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Abstract: In this paper we introduce a class of statistical models consisting of exponential families
depending on additional parameters, called external parameters. The main source for these sta-
tistical models resides in the Maximum Entropy framework where we have thermal parameters,
corresponding to the natural parameters of an exponential family, and mechanical parameters, here
called external parameters. In the first part we we study the geometry of these models introducing
a fibration of parameter space over external parameters. In the second part we investigate a class
of evolution problems driven by a Fokker-Planck equation whose stationary distribution is an ex-
ponential family with external parameters. We discuss applications of these statistical models to
thermodynamic length and isentropic evolution of thermodynamic systems and to a problem in the
dynamic of quantitative traits in genetics.

Keywords: exponential family; Fisher metric; Maximum Entropy principle; Ehresmann connection;
thermodynamic length; Fokker-Planck equation; generalized Phytagorean theorem

1. Introduction

This work is a first attempt to study the geometrical properties and potential appli-
cations of a class of statistical models consisting of exponential families depending on
additional parameters, called external parameters. The main source for these statistical
models comes from the application of E.T. Jaynes Maximum Entropy framework [1] to
thermodynamical systems, where we can identify in a natural way thermal parameters
(corresponding to natural parameters in an exponential family) and mechanical parameters,
here called external parameters. While the construction of equilibrium Statistical Mechanics
from the Maximum Entropy principle is a well established domain of science, little attention
is paid in the literature to the intrinsic geometrical structure of these statistical models.
Given the widespread application of Maximum Entropy principle to disparate fields of
science, it is reasonable to assume that a closer scrutiny of these models can pave the way
to further applications outside statistical thermodynamics.

Here is the plan of the paper: in Section 2 we recall the definitions of regular statistical
model and of exponential family. The main point is that we are dealing with a finite
dimensional Riemannian manifold with respect to the Fisher metric. In Section 3 we
introduce the exponential families with external parameters, we state the conditions that
render them a regular statistical model and we compute the Fisher metric. The additional
geometrical structure that we get with these exponential families is a fibration over the
space of external parameters U in the sense that for every fixed u ∈ U the fiber is a standard
exponential family. The notion of Eheresmann connection on a fibered bundle and of
parallel transport is recalled in Section 4. In Section 5 we outline some applications of these
parameterized exponential families: we give a formula for the thermodynamic length of a
process described by a path in both natural and external parameters and we give conditions
for the isentropic evolution of the system. Section 6 is motivated by a model problem in
quantitative genetics (briefly recalled in Appendix A) where the dynamics of the system is
given by a Fokker-Planck equation with gradient drift and the equilibrium or stationary
distribution is an exponential family with external parameters. We recast the dynamic
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approximation procedure exposed in [2–4] in the framework of exponential family with
external parameters and we give a generalization of the ODE that drives the approximating
dynamics. We think that the consideration from the present point of view of the problem
exposed in [2–4] may shed light on some still poorly understood aspects of the model.

Exponential Families in Statistical Thermodynamics

To help locate the contribution of the present paper in the scientific literature we
briefly review and compare some of the geometrical approaches to statistical mechanics
that are most relevant for our argument. A line of research initiated by the influential
papers of Wheinhold [5] and Ruppeiner [6] investigates the Riemannian metric structure on
parameter space related to the Boltzmann-Gibbs canonical distribution. This Riemannian
metric is the one defined by the Hessian matrix of the free energy ψ = log Z (which
coincides with the Fisher metric) with respect to the canonical parameters or by its inverse
which is the Hessian of the entropy S, related to ψ by the Legendre transform. The Levi-
Civita connection with respect to this metric allows to define the Riemannian curvature
tensor and its sectional and scalar curvature. For a two-dimensional parameter space the
divergence of the scalar curvature is a signal of the existence of a phase transition in the
underlying physical system. This theory has been applied to Ising and Potts lattice system,
to the ideal and Van der Waals gas and to black hole thermodynamics (see e.g., [7–10]).
However in dimension grater of two the scalar curvature has a less stringent role and care
must be taken in the interpretation of the results.

In this work we also start from the Boltzmann-Gibbs distribution but we stress the
different role of natural or thermal parameters θ, which occur linearly in (15), and exter-
nal parameters u which may enter nonlinearly in the Boltzmann-Gibbs distribution. In
particular we are interested in using the external parameters as control parameters on the
evolution of the system. The related geometrical framework exposed in Section 4 adopts
the connection and curvature associated to the Ehresmann connection on the fibration
locally described by (θ, u)→ u, which is fit for describing the isentropic evolution of the
system or the dependence of the work control protocol on the global geometric structure
i.e., the holonomy of the path of the external control space.

A second line of research relating information geometry and statistical thermody-
namics concerns the notion of thermodynamic length (see [11–13]), which is important
in the design of optimal driving protocols for the non-equilibrium evolution of (small)
thermodynamic systems, see [14,15], both for classical and quantum descriptions. In this
work (see Section 5.1) we investigate the notion of thermodynamic length using our geo-
metric framework and we give a formula for for thermodynamic length that highlights the
contribution of natural and external (controlled) parameters.

For the sake of completeness we cite the statistical models introduced by J. Naudits
(see [16,17]) called generalized exponential families and q-exponential families by Amari-
Ohara, [18]. In these models the exponential function is generalized by introducing the
so-called q-deformed exponential. In practice one considers simultaneously two elements
of an exponential family, the second one is called escort distribution. These deformed
exponential families are useful for describing Tsallis thermostatistics [19] which gives a
more accurate description for thermodynamic systems where the extensivity of the classical
definition of entropy notion is defied. However this highly debated topic is not relevant for
the present work.

This paper is a first attempt to study the exponential families with external parameters
using geometrical tools. Even if we were inspired by the Maximum Entropy formalism our
result are completely general. In particular we investigated the case where the family (with
respect to the the natural and external parameters) is a regular statistical models. This is
only a first step in the analysis of these parameterized models; a further step would be in
the direction of singular (in opposition to regular) statistical models (see [20]) a domain
where there is nowadays an increasing attention in the information geometry community.
A drawback of this work is that most of the results are presented in a coordinate-dependent
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way and have a local character. We hope to resolve these issues in a subsequent work.
Some of the results presented here were introduced in a less refined form in [21].

2. Statistical Models and Exponential Families

Before introducing their generalization in Section 3 below, we recall the definitions
of regular statistical model and of exponential family (see [22–24]). Let (X,B, dx) be a
probability space where X may be a discrete or continuous set. We stipulate that in case of
a discrete set the integrals over X with respect to the measure dx are substituted by sum
symbols. Let

P(X) = {p : X → [0,+∞), p(x) ≥ 0,
∫

X
pdx = 1} ⊂ L1(X)

be the infinite dimensional space of probability densities over X. Let Z ⊂ Rd be the open
set of the parameters, f : Z −→ P(X) be a given smooth map and consider the subset of
P(X)

S = {p = f (z) : z ∈ Z} ⊂ P(X).

To avoid technicalities, we stipulate that the support of p, i.e., the set where p > 0 is the
same for all p ∈ S and that it coincides with X. We now state the conditions under which
S is a regular d-dimensional statistical model (see [22,24,25]).

Definition 1 (Regular statistical model). S is a regular statistical model if the following condi-
tions are satisfied:

1. (injectivity) the map f : Z −→ S , z 7→ f (z) = p(z) is one to one,
2. (regularity) the d functions defined on X

pi(x; z) =
∂p
∂zi

(x; z), i = 1, . . . , d

are linearly independent as functions on X for every z ∈ Z.

A statistical model which is not regular is called singular (see [20] for a comprehen-
sive discussion on singular models). If condition 1. hold the model is called identifiable,
otherwise it is called unidentifiable. If condition 2. fail the main consequence is that the
Fisher metric (22) is only positive semidefinite because condition (23) fail. Many statistical
model e.g., Boltzmann machines, Bayes networks, hidden Markov models are singular.
Note that for a regular statistical model the inverse ϕ of the map f , ϕ(p) = z defines a
global coordinate system for S .

To check regularity condition 2. it is convenient to introduce the so called log-likelihood
l = ln p of p and the score base

li(x; z) =
∂l
∂zi

=
∂ ln p

∂zi
=

1
p

pi(x; z). (1)

Since li and pi are proportional, the regularity condition 2. holds if and only if the elements
of the score base are linearly independent on X.

Exponential Family

Foundamental examples of statistical models are the exponential families. Let us
introduce a observable functions h : X → Ra, h = (h1, . . . , ha) and suppose that the a + 1
functions

h1(x), . . . , ha(x), 1, (2)
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are linearly independent as functions over X, where 1 denotes the constant function over
X. Moreover, let k = k(x) be a function defined on X and let us introduce the free energy
ψ : Θ ⊂ Ra −→ R, ψ = ψ(θ) as (here θ · h denotes the scalar product in Ra)

ψ(θ) = ln
∫

X
eθ·h(x)+k(x)dx (3)

where the parameter space Θ is the subset of Ra where eψ(θ) < +∞. The a real numbers θ
are called natural parameters. It is known that the set Θ is open and convex in θ and that ψ
is a convex function in the θ variable (see [23,26]).

The following subset of the infinite dimensional space P(X)

E = { p(x; θ) = eθ·h(x)−ψ(θ)+k(x), θ ∈ Θ} ⊂ P(X). (4)

is called exponential family. We show that E is an a-dimensional regular statistical model.
For p ∈ E we have

l = ln p = θ · h(x)− ψ(θ) + k(x) (5)

therefore the injectivity condition 1. above holds if and only if for all θ, θ′ ∈ Θ

(θ − θ′) · h(x) + 1(ψ(θ′)− ψ(θ)) = 0 ∀x ∈ X ⇒ θ = θ′ (6)

holds and this is true by the independence condition (2) above. To check regularity con-
dition 2 above, we compute the elements of the score base. They are (here we use the
shorthand notation ∂i f = ∂ f /∂zi and 〈 f 〉 =

∫
f pdx, moreover summation over repeated

indices is understood)

lα = hα − ∂αψ = hα − 〈hα〉, α = 1, . . . a. (7)

The last equality ∂αψ = 〈hα〉 holds if we assume that the integrability condition 〈hα〉 is
satisfied for every α. It is not restrictive to assume that 〈hα〉 = 0 therefore the regularity
condition 2. holds if and only if the d functions hα are linearly independent over X, which
again follows from (2).

One can show (see [22,27]) that every smooth diffeomorphism θ 7→ m(θ) give an
equivalent parameterization of the elements of the exponential family. In this sense E has
the structure of a smooth manifold, called statistical manifold. Another coordinate system
for E (we will denote it with p = p(x; η)) is provided by the so called expectation parameters
η ∈ E ⊂ Ra defined by (here (∂θψ)i = ∂ψ/∂θi)

η = ∂θψ(θ) =
∫

X
h(x)p(x; θ)dx.

Since ψ is a convex function, the gradient map θ 7→ ∂θψ(θ) is globally invertible with
inverse θ = θ̂(η) which is also a gradient map θ̂(η) = ∂η ϕ(η), where

ϕ(η) = θ̂(η) · η − ψ(θ̂(η)) (8)

is the Legendre transform of ψ (see [22]).

3. Exponential Families Depending on External Control Parameters

These statistical models are introduced by supposing that the observables h that
defines an exponential family depend on so-called external parameters u ∈ U ⊂ Rb, which
are to be distinguished from the natural parameters θ. These generalized exponential
families arise naturally when one applies the Maximum Entropy formalism to equilibrium
Statistical Mechanics, that we briefly recall here (see E.T. Jaynes books [1,28]).

It is well known that when the information consist of the average values of some
random variables hα describing observables of interest for the system, the maximum
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entropy probability densities are exponential families. Indeed, if we introduce the Shannon
entropy functional for a probability density p ∈ P(X)

H(p) = −
∫

X
p ln pdx, (9)

then the probability density that maximize H on the set of probability densities that satisfy
the constraints 〈h〉 =

∫
X hpdx = c ∈ Ra has the form of an exponential family of the form

in (4) with k = 0. If the observables of interest for the system h = h(x, u) depend on
extra parameters, the exponential family inherits naturally a dependence on the external
parameters, see (15) below. Typical examples of external parameters are the magnetic or
electric field applied to the system or the length of a polymer chain (see [12,29]). Also, for a
quantum system confined in an infinite square well potential, the discrete energy levels hi
depends on the width L of the well. Another typical example of a thermodynamic system
subject to an external parameter is an ideal gas in a container of variable volume V; however
in this case the parameter V affects the state space X = X(V) and not the observables h
therefore this important system it is not described by a generalized exponential family
(see [21] for a discussion of this point).

An important difference between the natural parameters θ and the external ones u is
that the former are the Lagrange multipliers associated to the constraints when one solves
the constrained extremization problem for H using Lagrange multipliers method, while
the latter are parameters in the problem formulation that can be controlled by an agent
external to the system under consideration. This difference is displayed when we consider
the variation of 〈h〉 for p = p(x; θ, u). If we suppose, as we will always do, that we can
exchange the order of integration and differentiation with respect to a parameter, we have

d〈h〉 =
( ∫

X
h∂θ pdx

)
dθ +

( ∫
X

p∂uhdx
)

du = dQ + 〈∂uh〉 (10)

where dQ has the meaning of generalized heat exchanged and 〈∂uh〉 of generalized work
exchanged (see [28]). Moreover, while the value of the external parameters u is controlled
and can be varied by an agent external to the system, the value of the natural parameters
θ can be varied only by putting the system in contact with an heath bath at a prescribed
value of the inverse temperature θ (see again [28]).

The Kullback-Leibler divergence, also called relative entropy (see [27]) is defined for
p, q ∈ P(X) and q > 0 as

D(p|q) =
∫

X
p(x) log

p(x)
q(x)

dx.

It is well known that the probability density p̂ that minimize D on the set of probability
densities that satisfy the constraints 〈h〉 =

∫
X hpdx = c ∈ Ra has the form of an exponential

family as in (4) with q = eK > 0

p̂(x; θ) = eθ·h(x)−ψ(θ)+k(x). (11)

The probability distribution p̂ is the distribution that gives the minimum information gain
when one wants to update the current statistical description of the system given by q using
the new available information 〈h〉 = c. We will refer in the sequel to this as the minimum
Relative Entropy principle. The parameters θ of p̂(x; θ) in (4) are uniquely determined as
θ = θ̂(c) by the constraint conditions

〈h〉 = ∂θψ(θ) = c (12)

since the gradient map θ 7→ ∂θψ is invertible. Note that for θ = 0 we have p(x; 0) = q(x)
therefore the case θ̂(c) = 0 corresponds uniquely to the constraint value c =

∫
X hqdx

meaning that the constraints do not represent a new piece of information on the system.
We will use this fact in the following.
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Having exposed the motivations for considering these probability distributions, in the
sequel we will investigate the geometrical properties of exponential families with external
parameters or controlled exponential families for short.

3.1. Exponential Families with External Parameters

Let U ⊂ Rb be the external parameter space and consider the a observables

hα : X×U −→ R.

Let k(x) be a function on X and define the free energy ψ : Z ⊂ Rd, ψ = ψ(θ, u), d = a + b

ψ(θ, u) = ln
∫

X
eθ·h(x,u)+k(x)dx (13)

where the parameter space Z is the subset of Rd where eψ < +∞. We suppose that
(i) Z is open and we introduce the map

π : Z −→ U, π(θ, u) = u. (14)

We consider the following subset of the infinite dimensional space P(X)

F = { p(x; θ, u) = eθ·h(x,u)−ψ(θ,u)+k(x), (θ, u) ∈ Z} ⊂ P(X) (15)

and we suppose that
(ii) for every fixed u ∈ π(Z) the set E(u) ⊂ F

E(u) = { p(x; θ) = eθ·h(x,u)−ψ(θ,u)+k(x), (θ, u) ∈ π−1(u)} ⊂ P(X) (16)

is an exponential family. As a consequence π−1(u) is a convex subset in θ and hα(x, u),
1 are a + 1 functions linearly independent over X.

A natural question is to ask if the set F can be seen as a foliated manifold whose
leaves are the statistical manifolds E(u). Note however that if θ = 0 is allowed (that is∫

X ekdx < +∞) we have for θ = 0 in (13) ψ(0) = ψ(0, u) and p(x; 0, u) = ek(x)−ψ(0) for
every u ∈ π(Z) therefore

ek(x)−ψ(0) ∈ E(u) ∩ E(u′) ∀ u, u′ ∈ π(Z).

So the statistical manifold leaves are not disjoint.
A second natural question to ask is ifF can be given the structure of a regular statistical

model. To this we need to check conditions 1. and 2. in the Definition 1 above. Concerning
injectivity condition 1. for the map z 7→ f (z) we have that f (0, u) = ek−ψ(0) for all u ∈ U so
injectivity condition 1. may fail for controlled exponential families at θ = 0. However, if we
recall the statistical mechanics interpretations of controlled exponential families made in
Section 3 and in particular in (12), we can consider the point of singularity θ = 0 outside
the domain of application of the statistical model (see however [20] for a discussion of
this point). If we assume θ 6= 0, due to the possibly nonlinear dependence of h(x, u) on u,
condition (6) to assess injectivity for a controlled exponential family becomes

pz = θ · h(x, u)−ψ(θ, u) = θ′ · h(x, u′)−ψ(θ′, u′) = pz′ ∀x ∈ X ⇒ θ = θ′, u = u′. (17)

Condition (17) seems hard to satisfy even if we assume hypothesis (ii) as the following
example shows. Suppose that the observables h depends linearly on u

hα(x, u) = Aαk(x)uk (18)

and (see (ii)) suppose that the d + 1 functions in (18) hα(x, u), 1 are linearly independent
over X for every fixed u. Note that the elements of F in (15) depend on θ, u through the
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scalar quantity θ · Au. To prove injectivity of the map z 7→ pz, z = (θ, u) we need to prove
that if z 6= z′

θ · A(x)u 6= θ′ · A(x)u′

as functions on X. But this is not true if for example θ′ = λθ and u′ = u/λ for λ 6= 0. So the
model (18) is singular. This should not be a surprise because elements of the family F are
not characterized by the observables Aαk(x) but by the linear space spanned by the Aαk(x).
Indeed, if we set θ = Bθ′ and u = Cu′ where B and C are nonsingular square matrices, then

θ · Au = θT Au = (Bθ′)T ACu′ = θ′T BT ACu′ = θ′T A′u′ = θ′ · A′u′

hence the family F is equally described by A′ = BT AC with respect to the parameters
(θ′, u′). Another lesson we can draw from this example is that for an exponential family
linearly dependent in the external parameters, the distinction between natural and external
ones is lost, as their role can be interchanged.

All that said, we stipulate that

Definition 2. F in (15) is an exponential family depending on the parameters z = (θ, u) if (i) for
every fixed u the set E(u) is an exponential family and (ii) F is a regular d = a + b statistical
model for a suitable choice of the open parameter set Z ⊂ Ra ×U.

In the case of an exponential family (15) depending on natural and external parameters
in addition to a natural parameters score base vectors

lα =
∂ ln p
∂θα

= hα − ∂αψ = hα − 〈hα〉 (19)

we have b external parameters score base vectors

lk =
∂ ln p
∂uk

= θα∂khα − ∂kψ = θα

(
∂khα − 〈∂khα〉

)
= θαLαk. (20)

Note that 〈lα〉 = 0 and 〈lk〉 = 0 because 〈Lαk〉 = 0. Moreover, one can always assume that
〈hα〉 = 0 and 〈∂khα〉 = 0 therefore the regularity condition 2. above holds if and only if the
a + b functions

hα(x, u), θα
∂hα

∂uk
(x, u) (21)

are linearly independent over X.

3.2. Fisher Metric for an Exponential Family with External Parameters

Regular statistical models can be endowed with a Riemannian metric defined on their
parameter space Z. This is called Fisher metric [30] and it has the form

gij(z) = 〈lilj〉 =
∫

X

∂l
∂zi

∂l
∂zj

pdx. (22)

The Fisher matrix is symmetric and positive definite therefore it defines a Riemannian
metric on Z (see [24], p. 24). In fact we have

gijvivj = 〈liljvivj〉 = 〈(livi)
2〉 = 0 ⇔ livi = 0 ⇔ vi = 0 ∀ i (23)

since the score vectors li are linearly independent over X. Note also (see [24]) that g is
invariant with respect to change of coordinates in the state space X and covariant (as an
order 2 tensor) with respect to change of coordinates in the parameter space Z .
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The elements of the Fisher matrix (22) relative to an exponential family with external
parameters (15) can be detailed as follows: using (19)

gαβ = 〈lαlβ〉 =
〈(
〈hα〉 − hα

)(
〈hβ〉 − hβ

)〉
= cov(hα, hβ); (24)

we also have from (20)

gαk = 〈lαlk〉 =
〈
(〈hα〉 − hα)θβ(〈∂khβ〉 − ∂khβ)

〉
= θβcov(hα, ∂khβ) (25)

and

gkm = 〈lklm〉 =
〈

θα(〈∂khα〉 − ∂khα)θβ(〈∂mhβ〉 − ∂mhβ)
〉
= θαθβcov(∂khα, ∂mhβ). (26)

It is useful to set
Aαβ = gαβ, Mαk = gαk, Bkm = gkm

and introduce a block representation of the symmetric (a + b)-dimensional Fisher matrix
g as

g(z) =
(
A M
MT B

)
. (27)

We now give the expression of the Fisher metric coefficients using the free entropy function
ψ in (13), which is also called the moment generating function because its derivative with
respect to the θ parameters give the different moments of the random variables h. We thus
have the well know relation

∂β∂αψ = cov(hα, hβ) = gαβ. (28)

By direct computation on (13) we have also

∂k∂αψ = θβcov(hα, ∂khβ) + 〈∂khα〉

hence
gαk = ∂k∂αψ− 〈∂khα〉. (29)

Moreover we have

∂k∂mψ = θαθβcov(∂khα, ∂mhβ) + θα〈∂k∂mhα〉 (30)

hence
gkm = ∂k∂mψ− θα〈∂k∂mhα〉. (31)

We see that, unlike the case of natural parameters θ, second order derivatives of the free
entropy ψ with respect to mixed or external parameters do not coincides with the elements
of Fisher matrix.

Example 1. As a toy model, we introduce the following example of a controlled exponential family.
Let X = [0,+∞) and U = [0,+∞) and consider the two observables where x ∈ X, u ∈ U

h1(x) = ln x, h2(x, u) = ln(x + u). (32)

For this example we set k(x) = − ln x. We check that we have an integrable free energy function

eψ =
∫

X
eθ·h+kdx =

∫ +∞

0
e(θ1−1) ln x+θ2 ln(x+u)dx

=
∫ +∞

0
xθ1−1(x + u)θ2 dx = uθ1+θ2 Γ(θ1)

Γ(−θ2 − θ1)

Γ(−θ2)
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which is finite if θ1 > 0, u > 0 and θ2 + θ1 < 0. Here Γ(z) is the Gamma function defined as

Γ(z) =
∫ +∞

0
tz−1e−zdt.

Note that since ek(x) = 1/x is non integrable over X, θ1 = θ2 = 0 is a non feasible value. By
inspection h1, h2, 1 are linearly independent over X for every fixed u, the map

(θ1, θ2, u) 7→ θ1 ln(x) + θ2 ln(x + u)− ln(x)

is injective. From the likelihood

l = θ1 ln(x) + θ2 ln(x + u)− ln(x)− ψ(θ, u),

the elements of the score base are

l1 = ln(x)− ∂1ψ, l2 = ln(x + u)− ∂2ψ, lu = θ2(
1

x + u
− ∂uψ)

which are linearly independent over X. So the statistical model defined by (32) is a 2+ 1 dimensional
controlled exponential family. Note that the probability density

p(x; θ1, θ2, u) = eθ1h1+θ2h2−ψ+k =
xθ1−1(x + u)θ2

Z(θ1, θ2, u)

is known as a (possible formulation of a) compound Gamma distribution; moreover, for u = 1, this
is the Beta distribution of second kind [31].

We now compute the Fisher matrix elements for this example. Let us introduce the Polygamma
function Φm for m ∈ N

Φm(z) =
dm

dzm Φ0(z), Φ0(z) =
d
dz

ln Γ(z) =
Γ′(z)
Γ(z)

.

We have

ψ(θ1, θ2, u) = (θ1 + θ2) ln u + ln
Γ(θ − 1)Γ(−θ1 − θ2)

Γ(−θ2)

and from relation (28) above we have

g11 = ∂1∂1ψ = Φ1(θ1) + Φ1(−θ1 − θ2)

g12 = ∂1∂2ψ = Φ1(−θ1 − θ2)

g22 = ∂1∂1ψ = −Φ1(−θ2) + Φ1(−θ1 − θ2)

so the A block of g depends only on θ. Moreover from (29) and (31) we have

g1u = ∂u∂1ψ− 〈∂uh1〉 = ∂u∂1ψ =
1
u

g2u = ∂u∂2ψ− 〈∂uh2〉 =
1
u
+

θ1 + θ2

θ2u
= − θ1

uθ2

guu = ∂u∂uψ− θα〈∂u∂uhα〉 =
(θ1 + θ2)θ1

u2(θ2 − 1)
.

4. A Synopsis of Ehresmann Connections

On a smooth fibration π : M −→ N, where M, N are smooth manifolds, with dim M = m,
dim N = n, the set VM = ker Tπ of the vectors that project onto the null space of TN is an
integrable subbundle of TM called the vertical bundle.

An Ehresmann connection (see e.g., [32]) on π : M −→ N is the assignment of a
distribution HM transversal to VM, so that HM⊕VM = TM. The elements of HM are the
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horizontal vectors; since Tπ restricted to HM is an isomorphism, it has a fiberwise defined
inverse, the horizontal lift: hor : Tπ(z)N −→ Tz M, hor(X) ∈ Hz M. Let X = Xh + Xv be
the splitting of a vector in Tz M into its horizontal and vertical component. The projection on
VM with respect to the horizontal subspace defines the vector–valued connection one-form

ω : TM −→ VM, ω(z)(X) = Xv, (33)

whose kernel is the horizontal distribution. The assignment of an horizontal distribution,
of an horizontal lift operator or of a connection one-form are equivalent ways to define a
connection on π : M −→ N. The curvature of the connection is the VM–valued two-form
defined as

Ω(X, Y) = −ω([Xh, Yh]) (34)

which shows that the curvature measures the failure of the horizontal distribution to be
integrable. Moreover, the curvature relates the Lie brackets of vector fields X, Y on the base
manifold N with the Lie bracket of their horizontal lifts through the formula

Ω(horX, horY) = [horX, horY]M − hor[X, Y]N . (35)

Again, we find that if the curvature is vanishing the horizontal distribution, spanned by
vectors of the type horX, is involutive hence integrable. Next we give the local expressions
of a connection in a fibered chart. Let z = (x, y) be a fibered chart on U ⊂ M, π(x, y) = y.
Then the vertical space is, α = 1, . . . , a = dimM− dimN,

VzU = ker Tzπ = span{ ∂

∂xα
} (36)

and the connection one-form ω is:

ω = ωα ⊗ ∂

∂xα
, ωα = dxα + Aα

l (z)dyl . (37)

The Aα
l (z) are the connection’s coefficients. The horizontal vectors have the coordinate

expression

X ∈ HM ⇔ ω(X) = 0, ⇔ Xl = Xl(
∂

∂yl − Aα
l

∂

∂xα
)

while the horizontal lift of a base vector U = Ul ∂
∂yl ∈ Tπ(z)N has the form

(hor U)l(z) = Ul(
∂

∂yl − Aα
l

∂

∂xα
). (38)

We now specialize the above relations to the important case where the horizontal distribu-
tion Hz M is defined to be the g-orthogonal of Vz M with respect to a Riemannian metric g
on M. Referring to a block representation of the metric g in the coordinates (x, y) like the
above one (27) for (θ, u) we ask that every Xh ∈ Hz M, Xh = (−Aα

l Ul , Ul) be orthogonal
to all Xv ∈ Vz M, Xv = (W, 0). As a consequence

g(Xv, Xh) = W · (−AAU +MU) = 0 ∀W ⇔ A = A−1M. (39)

The connection one-form (37) becomes from (39)

ωα = dxα + Aα
l (z)dyl , where Aα

l = (A−1M)α
l (40)

and it is called mechanical connection in the control theory for mechanical systems, where
g is the kinetic energy of a mechanical system. In the orthogonal splitting case the metric g
has the simpler form by (39)

g(X, Y) = g(Xv + Xh, Yv + Yh) = g(Xv, Yv) + g(Xh, Yh)
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Since Xv = (ω(X), 0) and using again the block representation (27) of g we have

g(Xv, Yv) = Aαβ(z)ωα(X)ωβ(Y)

and
g(Xh, Yh) = (−AU, U)T g(−AV, V) = UTKV

where K = B −MTA−1M = KT hence

g(z)dz⊗ dz = A(z)ω(·)⊗ω(·) +K(z)dy⊗ dy. (41)

and

g =

(
A 0
0 K

)
. (42)

Parallel Transport Equation

Let γ : [0, T]→ N be a smooth path in the base manifold and let z0 ∈ π−1(γ(0)). The
parallel transport equation is the following ODE for the horizontal lift vector field

ż =
dz
dt

= hor(γ̇), z(0) = z0 (43)

with local expression
ẋα = −Al

α(x, γ)γ̇l , ẏl = γ̇l . (44)

The connection is called complete if the parallel transport equation has a solution
defined on the whole [0, T]. If in (41) we have K = K(y) then the metric g is called bundle-
like metric. The main geometric consequence is that if we introduce the Riemannian
manifold (N,K) then the horizontal lift is an isometry and the solution z(t) of the parallel
transport equation is a curve that projects over γ of the same length.

5. Some Applications of Exponential Families with External Parameters

In this Section we apply the geometric framework of the previous Section 4 to the
fibration π : Z −→ U, π(z, u) = u introduced in (14). We can also consider the inverse ϕ of
the map z 7→ f (z) = pz and introduce the fibration

F ϕ−→ Z π−→ U, π̃ = π ◦ ϕ.

Since π̃−1(u) = E(u), fibers of π̃ are exponential families for every fixed value of the
external parameters. One can show that the orthogonal splitting of TZ induces and
orthogonal splitting of TF with respect to the Fisher metric (see [21]).

5.1. Thermodynamic Length

Let t 7→ z(t) = (θ(t), u(t)) ∈ Z, t ∈ [0, T] be a path in parameter space. Define the
time-dependent relative entropy along the path as D(t) = D(p(z(t))|p(z(0)) and compute
the Taylor expansion of D(t) at t = 0. A direct computation shows that D(0) = 0, D′(0) = 0
hence

D(dt) = D(0)+ D′(0)dt+
1
2

D′′(0)dt2 +O(dt3) =
1
2

D′′(0)dt2 +O(dt3) =
1
2
‖ż‖2

g +O(dt3)
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where ‖ż‖2
g is the scalar product with respect to the Fisher metric in (Z, g). It holds that

‖ż‖2
g = ż · g(z)ż〈lilj〉żi żj = 〈lilj żi żj〉

=
∫

X
p∂i ln p ∂j ln p żi żjdx =

∫
X

p
( 1

p
∂i p

1
p

∂j p
)

żi żjdx

=
∫

X

1
p

(dp
dt

(z(t))
)2

dx.

The quantity 2D(dt) = ‖ż‖2
g can be related to the entropy change rate dσ/dt of the heat

bath and to the total system entropy production rate dF/dt in a non quasi-static evolution
of the system by the formula (see [14])

‖ż‖2
g = 〈dσ

dt
〉 − 〈dF

dt
〉 ≥ 0.

Therefore ‖ż‖2
g is a measure of the system entropy production rate dσsys/dt in a non-quasi

static evolution of the system. When integrated along the finite time evolution protocol
z(t), the quantity

2C =
∫ T

0
‖ż‖2

gdt =
∫ T

0
[〈dσ

dt
〉 − 〈dF

dt
〉]dt

is called action of the path and can be interpreted as the thermodynamic cost (loss in the
entropy transfer due to the system entropy production) associated to the protocol therefore
it is a measure of the dissipated (non available) work. The quantity (see [11,12,15])

L(z) =
∫ T

0
‖ż‖g(t)dt

is called the thermodynamic length of the path z(·). By the Cauchy-Schwartz inequality
one obtains the inequality (see [14])

T2C ≥ (L(z))2

showing that the thermodynamic length (TL) gives a lower bound on the dissipated work
in a non quasi-static evolution of the system [11,15]. The above relation is used when
studying the controlled evolution of classical and quantum small thermodynamic systems,
e.g., molecular motors (see [15]).

Using the representation (41) of the scalar product with respect to the Fisher metric g
we have the interesting formula for the TL of a controlled exponential family

L(z) =
∫ T

0
‖ż‖g(t)dt =

∫ T

0

(
Aαβ(z)ωα(ż)ωβ(ż) +Klm(z)u̇l u̇m

) 1
2
dt.

In particular, if the path z is the horizontal lift of a path u in the external parameter space
then ż = hor(u̇) and ω(ż) = 0. If moreover the metric g is bundle-like with respect to the
fibration π we have K(z) = K(π(z)) and the thermodynamic length can be expressed as

L(z) = L(u) =
∫ T

0

√
K(u)u̇ · u̇ dt

showing that TL depends solely on the external parameters evolution u = u(t).
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5.2. Isentropic Evolution Driven by External Parameters

We have recalled in Section 3 that the elements of a controlled exponential family F
where q = eK ∈ P are the solution of the constrained minimization problem for the relative
entropy D(p|q) of the form (11)

p̂(x; c, u) = eθ̂·h(x,u)−ψ(θ̂,u)+k(x)

where θ̂ = θ̂(c, u) is uniquely determined by inverting the gradient map ∂θψ(θ, u) = c. We
have that

D(c, u) = D( p̂|q) =
∫

X
p̂ ln

p̂
q

dx = θ̂ · 〈h〉 − ψ = θ̂ · ∂θψ− ψ = −S(c, u)

where S(c, u) = ψ− θ · ∂θψ is the entropy of the statistical system when the information on
the system is described by the constraint 〈h〉 = c. In the following we consider D(c, u) as a
function of (θ, u) knowing that θ is in a one-to-one correspondence with c.

Let us compute the differential of D(θ, u) corresponding to a infinitesimal variation of
the parameters z = (θ, u). We have

dD(θ, u) = D( p̂|q) = ∂θ Ddθ + ∂uDdu (45)

More in detail, using (28) we obtain

∂βD = ∂β(θα∂αψ− ψ) = ∂βψ + θα∂β∂αψ− ∂βψ = θαgαβ

and using (29) we obtain

∂kD = ∂k(θα∂αψ− ψ) = θα∂k∂αψ− ∂kψ = θα(gαk + 〈∂khα〉 − θα〈∂khα〉 = θαgαk

so collecting the results and using (40) we have

dD(z) = θα

(
gαβdθβ + gαkduk

)
= θα

(
Aαβdθβ +Mαkduk

)
= θαAαβωβ

and the following proposition holds

Proposition 1. (1) The variation of entropy for an infinitesimal change in the parameters
z = (θ, u) can be expressed using the g-orthogonal Ehresmann connection ω on π : Z −→ U

− dS = dD = θαAαβωβ = θα∂α∂βψωβ (46)

(2) the change in entropy for the system along a given path z = z(t), t ∈ [0, T] in parameter
space is given by

∆S(z) =
∫ T

0
dS(ż)dt = −

∫ T

0
θα(t)Aαβ(z(t))ωβ(ż)dt

(3) since ω(ż) = 0 for an horizontal path, the horizontal lift ż = horγ̇ of a path γ in the
external parameter space U gives an isentropic (∆S = 0) evolution of the system.

Note that the horizontal lift do not represent all the possible isentropic evolution of
the system. These are characterized by the weaker (with respect to ω(ż) = 0) condition
θ · Aω(ż) = 0. Let us investigate this condition using the general relation (10) that we can
now write as

d〈hα〉 = d(∂αψ) = ∂α∂βψdθβ + ∂k∂αψduk = Aαβωβ + 〈∂khα〉duk = dQα + dWα.

If we want to gain insight into the above relation using a thermodynamic analogy, then
hα is the α-type energy, dQα = Aαβωβ is the α-type heat exchanged and dWα the α-type
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work exchanged. If we interpret the natural parameters θ as the α-type inverse temperature
θα = 1/Tα then (46) display as

−dS = θαAαβωβ = ∑
α

dQα

Tα
.

Therefore an horizontal path corresponds to the condition dQα = 0 for all α and certainly it
represents an isentropic evolution of the system, but we can have an isentropic evolution
even if dQα 6= 0 if the heat fluxes divided by their temperatures have a zero sum. As a
final remark, note that in the exponential family we have the scalar product θ · h hence the
inverse temperature vector θ ∈ Ra should be seen as an element of the dual space of the
h ∈ Ra vector space and not as a point in a local coordinate chart. See [33] on this point.

6. Information Geometry of Gradient Systems

In this Section we consider a class of evolution problems described by a Fokker-Planck
type equation (FPE) on a regular connected domain X ⊂ Rn which is open and bounded.
We write FPE as in [34] (i, j = 1, . . . , n, repeated indices are summed)

∂t p = −∂i(Di p) + ∂i∂j(Dij p) = −∇ · S (47)

where Di(x) is the drift field, Dij(x) is the symmetric diffusion matrix, ∇· denotes diver-
gence and S is the probability current

Si(p) = Di p− ∂j(Dij p), i = 1, . . . , n.

To ensure that a solution p(x, t) is normalized to one for all t ≥ 0 we need to ask

0 =
d
dt

∫
X

pdx =
∫

X
∂t pdx = −

∫
X
∇ · Sdx = −

∫
∂X

S · νdσ

that is S · ν = 0 on ∂X. We restrict to the case that the diffusion matrix is diagonal
Dij = di(x)δij and positive definite ( di > 0) and therefore we rewrite S as

Si(p) = Di p− ∂i(di p) = p[Di − di∂i ln(pdi)]. (48)

Moreover we suppose that the drift field is of the form

Di(x) = di(x)∂iφ(x) (49)

where φ is a function defined on X. A stationary solution p∞ of FPE is obtained if we have
Si(p∞) = 0 for all i that is from (48)

di[∂i

(
φ− ln(p∞di)

)
] = 0. (50)

One can show ([34], Chapter 6) that in this setting the stationary solution to FPE (47) is
unique. We can rewrite the FPE using p∞ from (48) and (49) as follows

∂t p = −∂iSi = ∂i[pdi∂i(−φ + ln(pdi))]

= ∂i[pdi∂i(− ln(p∞di) + ln(pdi))] = ∂i[pdi∂i
(

ln
p

p∞

)
]

or in compact notation as

∂t p = ∇ ·
(

pD∇ ln
p

p∞

)
(51)
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where D is the diagonal diffusion matrix. The trend to the equilibrium can be studied
by computing the “distance in entropy” between a solution p of (47) and p∞. Setting
λ(p) = ln(p/p∞) we have from (51)

d
dt

D(p|p∞) =
d
dt

∫
X

p ln
p

p∞
dx =

∫
X
(∂t p)λ(p)dx =

∫
X
∇ · (pD∇λ)λdx

and using the relation λ∇ · X = ∇ · (λX)− X · ∇λ where X = pD∇λ we get

d
dt

D(p|p∞) =
∫

X
[∇ · (λpD∇λ)− pD∇λ · ∇λ]dx

=
∫

∂X
λpD∇λ · νdσ−

∫
X

pD∇λ · ∇λdx

= −
∫

X
pD∇ ln

p
p∞
· ∇ ln

p
p∞

dx < 0 (52)

because S · ν = pD∇λ · ν = 0 on ∂X. So the distance in entropy tends to zero independently
of the initial conditions. One can show that for the FPE we have (Csiszar-Kullback-Pinsker
inequality, see [35], Chapter 9)

D(p|p∞) ≥ 1
2
||p− p∞||L1 .

If we have a constant diffusion matrix Dij = dδij, d > 0, the above inequality (52) can be
rewritten as

d
dt

D(p|p∞) = −d
∫

X
p
(
∇ ln

p
p∞

)2dx = −d R(p|p∞) (53)

whereR(p|p∞) is called relative Fisher information (see [35], Chapter 9 or [36]).
A probability density p∞ satisfies a logarithmic Sobolev inequality (LSI) with positive

constant σ > 0 if
2σD(p|p∞) ≤ R(p|p∞) ∀p ∈ P(X).

If p∞ satisfies a Logarithmic Sobolev inequality we can prove the exponential speed of
convergence to equilibrium in entropy; indeed we have −R(p|p∞) ≤ 2σD(p|p∞) and by
substitution in (53) we obtain

d
dt

D(p|p∞) ≤ −2dσD(p|p∞) ⇒ D(p|p∞) ≤ D(p0|p∞)e−2dσt.

A sufficient condition for LSI is the following one (see [35], Chapter 9):
(LSI condition) Let V be a C2 function on X with

∫
X e−Vdx = 1 and Hess(V) ≥ σI for

some σ > 0. Then e−V satisfies LSI with positive constant σ.

6.1. A Dynamic Approximation Problem

This section is motivated by a problem in quantitative genetics which has been dealt
with in a series of papers [2–4]. See also Appendix A for a brief account. Here we introduce
a slightly simplified version of the original model problem which has the advantage of a
greater generality. Let us consider FPE (51) with a gradient drift field of the form (49) with
x = (x1, . . . , xn) and

di(x) = d(xi), φ(x) = θ · h(x), Dij = d(xi)δij, Di(x) = d(xi)∂i(θ · h(x)). (54)

In this case one can prove that the stationary solution satisfying (50) of FPE (51) has the
form of an exponential family of the form

p∞(x) = pθ = eθ·h(x)−ψ+k(x) where k(x) = −∑
i

ln d(xi). (55)
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We are free to set the value of the natural parameters and we set θ = θ1 where θ1 is a
feasible value.

The explicit solution of FPE (51) is difficult to study and one could be content with the
study of the time evolution of the average values of the observables hα that is the functions

t 7→ 〈hα〉p(t) =
∫

X
hα(x)p(x, t)dx

along the unknown solution of FPE. With this aim, it is natural to consider the following:
(Approximation problem): to find the time evolution of the natural parameters θ = θ(t)

such that the density
pθ(x, t) = eθ(t)·h(x)−ψ(θ(t))−k(x) (56)

has the same average values of the unknown solution of FPE i.e.,

〈hα〉p(t) = 〈hα〉pθ(t) . (57)

This strategy (called Dynamic Maximum Entropy method in [3]) seems reasonable
because the exponential density (55) is the maximum entropy distribution which satisfy
the constraints of the form 〈h〉 = c therefore it contains exactly the required amount of
information needed to satisfy the average values constraint. In the following we will
investigate the interplay between the following three densities: (1) the unknown solution p
of FPE, (2) the approximating exponential density pθ and (3) the exponential equilibrium
density p∞ = pθ1 .

Triangular Relation

To start with note that for (56) (dropping the explicit time dependence in θ and p)

(b) D(p|pθ) =
∫

X
p ln

p
pθ

dx = −H(p)− θ · 〈h〉p + ψ− 〈k〉p (58)

therefore the condition (57) can be rewritten as

∂θ D(p|pθ) = −〈h〉p + ∂θψ(θ) = 〈h〉θ − 〈h〉p = 0. (59)

Note that the equation ∂θψ(θ) = 〈h〉p has a unique solution θ = θ(t) for all t ≥ 0.
Next, let us compute the distance in entropy between the solution of FPE and its

stationary solution (55) with θ = θ1

(a) D(p|pθ1) = −H(p)− θ1 · 〈h〉p + ψ(θ1)− 〈k〉p (60)

and the distance between p and pθ (here θ = θ(t) is the value of the approximating solution
satisfying (59))

(c) D(pθ |pθ1) = (θ− θ1) · 〈h〉θ +ψ(θ1)−ψ(θ) = (θ− θ1) · ∂θψ(θ)+ψ(θ1)−ψ(θ) (61)

which coincides with the Bregman divergence (see [27]) of the convex function ψ

Dψ(θ1, θ) = ψ(θ1)− ψ(θ)− (θ1 − θ) · ∂θψ(θ) = D(pθ |pθ1).

Collecting the above results (58) (60) (61) and summing the right hand sides we obtain the
triangular relation (see [27], Theorem 1.2 or [22], Theorem 3.7)

D(p|pθ) + D(pθ |pθ1) = D(p|pθ1) + (θ − θ1) · (〈h〉θ − 〈h〉p). (62)

It follows that
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Proposition 2. The function θ(t) satisfies condition (57) of the Approximation problem if and only
if the following relation (called generalized Phytagorean theorem in [27]) holds (see Figure 1)

b + c = D(p|pθ) + D(pθ |pθ1) = D(p|pθ1) = a (63)

meaning that pθ(t) is the geodesic projection of p on the exponential family (flat submanifold) E
satisfying to

D(p|pθ) = min{D(p|pθ′) : pθ′ ∈ E}

that is pθ(t) is the best approximation of p on E with respect to the information gain.

p

pθ pθ1

a

c

b

E

Figure 1. Triangular relation between a = D(p|pθ1 ), b = D(p|pθ) and c = D(pθ |pθ1). E is the
exponential family submanifold.

Note that this relation is exact and does not need the hypothesis that θ be close to θ1.
Relation (63) characterizes θ(t) from a geometrical point of view.

We now take the time derivative of (63) with a double aim: on the one hand to find
a differential relation (ODE) for θ and on the other hand to find an upper bound for the
distance in entropy b = D(p|pθ) knowing that a = D(p|pθ1) tends to 0, possibly with
exponential speed. Note that taking the time derivative of the relation (63) b + c = a is
equivalent to taking the time derivative of the relation (59), since the two are equivalent
conditions on θ(t). We have from (52)

ȧ =
d
dt

D(p|pθ1) = −
∫

X
pD∇ ln

p
pθ1

· ∇ ln
p

pθ1

dx < 0. (64)

Moreover

ḃ =
d
dt

D(p|pθ) =
d
dt

∫
X

p ln
p
pθ

dx =
∫

X
[ ṗ ln

p
pθ

+ ṗ− p
pθ

ṗθ ]dx =
∫

X
[ ṗ ln

p
pθ
− p

pθ
ṗθ ]dx.

Since
ṗθ

pθ
=

d
dt

ln pθ = θ̇ · h− ∂θψ · θ̇ = θ̇ · (h− 〈h〉θ)

we have from (59) ∫
X

p
ṗθ

pθ
dx =

∫
X

θ̇(h− 〈h〉θ)dx = 0

and recalling that p is a solution of FPE (51) we obtain
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ḃ =
d
dt

D(p|pθ) =
∫

X
∇ ·

(
pD∇ ln

p
pθ1

)
ln

p
pθ

dx = −
∫

X
pD∇ ln

p
pθ1

· ∇ ln
p
pθ

dx (65)

since we can get rid of the boundary term as done above.
The side c = D(pθ |pθ1) does not contain the solution p of FPE therefore its time

derivative can be computed as, see (45)

ċ =
d
dt

D(pθ |pθ1) =
∫

X
ṗθ ln

pθ

pθ1

dx =
∫

X
pθ

d
dt
(θ · h− ψ(θ) + k) ln

pθ

pθ1

dx

=
∫

X
pθ θ̇
(
h− 〈h〉θ

)
[(θ − θ1) · h + ψ(θ1)− ψ(θ)]dx

=
〈

hαhβ − 〈hα〉〈hβ〉
〉

θ̇α(θ − θ1)β = covθ(hα, hβ)θ̇α(θ − θ1)β

= gαβ(θ)θ̇α(θ − θ1)β. (66)

On the other hand, ċ can also be computed from (64) and (65) as

ċ = ȧ− ḃ =
∫

X
pD∇ ln

p
pθ1

· ∇(ln p
pθ
− ln

p
pθ1

)dx

=
∫

X
pD∇ ln

p
pθ1

· ∇ ln
pθ1

pθ
dx

= −
∫

X
pD∇ ln

p
pθ1

· ∇ ln
pθ

pθ1

dx = V(p, θ, θ1). (67)

By equating (66) and (67) we obtain an ODE for the evolution of θ(t)

gαβ(θ)θ̇α(θ − θ1)β = V(p, θ, θ1)

which depends on the unknown solution p of FPE. In the paper [3] the following approxi-
mation is made: if we substitute p with pθ in V(p, θ, θ1) in (67) we get

V(pθ , θ, θ1) = −
∫

X
pθ D∇ ln

pθ

pθ1

· ∇ ln
pθ

pθ1

dx

= −
∫

X
pθ D∇(h · (θ − θ1)) · ∇(h · (θ − θ1))dx

= −
( ∫

X
pθdi∂ihα∂ihβdx

)
(θ − θ1)α(θ − θ1)β

= −〈Bαβ〉θ(θ − θ1)α(θ − θ1)β (68)

where we have introduced the the symmetric matrix

Bαβ = (D∇h · h)αβ = di∂ihα∂ihβ.

By comparing (66) and (68) we obtain a closed form ODE for θ since θ − θ1 6= 0

Aαβ θ̇α = gαβ(θ)θ̇α = 〈Bαβ〉θ(θ1 − θ)α. (69)

which is equation (5.2) in [3] or equation (12) in [4]. It can be given normal form since gαβ

is invertible. In these paper the above equation is solved numerically and it is shown that it
gives very good (sometimes surprisingly good) estimates of 〈h〉p using 〈h〉θ even if θ is far
from θ1.

Using the information geometry tools we have shown that the above triangular re-
lation (62) holds independently from the assumption that θ be close to θ1 (called quasi
equilibrium approximation in [2]). Moreover, is is evident from inspection of (65) that the
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substitution of p with pθ renders ḃ = 0 therefore ȧ = ċ. Note that if Dij = dδij and we
substitute p with pθ in the above formula (67) we get

ċ =
d
dt

D(pθ |pθ1) = −dR(pθ |pθ1).

Hence, if pθ1 satisfies a LSI, we have exponential speed of convergence of pθ to equilibrium
distribution pθ1 , which explains the good behavior of the approximation.

6.2. A Dynamic Approximation Problem with External Parameters

We now suppose that the drift field (54) Di(x) = d(xi)∂i(θ · h(x)) which defines the
FPE depends on external parameters because h = h(x, u). We consider the same dynamic
approximation problem of Section 6.1 with the extra degrees of freedoms given by the
external parameters u. The approximation condition (57) now reads

〈h〉p = 〈h〉pz

where z = (θ, u). We take the time derivative of the above relation to find and ODE for z.
We have

d
dt
〈h〉pz =

d
dt

∫
X

hpzdx = 〈∂uh〉zu̇ +
∫

X
hpz

d
dt

ln pzdx

= 〈∂uh〉z +
∫

X
hpz

d
dt
(θ · h− ψ + k)dx

= 〈∂uh〉zu̇ +
∫

X
pz[h(h− 〈h〉)θ̇ + θ · h(∂uh− 〈∂uh〉)u̇]dx

= 〈∂uh〉zu̇ + ω(ż) (70)

and

d
dt
〈h〉p =

d
dt

∫
X

hpdx = 〈∂uh〉pu̇ +
∫

X
h∂t pdx

= 〈∂uh〉pu̇ +
∫

X
h∇ · (pD∇ ln

p
pθ1

)dx

= 〈∂uh〉pu̇−
∫

X
pD∇ ln

p
pθ1

· ∇h dx

since the boundary term is vanishing. If we substitute p with pz in the last line we get

d
dt
〈h〉p = 〈∂uh〉pu̇−

∫
X

pD∇ ln
pθ

pθ1

· ∇h dx

= 〈∂uh〉zu̇− 〈B〉z(θ − θ1)

and therefore we have the ODE for z which is a direct generalization of (69)

ω(ż) = Aθ̇ +Mu̇ = 〈B〉z(θ1 − θ). (71)

Note that in this case we have considerably more freedom because we have a system of a
ODEs for the d = a + b variables z = (θ, u) therefore we can assign the evolution u(t) of
the external parameters to control the evolution θ(t).
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Appendix A. An Approximation Problem in Quantitative Genetics

We give a brief account of a classical problem in dynamics of quantitative traits whose
approach to equilibrium described by a Fokker-Planck equation has been investigated
in [2–4]. See also [37] for a gentle introduction to dynamics of populations. We consider a
polygenic trait located in n biallelic loci (A, a). If we consider a sufficiently large population,
the frequencies of genotype AA at locus i are described by n independent random variables
x = (x1, . . . , xn), xi ∈ [0, 1]. The dynamics of these allele frequencies can be described
by a diffusion process under the action of stochastic forces which represent the effect of
directional selection, dominance, mutation and random drift. This diffusion process is
described by a linear Fokker-Planck equation whose equilibrium distribution is known
from a long time ( see [38,39])

p(x) = eθ·h(x,u)−ψ(θ,u)+k(x), x = (x1, . . . , xn) ∈ X = [0, 1]n

Below we show that it can be seen as a generalized exponential distribution with natural
parameters θ = (θ1, θ2, θ3, θ4) and external parameters u = (v, w) ∈ R2n

+ . Setting d(xi) =
xi(1− xi), we introduce the following four observables:

h1(x, v) = −
n

∑
i=1

vid′(xi) = −
n

∑
i=1

vi(2xi − 1)

h1 is the directional selection and v = (v1, . . . , vn) are external parameters describing the
effects on loci;

h2(x, w) =
n

∑
i=1

wi2d(xi) = −
n

∑
i=1

wi2xi(1− xi)

h2 is the dominance, w = (w1, . . . , wn) are external parameters describing the effects on loci;

h3(x) =
n

∑
i=1

ln xi and h4(x) =
n

∑
i=1

ln(1− xi)

h3 describes forward and backward mutations and

k(x) = −
n

∑
i=1

ln xi(1− xi)

is the (non integrable) neutral distribution of allele frequencies in absence of selection and
mutation. Since the random variables xi are independent, the free energy can be factorized
using Fubini theorem

eψ =
∫

X
eθ·h+kdx =

n

∏
i=1

∫ 1

0
e−θ1vi(2xi−1)+θ2wi2xi(1−xi)xθ3−1

i (1− xi)
θ4−1dxi.

We have eψ < +∞ if θ3, θ4 > 0 so θ = 0 is a non feasible value. Moreover p(x)
is integrable but tends to +∞ for x tending to ∂X if 1 > θ3, θ4 > 0 while p = 0 on ∂X
if θ3, θ4 > 1. Since the observables h1 and h2 have linear dependence on the external
parameters v and w, this statistical model fails the injectivity condition 1. therefore it is not
identifiable. The Fokker-Planck equation can be given the form (51) where D = d(xi)δij =
xi(1− xi) is diagonal, but D = 0 on ∂X therefore the inequalities like (52) that govern
the trend to equilibrium are not strict ones due to the degeneracy of the diffusion matrix
D on ∂X. This is a major source of difficulties in the analysis of this model as reported
in [3]. A final remark is that the LSI sufficient condition Hess(V) ≥ σI becomes in this case
(V = θ · h− ψ + k)

∂i∂jV = ∂i∂j(θ · h− k) = 4θ2wjδij −
( θ4

(1− xj)2 −
θ3

x2
j

)
δij.



Entropy 2022, 24, 698 21 of 22

Therefore Hess(V) is not bounded below and the LSI condition fails. In the above cited
papers the dynamic approximation procedure exposed in Section 6 is introduced to compute
the evolution of the averages of the observables h without solving the FPE which is a
computationally hard problem.

In this paper we have shown that this model problem is partly amenable to the
controlled exponential family framework with some insight, however remain peculiar
difficulties that prevent from a complete analysis of the model. We refer the interested
reader to the specific literature, see [3].
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