alignment. At first, the algorithms adopt a cost function, which maximizes the
node likeness, also known as node preservation, or the quantity of preserved edges, i.e.,
edge preservation, to estimate the similarity among pairs of nodes. Then, they apply an
alignment method to find a high-scoring alignment based on the total similarity over the
all aligned nodes among all the possible alignments. For example, IsoRank [17] maximizes
an alignment quality measure that balances topological and node similarity using a weight
factor α. In addition, there exist different algorithms, such as GRAAL [18] and the GRAAL
family (H-GRAAL [19], MI-GRAAL [20], C-GRAAL [21], L-GRAAL [22]), that use a special
node similarity measure called the graphlet degree vector [23] to build a global alignment.
The main characteristic of the graphlet degree vector is the generalization of the node
degree, by counting the degree values for all possible connected induced subgraphs up
to a certain node number. GHOST [24] uses a novel spectral signature based on the local
neighborhood’s topology to measure the topological similarity between subnetworks. The
idea behind GHOST consists of building an alignment by combining the novel spectral
signature with a seed-and-extend strategy. WAVE [25] uses a seed-and-extend alignment
strategy to optimize both node and edge conservation while constructing an alignment.
MAGNA [16] applies a genetic algorithm to build an improved alignment. MAGNA con-
siders a set of alignments and it chooses the best among them. MAGNA++ [26] is the
MAGNA extension and it aims to maximize any edge and node conservation measures.
SANA (Simulated Annealing Network Aligner) [27] uses Simulated Annealing to build
a final alignment, starting with two networks, and an input alignment randomly built or
by applying different aligners. More recently, Malod-Dognin et al. [28] presented UAlign,
which associates different alignments built by a global network aligner. The aim is to
overcome the limitations of the global network aligners present in the coverage of built
alignments. IGLOO [29] is able to achieve high functional and topological quality using a
seed-and-extend strategy on the basis of the integration of the GNA and LNA strategies.
Local network alignment algorithms (LNAs) search multiple small subnetworks with high
similarity among input networks by producing a many-to-many node mapping. These sub-
networks are conserved patterns of interaction that can correspond to preserved or activity
patterns. LNAs employ a two-step schema to build the alignment. At first, they take as
input a set of seed nodes chosen by biological information; then, the algorithms merge the
inputs in a complementary structure, also called an alignment graph. Finally, LNAs mine
the graph to extract interesting modules. NetworkBLAST [30] researches highly connected
node groups corresponding to groups of proteins with the same function. NetAligner [31]
presents a strategy to identify evolutionarily conserved interactions, on the basis of the
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consideration that interacting proteins evolve at rates significantly closer than expected by
chance. AlignNemo [32] ensures the detection of subgraphs of proteins with similar bio-
logical functions according to the topology. AlignNemo can build the alignment of sparse
PPI networks because it analyzes the topology of adjacent nodes of interacting proteins.
AlignMCL [33] is the evolution of the previous AlignNemo. AlignMCL constructs the local
alignment by integrating all the input data in the alignment graph, which is subsequently
clustered by using the MCL algorithm [34] to mine the conserved subnetworks. GLAlign
(Global Local Aligner) is a novel local network alignment methodology [2] that applies a
global network algorithm to generate a list of seed nodes on the basis of topological infor-
mation. Then, GLAlign integrates this topology information with biological information
(i.e., homology relationships) by using a linear combination schema. At the end, GLAlign
takes as input the generated global result for a local network aligner.

3.2. Pairwise or Multiple Alignment

A different way to formulate the network alignment problem considers the number
of networks that need to be aligned: pairwise or multiple alignment. The pairwise network
alignment (PNA) takes as input two networks and it identifies a subnetwork with high
similarity among the input networks. The multiple network alignment (MNA) builds the
alignment among three or more networks and it detects aligned patterns of nodes. PNA
and MNA can be classified into the global approach by exploiting a many-to-many node
mapping and the local approach by exploiting a one-to-one node mapping.

The PNA applies a many-to-many node mapping among the input networks, with
the goal to find similar subgraphs. Otherwise, PNA exploits one-to-one node mapping
to search the best match by considering the entire input networks. The MNA applies a
many-to-many approach to find an alignment as a cluster that contains different nodes
from one compared network. Otherwise, MNA exploits one-to-one node mapping to build
an alignment as a cluster that contains only one node for each compared network. Though
PNA and MNA have been applied on protein interaction networks (PINs) to build the
alignment of [35], it has been shown that the alignment constructed with MNA is able to
offer more biological knowledge since its approach is able to detect function information
common to different species.

There exist different proposed multiple network alignment algorithms in the literature.
MultiMAGNA++ [36] is a global MNA algorithm based on one-to-one node mapping.
MultiMAGNA++ uses a genetic algorithm and introduces a new cost function to derive
from the parent nodes a new child that allows the construction of subsequent multiple
alignments. GEDEVO-M [37] is a global one-to-one MNA algorithm based on an evolu-
tionary algorithm that uses the Graph Edit Distance (GED) as an optimization model for
finding the best alignments. LocalAli [38] is a local many-to-many algorithm that uses
an evolutionary model to derive an evolutionary tree of network nodes. Then, LocalAli
builds the local alignment as conserved modules which descend from a common ancestral
module. IsoRankN [17] is a global many-to-many algorithm that builds a multiple net-
work alignment by using a spectral partitioning method to find dense and clique clusters.
SMETANA [39] is a global many-to-many aligner that computes the node similarities using
a probabilistic model and then applies a greedy approach to build a multiple alignment.
FUSE [40] is a global one-to-one MNA algorithm that defines node similarities between
all pairs of networks by applying a non-negative matrix trifactorization. After this, FUSE
applies an approximate maximum weight k-partite matching algorithm to build an align-
ment between the multiple networks. NetCoffee [41] is a global many-to-many aligner
that builds a weighted bipartite graph for every pair of networks and then it applies a
simulated annealing approach to construct a multiple alignment. BEAMS [42] is a global
many-to-many aligner that constructs a graph of node similarities considering protein
sequence scores and detects from the graph a set of disjoint cliques that maximizes an
alignment quality measure.
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Figure 1 presents different examples of alignment types. Table 1 summarizes the
different network alignment algorithms.

Figure 1. The figure shows an example of PNA one-to-one, PNA many-to-many, MNA one-to-one,
and MNA many-to-many.

Table 1. Network alignment algorithms.

Algorithm GNA or LNA PNA or MNA One-to-One or Many-to-Many Evaluation Measures

GRAAL GNA PNA One-to-one P-NC, R-NC, F-NC, GS3, NCV-S3, GO correctness, P-PF, R-PF, F-PF
H-GRAAL GNA PNA One-to-one P-NC, R-NC, F-NC, GS3, NCV-S3, GO correctness, P-PF, R-PF, F-PF
MI-GRAAL GNA PNA One-to-one P-NC, R-NC, F-NC, GS3, NCV-S3, GO correctness, P-PF, R-PF, F-PF
C-GRAAL GNA PNA One-to-one P-NC, R-NC, F-NC, GS3, NCV-S3, GO correctness, P-PF, R-PF, F-PF
L-GRAAL GNA PNA One-to-one P-NC, R-NC, F-NC, GS3, NCV-S3, GO correctness, P-PF, R-PF, F-PF
IsoRank GNA PNA One-to-one P-NC, R-NC, F-NC, GS3, NCV-S3, GO correctness, P-PF, R-PF, F-PF
GHOST GNA PNA One-to-one P-NC, R-NC, F-NC, GS3, NCV-S3, GO correctness, P-PF, R-PF, F-PF
WAVE GNA PNA One-to-one P-NC, R-NC, F-NC, GS3, NCV-S3, GO correctness, P-PF, R-PF, F-PF

MAGNA GNA PNA One-to-one P-NC, R-NC, F-NC, GS3, NCV-S3, GO correctness, P-PF, R-PF, F-PF
MAGNA++ GNA PNA One-to-one P-NC, R-NC, F-NC, GS3, NCV-S3, GO correctness, P-PF, R-PF, F-PF

SANA GNA PNA One-to-one P-NC, R-NC, F-NC, GS3, NCV-S3, GO correctness, P-PF, R-PF, F-PF
IGLOO GNA PNA One-to-one P-NC, R-NC, F-NC, GS3, NCV-S3, GO correctness, P-PF, R-PF, F-PF

NetworkBLAST LNA PNA Many-to-many P-NC, R-NC, F-NC, GS3, NCV-S3, GO correctness, P-PF, R-PF, F-PF
NetAligner LNA PNA Many-to-many P-NC, R-NC, F-NC, GS3, NCV-S3, GO correctness, P-PF, R-PF, F-PF
AlignNemo LNA PNA Many-to-many P-NC, R-NC, F-NC, GS3, NCV-S3, GO correctness, P-PF, R-PF, F-PF
AlignMCL LNA PNA Many-to-many P-NC, R-NC, F-NC, GS3, NCV-S3, GO correctness, P-PF, R-PF, F-PF

LocalAli LNA PNA Many-to-many P-NC, R-NC, F-NC, GS3, NCV-S3, GO correctness, P-PF, R-PF, F-PF
GLAlign LNA PNA Many-to-many P-NC, R-NC, F-NC, GS3, NCV-S3, GO correctness, P-PF, R-PF, F-PF

MultiMAGNA++ GNA MNA One-to-one NCV-MNC, NCV-CIQ, LCCS, MNE, GC, P-PF, R-PF, F-PF
GEDEVO-M GNA MNA One-to-one NCV-MNC, NCV-CIQ, LCCS, MNE, GC, P-PF, R-PF, F-PF

IsoRankN GNA MNA Many-to-many NCV-MNC, NCV-CIQ, LCCS, MNE, GC, P-PF, R-PF, F-PF
SMETANA GNA MNA Many-to-many NCV-MNC, NCV-CIQ, LCCS, MNE, GC, P-PF, R-PF, F-PF

LocalAli LNA MNA Many-to-many NCV-MNC, NCV-CIQ, LCCS, MNE, GC, P-PF, R-PF, F-PF
NetCoffee GNA MNA Many-to-many NCV-MNC, NCV-CIQ, LCCS, MNE, GC, P-PF, R-PF, F-PF

BEAMS GNA MNA Many-to-many NCV-MNC, NCV-CIQ, LCCS, MNE, GC, P-PF, R-PF, F-PF

3.3. Quality Evaluation of Network Alignments

The evaluation of pairwise network alignment algorithms can be performed by con-
sidering both topological and biological aspects; see [43] for a complete discussion.

The topological quality is related to alignment algorithm capability as the reconstruc-
tion of the true node mapping and the conservation of as many edges as possible.
A widely used measure is node correctness (NC) [18], which is defined as the fraction of nodes
of one network that correctly overlap with the nodes of a different network concerning
the true node mapping. The NC measure is applied only in global network alignments.
The reason is related to the approach on which the local alignment algorithm is based,
i.e., the mapping of a node from a network with different nodes of the other network [4].
Subsequently, Meng et al. designed new measures for both global and local alignments:
P-NC, R-NC, and F-NC. Let us consider an alignment f that produces a set of node pairs
composed of Nal nodes, while the true node mapping is composed of Mtr nodes. P-NC
is defined as Mtr∩Nal

Mtr
. R-NC is defined as Mtr∩Nal

Nal
. F-NC is the harmonic mean of the two

previous measures.
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Similarly, three popular measures to compute the edge correctness have been proposed:
edge correctness (EC) [18], induced conserved structure (ICS) [24], and symmetric substructure
score (S3) [16]. However, S3 can be used to measure the quality of global network alignment
algorithms. For this reason, three measures have been designed [4], including generalized
S3 (GS3) and high node coverage S3 (NCV-S3).

The evaluation of alignment biological quality is performed by applying two measures:
Gene Ontology (GO) correctness, which identifies the number of aligned protein pairs that are
annotated with the same GO terms, and Precision (P-PF), Recall (R-PF), and F-score (F-PF) ,
which measure the accuracy of known protein function prediction. In particular, P-PF is
the fraction of the union of the set of predicted protein–GO term associations and the set of
true protein–GO term associations out of the set of predicted protein–GO term associations.
R-PF is the fraction of the union of the set of predicted protein–GO term associations and the
set of true protein–GO term associations out of the set of true protein–GO term associations.
F-PF is the harmonic mean of P-PF and R-PF.

Moreover, a topological and functional quality assessment is performed for multiple
alignment. The adopted measures to evaluate the topological alignment quality are: ad-
justed node correctness (NCV-MNC), adjusted cluster interaction quality (NCV-CIQ), and largest
common connected subgraph (LCCS).

NCV-MNC is the geometric mean of the node coverage (NCV), defined as nodes form-
ing an alignment cluster with respect to all nodes in the networks, and cluster consistency
(MNC) defined as one minus the mean of normalized entropy (NE) of all clusters in the
alignment.

NCV-CIQ is the geometric mean of the node coverage (NCV) and CIQ, which measures
edge conservation, and it is the generalization of the established S3.

LCCS is the geometric mean of the fraction of the number of nodes in the LCCS out of
the maximum possible number of nodes in the LCCS and of the fraction of the number of
edges in the LCCS out of the maximum possible number of edges in the LCCS.

To evaluate the functional alignment quality for MNA, three measures are defined: Mean
Normalized Entropy (MNE), GO correctness (GC), and accuracy of protein function prediction.

MNE measures the internal cluster consistency and it is defined as the mean of the
normalized entropy (NE) across all clusters in the alignment. In the multiple alignment, the
NE takes into account the number of unique GO terms, the number of proteins annotated
with a GO term, and the total number of protein–GO term annotations in the cluster.
GC is the fraction of protein pairs that share one or more GO terms.

Accuracy of protein function prediction is computed according to Precision (P-PF),
Recall (R-PF), and F-score (F-PF), which are defined above. Table 1 summarizes the different
network alignment algorithms and evaluation measures.

4. Representation Learning

One commonly used taxonomy classifies network embedding algorithms into three
major groups: matrix factorization-based approaches, random walks or diffusion-based
approaches, and deep learning-based approaches [7,9].

Matrix factorization-based approaches obtain the embedding through the factorization
of a suitable matrix that encodes some graph property—for instance, an adjacency or a
similarity matrix.

In analogy to word embedding algorithms, several network embedding algorithms
that are generally categorized as random walks or diffusion-based approaches aim at
sampling finite sequences of nodes from a network, and then perform the skip-gram
algorithm to model the node context in a word2vec fashion [44].

The skip-gram model addresses the unsupervised problem of learning a text represen-
tation by simulating a supervised learning task to predict surrounding words given a word
in input.

DeepWalk [45] is the first algorithm to be widely used as a benchmark in comparison
with other graph learning approaches.DeepWalk randomly samples node sequences from
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each node by performing truncated random walks and then trains one hidden layer skip-
gram algorithm to predict the node context. The representation is computed as the output
of the hidden layer of the learned skip-gram model.

Node2vec [46] is a subtle modification of DeepWalk in which a second-order biased
random walk is combined with Breadth-First Sampling (BFS) and Depth-First Sampling
(DFS); the two extreme sampling strategies are combined to generate a neighborhood set of
k nodes.

Deep learning-based methods exploit popular deep learning-related techniques, such
as autoencoders, Convolutional Neural Networks (CNN), and Generative Adversarial
Networks (GANs), to learn the latent representation of the network.
Although general-purpose network embedding methods may capture intra-network fea-
tures, showing state-of-the-art performance in different tasks such as link prediction, node
clustering, and node classification, the empirical analysis in [6] has shown that the node
representation over different runs of the same algorithm may not correspond, or it may fail
to preserve neighborhood consistency.

As a consequence, a specific network embedding approach needs to be designed to
learn a robust and consistent representation, suitable for inter-network problems, of which
network alignment is one of the most representative.

Network Embedding for Network Alignment

Different network alignment approaches that leverage network representation have
been proposed. In particular, CrossMNA [47] is an algorithm that performs two joint net-
work embeddings to perform multi-network alignment. The novel idea behind CrossMNA
is not to rely on topology consistency, i.e., the same node tends to maintain a similar
connectivity structure across different networks.

DANA [48] and UAGA [49] propose two unsupervised network alignments that
combine unsupervised graph embedding approaches with adversarial training.

However, none of the network embedding alignment strategies discussed so far have
been tested in the context of biological networks, particularly PPI networks.

The present section discusses some network embedding algorithms for network align-
ment (NE-NA), which have been explicitly designed or tested on PPI networks. Table 2
summarizes the five considered works.

Table 2. Characteristics of different NE-NA algorithms. The abbreviations “Geo” and “Opti” stand
for geometric and optimization alignment approaches, respectively.

Algorithm PNA or MNA Output Embedding
Approach

Alignment
Approach

External Biological
Sources

Comparison
Metrics

REGAL MNA Matching node list Matrix factorization Geo Domain-agnostic AA, α-AA, Runtime

GeoAlign PNA Matching node list Matrix Factorization Geo Network simplex
Sequence similarity

ICS, SPE, MNE,
COI

MUNK PNA MUNK similarity
score matrix (nxm) Matrix factorization Opti Sequence homologs

GO annotations
GO Con, K-fs
AUPR

Protein2Vec MNA Similarity ranking Diffusion method Opti BLASTP ME, MNE, EC, ICS,
MNS

CONE-ALIGN PNA Alignment matrix Matrix decomposition Geo Domain-agnostic AA

MUNK [50] is a semi-supervised node embedding approach that aims at jointly
representing two (or more) PPI networks in a single vector space.

MUNK’s representation of PPI networks may be useful for cross-species inference,
such as network alignment, multi-species synthetic lethality, and phenolog detection.
However, for the purpose of the present review, only the NA problem will be taken into
account.

Although, in the paper, the authors mention that MUNK can be used for MNA
purposes, the algorithm is solely presented in a pairwise fashion and, to date, also the
provided implementation only supports PNA.
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MUNK receives as input a PPI source network and a target PPI network, a list of
homologous protein pairs, also called landmarks, which guide the joint representation of
the two networks, and a kernel function that captures the intra-network similarity of nodes.
In the experiments, the authors use the regularized Laplacian [51] as a kernel function.

Initially, MUNK builds two kernel matrices, D1 and D2, having as matrix order n× n
and m×m, respectively. Being symmetric and semi-definite positive, there exists a matrix
C ∈ Rn× with d ≤ n such that D1 = CCT .

The column vectors of C are assumed to be a representation of the nodes of the source
network in the vector space Rd.

The vector representation C2 of nodes belonging to the target network is reconstructed
by constraining the landmarks to solve the following equation:

C2 = C∗1LD2L

where C∗1L is the Moore–Penrose pseudoinverse of the landmark vector representation of C,
while D2L represents the restriction of D2 to the set of landmarks. The output of MUNK is
the n×m MUNK similarity matrix D12, computed as

D12 = CCT
2

where the MUNK similarity score between node vi and node vj is expressed as sij = cT
i cj,

where ci and cj are the learned representations for nodes vi and vj, respectively.
To evaluate the representation performance in the context of NA, the author applied

the Hungarian algorithm [52] to the MUNK similarity matrix to generate a matching set
that maximizes the similarity scoring function.

The performance has been evaluated by considering the Jaccard index of the GO
terms, also known as Gene Ontology consistency (GO Con), and the Area Under the
Precision–Recall curve k-functional similarity (k-func AUPR).

Another comparison between Isorank and MUNK shows that while the former out-
performs the latter in terms of EC, MUNK is 13 times faster in terms of runtime [7].

Protein2Vec [53] is an MNA algorithm that takes two or more PPI networks as input
and outputs a set of matching protein complexes. In this context, Protein2Vec defines
the similarity of two nodes as a convex combination of a topological and a biological
similarity function. While the latter is based on a significance score of the Expect Values
of pairwise proteins in BLAST, the former is the cosine similarity between the vector
representation of protein nodes. Similarly to the previously described diffusion-based
embeddings, Protein2Vec learns a network representation by generating context sequences
for each node by biased random walks on an auxiliary structural similarity graph. At each
layer, Protein2Vec assigns an iterative, normalized hierarchic variance weight, inspired by
struc2vec [54] but further enhanced by adding a linear term that also considers the over-
representation of triangle motifs. To perform the multiple network alignment, Protein2Vec
applies a maximum weighted bipartite matching algorithm to optimize the number of pairs
of vectors having the best similarity, and a simulated annealing algorithm.

Performance has been evaluated to assess the biological consistency of the alignment,
by considering ME and MNE, as well as commonly used topological measures such as EC,
ICS, and S3.

GeoAlign [55] is a many-to-many PNA algorithm designed to align PPI networks in
two steps. The first step exploits the Structure Preserving Embedding (SPE) algorithm [56]
to learn a low-dimensional vector representation that encodes the connectivity of the graphs
in terms of the Euclidean distance among points in a vector space. To do so, given an
adjacency matrix as input, the SPE algorithm constructs the embedding as the action of a
positive semi-definite kernel matrix K ∈ RN2

. The algorithm is constructed to be such that,
given a connectivity algorithm G (e.g., KNN algorithm), the action of G on K reconstructs the
adjacency matrix of the graph. In the second step, similarly to Protein2Vec [53], GeoAlign
defines a matching score as a linear convex combination of a topological and a biological
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similarity score. In particular, the similarity scores among nodes as the flow value is
calculated using the Network Simplex algorithm, while the topological similarity score is
computed as the Earth Mover’s Distance between the embedding representation of the
target network, and rigid transformations of the embedding representation of the source
network. Finally, GeoAlign matches node i in the first network to node j in the second
network if the similarity between the two nodes’ representation is greater than a threshold
and outputs a list of detected node matching. Performance has been evaluated to assess
the biological consistency of the alignment, i.e., the MNE, the specificity (Spe), which
measures the ratio of correct clusters to annotated clusters, and the Conserved Orthogolous
Interactions (COI), which measures the ratio of the total number of interactions between
correct clusters to the number of aligned interaction. Moreover, ICS has been evaluated to
assess the topological quality of the alignment.

REGAL [57] is a domain-agnostic NE-NA algorithm whose aligning strategy leverages
a matrix factorization-based embedding to encode the topology-related information and,
eventually, also some attribute information of nodes.

Given the scope of the present review, we will discuss the simplest case by assuming
that no attribute information is provided. Then, the similarity between two nodes, nodes u
and v, is defined as the exponential of the Euclidean distance between the degree vectors of
node u and v, respectively, weighted by some parameter: S(u, v) = e−λ·||du−dv ||22 .

To compute S efficiently, REGAL proposes a low-rank approximation S∗, which takes
advantage of a set of p landmarks. Let C be the similarity matrix between the joined
set of vertices of the two networks Vs

⋂
Vt and the set of landmarks, and let W be the

similarity matrix between the landmark nodes. REGAL shows that matrix S is similar to
the Moore–Penrose pesudoinverse of W. By performing a singular value decomposition of
the pseudoinverse of W, the similarity matrix S can be computed as S = YZT . To compute
the alignment for each node, the embedding of the target network is computed and stored
in a k-d tree [58] to find the nearest (or sorting the k-nearest) node representation from
the first network, with Euclidean distance. Two metrics have been considered to evaluate
performance: Alignment Accuracy (or top-α accuracy) and runtime. Alignment accuracy
(AA) has been defined as

AA =
#o f correct aligments
total # o f alignments

,

while top-α accuracy (αAA) may be defined as

αAA =
#o f correct aligments in top− α choices

total # o f alignments

CONE-Align [59] is a domain-agnostic, pairwise network alignment algorithm in-
spired by the unsupervised method used in Fasttext to align, in the same embedding space,
two continuous word representations learned separately from two different languages [60].
In more detail, CONE-Align takes as input two adjacency matrices, and for each graph,
it generates a separate node embedding by using NetMF [61], an embedding method
which aims at approximating the DeepWalk matrix by explicitly factoring it through the
SVD algorithm. Similarly to DeepWalk, NetMF learns an embedding that preserves node
proximity. Then, CONE-Align aims at aligning the two graphs’ embedding subspaces
Y1, Y2 by solving the Wasserstain Procrustes problem [60]

minQ∈Od minP∈Pn ||Y1Q− PY2||.

Here, Od is the set of orthogonal matrices, while Pn is the set of permutation matrices.
Finally, the alignment is learned by matching each node in the representation of the first
network to the nearest k-node representation of the second graph through a k-d tree search.
Performance has been tested on four different datasets, spanning from communication and
social networks to PPI networks. Alignment Accuracy has been evaluated for each dataset.
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5. Discussion

In this survey, we presented the network alignment problem by considering how
the classical approaches and network embedding algorithms manage the alignment. By
comparing these two different methods, at first, it possible to note that, in the literature,
there exist several algorithms that are developed to handle the problem of the comparison
of PPI networks via classical alignment. Otherwise, fewer network embedding alignment
algorithms have been developed in recent years and very few of them are applied in the
biological context. Furthermore, a major difference involves the type of output generated
by two alignment strategies. While the classical network alignment algorithms generate
many-to-many or one-to-one node mappings in the case of both PNA or MNA, these types
of output are not obtained when network embedding alignment algorithms are applied.
In fact, REGAL and GeoAlign produce as output a matching node list, MUNK generates
a similarity score matrix, Protein2vec produces a similarity ranking, and CONE-ALIGN
builds an alignment as a matching node list. Instead, both classical network alignment
approaches and network embedding alignment strategies can be distinguished in terms of
pairwise and multiple alignment, as reported in Tables 1 and 2.

Another important aspect in which classical network alignment and network embed-
ding alignment algorithms differ is related to the evaluation of the alignment quality, which
is a basic task for the comparison of the different outputs. In fact, for both global and local
and for both pairwise and multiple classical network alignment algorithms, new unifying
alignment quality measures are developed to enable the fair comparison of different output
types. On the other hand, there is not a unique framework for the evaluation of network
embedding alignment algorithms. For example, REGAL is evaluated by using Alignment
Accuracy, which considers the correct alignments among the total alignments. GeoAlign
is evaluated by using the ICS, SPE, MNE, and COI measures; the alignment generated
by MUNK is evaluated by applying the Gene Ontology consistency (GOC) measure and
k-functional similarity. Protein2Vec is evaluated by using the ME, MNE, EC, ICS, and
MNS measures and CONE-ALIGN is evaluated by applying the Alignment Accuracy. As
is evident, the evaluation measures are different for each network embedding alignment
algorithm. For this reason, efforts should focus on developing a framework, as in the case of
classic alignment algorithms, for a unified comparison of the outputs between the different
algorithms.

Qualitative Comparison of NE-NA

A first rough classification of network embedding approaches in network alignment
(NE-NA) can be made by differentiating the methods designed specifically for the alignment
of PPI networks from the class of “domain-agnostic” algorithms also tested on PPI network
datasets. In the first case, in addition to the topological information, the representation is
enriched by considering biological similarities, while in the second case, only the topological
information is sufficient to extract a representation.

Regardless of this first subdivision, each of the algorithms was made up of two
consecutive phases: in the first phase, a vector representation of the nodes is determined,
while in the second one, a matching map between the set of representations of the two or
more considered networks is sought.

Following the taxonomy introduced in [7], regarding the NE step, the five considered
algorithms can be divided into diffusion-based algorithms and matrix factorization algo-
rithms. The difference, compared to the NE algorithms that are not compatible with the NA
task, is that the NE-NA algorithms support the joint representation of two or more networks
in the same vector space, and even if the representations are constructed separately in
spaces of the same size, they are rejoined through semi-supervised approaches that exploit
a set of landmarks.

With regard to the second step, the five considered algorithms can be divided into
geometric (Geo) approaches, which leverage a rigid transport of the points of the first
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network on the points of the second one, or search or optimization (Opti) approaches based
on the similarity of the vector representation of the nodes.

It is worth noting that according to the literature, none of the NE-NA approaches that
leverage deep learning NE techniques, such as generative adversarial models or variational
autoencoders, have been designed or tested on PPI networks.

The different characteristics of the considered NE-NA methods are summarized in
Table 2, while a general pipeline of the considered PPI NE-NA algorithms is shown in
Figure 2.

Figure 2. The figure shows the proposed taxonomy of the considered NE-NA algorithms for PPI
networks based on their general pipeline.

6. Conclusions and Future Works

In order to transfer biological knowledge from well-studied species, e.g., yeast, to
less well-studied species, such as humans, a comparative analysis of PPI networks, well
known as PPI network alignment, is a powerful means of inferring the functions of human
proteins based on the functions of their aligned counterparts. Although many different
network alignment methods have been proposed in biological fields, there are some issues
related to network representation that still need to be solved. Network embedding has
been recently proposed as a new approach for solving these issues. The goal is to learn
a low-dimensional vector representation for network nodes so that the given similarity
function is preserved as much as possible.

The present paper provides a review of the current representation learning approaches
for addressing the problem of network alignment. An overview of classical network
alignment techniques, their traditional classification, and the metrics commonly used to
evaluate the quality of the alignment is provided. The problem of NE-NA in the context
of PPI networks has been addressed and the main differences between the classical NA
and NE-NA approaches have been discussed. Furthermore, five algorithms that leverage
different network embedding techniques for the network alignment of PPI networks have
been reviewed. The main contribution of this survey consists of addressing the problem of
the NE-NA in the biological context of the PPI network. Because network embedding can
offer great opportunities for network analysis taking advantage of the potential of machine
learning techniques, in the future, we will focus on machine learning methods based on
NE-NA in a wider biological context.
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