
����������
�������

Citation: Stoo, R.; Gomez, F. The

Analysis of Mammalian Hearing

Systems Supports the Hypothesis

That Criticality Favors Neuronal

Information Representation but Not

Computation. Entropy 2022, 24, 540.

https://doi.org/10.3390/e24040540

Academic Editors: Roberto Serra,

Stuart A. Kauffman, Ilya Shmulevich

and Sui Huang

Received: 8 February 2022

Accepted: 10 April 2022

Published: 12 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

The Analysis of Mammalian Hearing Systems Supports the
Hypothesis That Criticality Favors Neuronal Information
Representation but Not Computation
Ruedi Stoop * and Florian Gomez

Institute of Neuroinformatics, University and ETH Zürich, Irchel Campus, Winterthurerstr. 190,
8057 Zürich, Switzerland; fgomez@ini.phys.ethz.ch
* Correspondence: ruedi@ini.phys.ethz.ch

Abstract: In the neighborhood of critical states, distinct materials exhibit the same physical behavior,
expressed by common simple laws among measurable observables, hence rendering a more detailed
analysis of the individual systems obsolete. It is a widespread view that critical states are fundamental
to neuroscience and directly favor computation. We argue here that from an evolutionary point of
view, critical points seem indeed to be a natural phenomenon. Using mammalian hearing as our
example, we show, however, explicitly that criticality does not describe the proper computational
process and thus is only indirectly related to the computation in neural systems.
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1. Introduction

Collective dynamics of neurons is at the base of the cognitive functions and behavior
of higher animals [1–5]. Salient expressions are continued spontaneous activities that
modulate neural responses to external stimuli and are often thought to reflect expectations
of future stimuli [2]. An observation that has received widespread interest is spontaneous
spatiotemporal patterns of neural activity, commonly termed ‘neural avalanches’, that have
no characteristic scale, i.e., the distributions of avalanche size and lifetime follow power
laws. This scale-free property has approximately been identified in diverse experimental
settings, e.g., in electrophysiological in vitro recordings [6–8], in in vivo recordings [9,10], in
electroencephalogram recordings [11,12] and in functional magnetic resonance imaging [13].
If many—generally relatively simple—interacting elements generate system properties that
exhibit power law distributions, this can be taken as a fingerprint of a neighboring critical
(transition) point of the collective behavior [14]. Consequently, it has been conjectured that
cortical neural systems might operate in the close vicinity of a critical point [15–19] and it
has been suggested that, using such a state, the brain might optimize functional properties
relevant for information processing (such as information transmission, information capacity
and response flexibility and computation) [20–23]. While the role of criticality in the brain
is still actively debated [4,23–26], we collect and interpret here recent insights from the
mammalian hearing system [23,27,28], a fundamental prototype of neuronal function in
biological systems.

2. Universality and Criticality in Physics

In physics, critical points are related to phase transitions. While phase transitions are
often easily captured, a precise definition of ‘phase’ is difficult. Whereas, near the phase
boundaries, we may clearly distinguish phases, the ‘territory’ occupied by a phase may
not always be as well defined as it is for gases and liquids. Therefore, we say that states
(near the phase transition point) that cannot be changed into each other without a phase
transition (a thermodynamic singularity) belong to distinct phases. The mathematical
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description of a statistical system is normally via a partition function Z = ∑ e−βH , where,
in physics, H represents a sort of ‘energy’ but, more generally, describes the statistical
weight of a configuration in the sum over all configurations that the system can realize.
If the system size is finite, the partition sum is a finite sum of positive terms. Each term
in this sum is analytic in T and H, so the sum itself is analytic. As Z is strictly positive,
also when taking the logarithm for arriving at the free energy or the entropy, a finite
system cannot exhibit any singularity and, therefore, no phase transition can occur for such
systems. A discontinuous phase transition occurs if the ordered phase loses its stability
‘catastrophically’, i.e., when a slight loss of order favors further loss of order, preventing
the emergence of an equilibrium state with reduced stability. In the case of continuous
phase transitions, in contrast, an equilibrium state with reduced stability of order can exist.
Even though fluctuations become very large near a continuous phase transition point, the
ordered phase persists until fluctuation becomes indefinitely large. The specific kind of
phase transition is therefore often described by the order of the involved singularity: first-
order transition for a singularity in the first derivative, of second order if the singularity is
from a higher-order derivative of the statistical description of the system.

The typical computational models of phase transitions in physics are spin systems [29].
Given external parameter temperature T and the rescaled temperature distance for the
temperature at criticality t = (T − Tc)/Tc, the susceptibility χ diverges as χ ∼| t |−γ,
magnetization as m ∼ (−t)β, for t < 0 (in the absence of an external magnetic field), and
the specific heat as CB ∼| t |−α. Note that the occurrence of critical points and the values
of the exponents depend on space dimension D in which the process takes place, but that
always the critical exponent relation α + 2β + γ = 2 holds (where α + 2β + γ >= 2 already
holds from fundamental thermodynamics (Rushbrooke inequality [14])). Notwithstanding
this element of ordering, a veritable zoo of critical exponent values has been obtained,
depending on the specific nature of the objects investigated.

Often, mean-field approaches provide a deeper insight into the nature and properties
of phase transitions. The basic idea is that, sufficiently away from phase transition points,
the equilibrium average of a function of several spins f (s0, s1, . . . si . . . , sn) may be com-
puted through separately averaging all the spins. If we may assume that fluctuations are not
large, i.e., 〈sk

i〉 ∼ 〈sk
k〉, we arrive at 〈 f (s0, s1, . . . , sn)〉 ' f (〈s0〉, 〈s1〉, . . . , 〈sn〉). This implies

that mean-field approaches can rarely assert anything definitive about phase transitions if
fluctuation effects are not inessential: neither the existence, nor, if a transition happens, its
order can be safely predicted, although common expectation is that, for d ≥ 4 (especially
d > 4), the simplest mean-field results are generally qualitatively correct, for fluids and
magnets; see [30].

For simplicity and didactical reasons, we have concentrated above on critical phe-
nomena of simple spin-like systems at equilibrium. The ‘portfolio’ of critical phenomena
extends, however, far beyond, by including cases of general nonequilibrium systems [31],
systems with glassy states [32], mixtures yielding critical lines [5], bifurcation [33,34],
percolation [35] systems, cellular automata [36] and more. While still based on the crit-
icality principle, the distinct phenomena follow their proper rules and have their own
critical exponents.

3. Application to Biology

The term ‘scaling’ embraces fundamentally simple observations that exhibit scale
invariance. Scaling of a function or form f (x) by a constant factor c leads to a proportional
function f (cx) = c f (x), which is possible for f (x) = axk, leading to c = c−k. Such
a simple idea is behind the measurement of objects by means of the concept of length.
Many biological processes, in contrast, follow ‘allometric scaling’ (small animals look
fundamentally different from large ones, since size (length) force and bone strain scale
differently). Thus, if we observe true scaling in nature, this points to fundamental laws or
processes that do not change across magnitudes of order. Moreover, if the behavior of a
substantial class of objects is dominated by these laws in a ‘universal’ manner, a critical
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point might be responsible for this, since, at a critical point, simple long-range properties
dominate over the local properties that may distinguish individual systems. Since power
laws are related to scaling properties contained in the physical world, they are ubiquitous
(but not necessarily generic). As a prominent case, in complex networks theory, a general
preferential attachment principle leads to power laws in the distribution of mesoscopic
network indicators, such as network degree, connectivity weight [37–40], avalanche size or
lifetime [41–43]. This principle expresses that, for the formation of the underlying networks,
attractive forces valid over decades of spatial extensions are responsible (in physics related
to, e.g., mass, charge) [44]. A second, additional, fundamental principle, active at the same
time, is that real-world connectivity requires space and that this space is, generally, limited.
This leads to power laws terminating in a hump (which, upon the network’s growth,
moves towards larger network degrees, until the process is stopped by node depletion, an
observation that is rather common in power-law-like distributions observed in nature [44]).

Given this situation, why should one be interested in criticality in biology at all?
In biology, we often see that sometimes very small variations in the building plan or
configuration of the microscopic system can have a huge effect, but also regions exist in
which the effects generated by such variations are minimal (see DNA as an example, or, as
a more theoretical example, recall how even iterations of two-dimensional maps such as
f ({x, y}) := {y− | xb− a |1/2 Sign(x), a− x} generate patterns of very similar appearance
for large parameter areas, until, upon a minimal parameter change, this abruptly ends, and
an area of changed dynamics with a changed complexity of prediction [45] is entered). This
fundamental feature, commonly described as ‘behavior’, has a strong correspondence with
the properties of cellular automata, where a simple variation of a rule may preserve or
dramatically change the observed behavior [36].

Critical states [14,46] are typically associated with continuous phase transitions at the
border between qualitatively distinct dynamical behavior (e.g., ordered vs. disordered
dynamics). Due to the diverging correlation lengths at critical states, systems near crit-
icality show high susceptibility to external stimuli, which has been seen as a favorable
property of natural systems [15–20]. A particularly important role that criticality may play
is that it offers a physics-proven perspective to such observations and phenomena, e.g., at
criticality [14], we observe classes sharing ‘universal’ properties, in which the individual
properties do not matter. A prominent example is the universal Feigenbaum scenario to
chaos, which is valid for all systems the dynamics of which have a quadratic leading to
nonlinearity. Chaotic—in contrast to ordered—dynamics emerge at the critical point of
a period-doubling renormalization and are characterized by the so-called Feigenbaum
constants [33,34]. Physics, moreover, also promises that such results can be extrapolated
away from the critical point [47], yielding also insights into the nature of the processes
that drive the behavior of the class. In the most condensed form, the universality classes
condense into so-called ‘critical exponents’ that describe the power laws from a continuous
phase transition ‘at criticality’.

The boundary between stably ordered vs. variable adaptive behavior, at which critical
points are expected to emerge, has been suggested as the natural ‘habitat’ of biological
evolution [48,49]. On the temporal microscopic scale, scale-free avalanches of neuronal
firing events have suggested that these networks might preferably operate at criticality,
particularly since theoretical studies of artificial neural networks and of cellular automata
have highlighted some potential computational benefits of such a state. Presently, the
general opinion states that, at a critical state, the brain might optimize functional properties
relevant for information processing (such as information transmission, information capacity
and response flexibility [20,22,25]), where the precise functional role of criticality has,
however, so far only been pinned down for the peripheral auditory system [23].
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3.1. A List of Prominent Conjectures

As an explanation for the occurrence of power law distributions, a number of hypothe-
ses have therefore been formulated:

Conjecture 1: (SOC) Nature generally self-organizes towards criticality; typical systems are
slowly driven at nonequilibrium with many degrees of freedom and strongly nonlinear
dynamics [50–53].
Conjecture 2: A classical model of self-sustained branching describes the avalanches of
events in biology, in size S and in lifetime T as p(S) ∼ S−τ and p(T) ∼ T−a, where τ = 3/2
and a = 2 [22].
Conjecture 3: More specifically, dynamical ‘edge of chaos’ and ‘avalanche’ criticality are
different sides of the same phenomenon and occur jointly [1].
Conjecture 4: Biological systems, artificial neural networks and cellular automata operate
at critical points because of computational benefits. This interpretation, probably motivated
by earlier works [54–56], is often referred to in neuroscience.

There are, however, still only a few system examples or theoretical arguments using
evolutionary or on directly accessible time-scales that support Conjecture 1. We will show,
using neuronal culture development as our demonstration field, that Conjecture 2, origi-
nating from the branching model of the border between exploding and dying activity [22]
(suggested to rule criticality in many biological and even in some physical systems such
as earthquakes [51,57]), might be a good model in some cases, but will otherwise be too
restrictive. Easy-to-construct, close-to-biology neural network examples that are at an
avalanche critical point, but clearly have a chaotic dynamical character, demonstrate that
Conjecture 3 is generally wrong [4]. We will finally exhibit, using results from the field of
mammalian hearing (a very ancient neural-like system), that many statements made in
neuroscience in the context of Conjecture 4 tend to be imprecise and to miss the true nature
of the phenomenon.

In applications of the concept of criticality to neuroscience and in particular to the
brain, it has been observed that the obtained experimental scaling exponents fail to fulfil
the expectation of a single ‘natural’ universality class (similarly to the physics case). In
early experimental studies [6], the scaling exponents associated with avalanche size and
lifetime distributions, p(S) ∼ S−τ and p(T) ∼ T−α, respectively, appeared to be τ ≈ 1.5
and α ≈ 2.0. These values match the theoretically expected critical exponents of the mean-
field critical branching process [58,59], suggesting that biological networks operate at a
critical point characterized by a marginal propagation of activity, separating two phases
of quickly decaying and exploding runaway activity [6]. Following studies, however,
soon revealed scaling exponents of a considerable variation (e.g., τ ∈ (1.5, 2.6) [6,16,60,61]).
Largely, the origins of the deviations were seen as artefacts, induced by deficiencies of either
the experimental measurements (e.g., spatial undersampling of neural activity [19,62]) or
of the computational approaches involved in the avalanche extraction procedures [6,19].
Results from a recent study of dissociated hippocampal neurons co-cultured with glia
cells (prepared from newborn P0 Sprague Dawley rats) that, by using optical imaging,
largely eliminated the problem of spatial subsampling, indicated, however, the existence
of two distinct criticality regimes, with different sets of critical exponents [63]. While
one of the critical regimes indeed matched the signatures of the aforementioned critical
branching process, the other revealed the presence of substantially larger critical exponents
(τ ≈ 2.2, α ≈ 3.3). Probably following the credo of a single critical point, the observation
of the second critical regime was interpreted as an artefact of a specific pharmacological
manipulation (by 5M4Hfolate), which left open whether importance should be attributed
to the second critical regime at all. A more recent study with neural cultures on a multi-
electrode (‘MEA’) chip [5] showed, however, in full rigor (satisfaction of the crackling noise
relationship [64,65] and scaling function collapse), that, in addition to a more standard
critical state of exponents τ ≈ 1.65, a ≈ 2.0, a critical regime with power law exponents
τ ≈ 2.2, a ≈ 2.8 exists, at an earlier stage of the development. Corresponding modeling
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verified these states and suggested, moreover, the existence of a critical line along which
the culture’s states meander during their development [5].

It has similarly widely been assumed that criticality in biology would be strong
enough to unify ‘avalanche’ and ‘dynamical edge of chaos’ criticality [1]. However, a recent
study [4] demonstrated that it is quite possible to observe avalanche criticality without any
evidence of edge of chaos criticality, under biologically reasonable model assumptions. In
that study, based on a recurrent neural network of more realistic neurons compared to what
had been used previously, it was shown that the largest Lyapunov exponent continued
to be positive as the network was tuned from subcritical to critical and to supercritical
avalanche behavior.

3.2. Cochlear Prototype of Neural Circuits

The sensory elements of the animal nervous system work in a remarkably uniform
way in the following sense. Neurons, as well as the evolutionary older hair-type sensor
cells, pick up a specific range of external signals (often connected to frequency properties),
amplify the latter in a strongly nonlinear manner and transmit the amplified signal further
down the sensory pathway. Stimulations can be of variable type: chemical, electrical
(neurons) or physical (hair cells). Their preference for specific signals (embracing generally
a certain bandwidth thereof) is encoded in their building plan (e.g., sensor size, architecture,
physical neuronal membrane or hair properties, etc.); their readiness towards picking up
signals is commonly described by the term ‘excitability’. This term measures, in a sense,
how far the sensor’s state is from a state where the sensor’s amplification process would
generate, even in the absence of an external stimulation, a (in most cases, undesired) signal.
In addition to depending on internal factors, excitability can generally be influenced from
outside (e.g., as a widely applied experimental technique, by chemicals).

‘Computation’ is often used in the biological context in a sloppy manner, but can
rigorously be defined as an information destruction process. A paradigm for this view is
provided by the logical ‘OR gate’, where the inputs are 0/1 pairs and the output is a single
0/1 signal. If we obtain 1 as the result, we no longer know where the result came from, i.e.,
previously available information was destroyed. By stripping information from a potential
connotation of ‘usefulness’, a general notion of computation can therefore be made precise
by measuring the amount of information destroyed in this process [45,66]. For the moment,
it suffices to retain that, in this view, sensory elements already perform computation, by the
selection of specific information from a range of available information. In the following, we
will consider under what conditions systems of sensory elements maximize computation.

The mammalian hearing system, an evolutionary, very ancient prototype of neural-like
systems, will be our simple, yet realistic, paradigm for understanding how criticality is
involved in neural and neural-like biological computation. Across the mammals, apart
from the distinct frequency ranges covered, the construction of the hearing system is
exceptionally uniform [44]. It can be argued that the mammalian cochlea is the result of
evolutionary optimization driven by the need of a variable-frequency, wide-range, resource-
sparing sensor, and that this may have been one of the elements responsible for the success
of this class [44]. The working principle of the mammalian cochlea is as follows: arial sound
pressure waves arriving from the outer ear at the tympanial membrane are converted
by means of the ossicles into waves on the basilar membrane embedded into a shallow
fluid canal. Attached to the basilar membrane are outer hair cells (‘OHC’): frequency-
specific amplifiers of wave components corresponding best to their preferred frequency
FC. Waves first cross membrane areas where outer hair cells respond to high frequencies
in the wave, from which the wave proceeds towards basilar membrane areas with OHCs
that amplify lower-frequency wave components. At its ‘preferred’ area on the basilar
membrane, the strongly amplified wave component is recorded by the so-called inner hair
cells and the result is sent up the auditory pathway. After leaving this area, the amplified
wave components are attenuated through viscous friction of the cochlear fluid, and the
remainder of the wave propagates further down the cochlear duct. Additionally, the hearing
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organ is embedded in external circuitry, allowing for efferent nerve stimulations (from the
brain down to the sensor, labeled in Figure 1 by ‘EMOCS’). The effect of such inhibitory
stimulations is reduced amplification by the targeted OHCs. The implementation of the
biologically correct OHC amplification profiles (in frequency and stimulation strength, and
in external efferent stimulation dependence) is one central issue in cochlear modeling.

In a biophysically mesoscopic manner [67,68], the mammalian cochlea can be modeled
by a directed sequence of amplifier circuits (‘sections’), each one optimized around a partic-
ular frequency (center frequency ‘CF’) but located below a Hopf bifurcation. A suitably
chosen number of sections guarantees, by means of overlapping frequency bandwidths
of sections, a continuous frequency amplification profile. The level of excitability of each
amplifier is cast in terms of a one-dimensional section parameter µ describing how far the
circuit’s resting state from the Hopf bifurcation point is (above bifurcation, self-generated
oscillations would emerge [69]). Models of attached inner hair cells and of the auditory
nerve complete the modeling of the peripheral hearing system [70–73]. We emphasize that,
as a consequence of the amplifier’s nonlinearity, the superposition picture (fundamental
for the ‘piano picture’ of the cochlea) does not hold.

More specifically, the key for understanding hearing is the outer hair cells’ ’small-
signal amplifier’ property. First demonstrated by Wiesenfeld et al. [74,75], systems close
below a (period-doubling) bifurcation act as ideal small-signal amplifiers: signals of small
amplitudes with a specific ‘critical’ (better, ‘center’ frequency CF) are strongly amplified,
whereas strong signals or signals with from CF strongly deviating frequencies are not
amplified. This phenomenon applies to bifurcations in general, and to systems at a Hopf
bifurcation in particular; see Figures 2 and 3. From early publications [76,77], the expecta-
tion might have emerged that the mammalian hearing system might be fully described in
terms of the small-signal amplifier property. However, only the precise tuning of the Hopf
amplifiers along the cochlea together with the properties of the cochlear fluid generate the
correct shallow surface waves [28,68]; see Figure 4. Moreover, for the understanding of
how mammalian hearing and listening works, the embedding of the hearing sensor into
the cortical circuitry (see Figure 1 and its schematic representation in Figure 5) plays an
essential role, as we will demonstrate in the sequel.
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FIG. 1. Cochlea’s embedding into mammalian neural cir-
cuitry [75, 76]. Upper panel: Brainstem section (CN: cochlear
nucleus, EMOC: medial olivocochlear efferents, SOC: superior
olivary complex, FV: fourth ventricle). Lower panel: Section
(dashed green line) of organ of Corti. EMOC stimulations
tune the cochlea’s sensitivity (see section ’Effects of compu-
tation’).
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Figure 1. Cochlea’s embedding into mammalian neural circuitry [78,79]. Upper panel: Brainstem
section (CN: cochlear nucleus, EMOC: medial olivocochlear efferents, SOC: superior olivary complex,
FV: fourth ventricle). Lower panel: Section (dashed green line) of organ of Corti. EMOC stimulations
tune the cochlea’s sensitivity (see section ‘Effects of computation’).
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to observations in chinchilla (32.5 dB, or slightly higher, between 20 and 90 dB SPL curves [80]).
(c) Tuning curves for fixed output levels, (d) Phase for different input levels relative to −30 dB.
(Cochlea discretization covering 14.08–0.44 kHz (20 sections); output at section 5 (CF = 6.79 kHz) for
(a–c) and section 3 (CF = 9.78 kHz) for (d). Small numbers denote input levels in dB).
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Figure 5. (a) Biological vs. (b) artificial implementation of the hearing–listening circuit. Listening is
a dedicated activity that represents a particular computational effort, involving ‘EMOCS’ (efferent
medial olivocochlear stimulations), cf. Ref. [81].

As has already been mentioned, an important consequence of the strongly nonlinear
nature of the amplifiers is that the superposition principle valid for linear amplifiers does
not hold. Interaction terms are formed between the amplifiers that can be measured on the
basilar membrane and in the simulations; see Figure 6. These combination oscillations—if
above the hearing threshold perceived as combination tones (‘CT’)—emerge for two pure
tones at frequencies f 2 > f1 at difference frequencies ( f2 − f1), (2 f1 − f2), (3 f2 − 2 f1),
etc., and, less prominently, at sum frequencies ( f2 + f1), (2 f2 + f1), with approximatively
exponentially decaying amplitudes [28]. The general corresponding condition on positive
integers is k′ + k′′ − k′′′ = l, where l corresponds to the specific frequency considered
(ωl = lω0).
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Figure 6. From two pure input tones of f1 = 2200 and f2 = 2400 Hz, each at−74 dB sound level (a,b),
additional ‘combination’ tones are generated (cf. (c–f)), due to the nonlinearities of the amplifiers at
differences of the input frequencies, of essentially exponentially decaying amplitudes.

The generation of these additional frequencies can be seen as a branching process
and can be cast in a network scheme, where sections generating ‘artificial’ tones in the
cochlea not contained in the input signal are at the endpoints of arrows; see Figure 7. In
this network, nodes below the physiological hearing threshold (‘unactivated’ nodes) have
been eliminated [23].
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Figure 7. Activation networks from (a) two pure tones (3/8, 1/2 kHz), (b) two complex tones (2,
3.35 kHz, 5 harmonics each).
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The ‘activity’ at cochlea sections j = 1, . . ., 29 can be defined as

A(j) =
1
N

N

∑
i

Θ( fi, j), (1)

where fi denotes the input frequency (or frequencies) of stimulation experiment i, N is
the total number of trials, and Θ( fi, j) is 1 if the output at section j exceeds the hearing
threshold and 0 otherwise. For pure-tone input uniformly sampled from a (non-logarithmic)
frequency interval, the average activity A follows a power law of exponent one (each section
is activated by a proportion of frequencies corresponding to the ‘bandwidth’ of the section).
Two- or three-tone inputs, however, lead to additional CT-generated activity (see Figure 8
for the results over all cochlea sections on log-log scale for different µ settings, for fixed
or random input strengths). In all cases, we observe power laws A ∝ f β with exponents
0 < β < 1, where the results from two-tone inputs essentially coincide with those from
three-tone inputs.
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A

Figure 8. Cochlea activity A using uniformly chosen amplifier parameter values µ (range 0.1–0.3)
and N = 10,000 pairs of random base frequency complex tones, from (a) sound levels random
from the interval (−80,−40) dB (rms) per tone, (b) from −60 dB fixed sound levels (dashed power
law guidelines, exponents β from maximum likelihood estimation: (a) β = 0.6, 0.44, 0.3, 0.2, 0.13,
(b) β = 0.64, 0.43, 0.29, 0.2, 0.12 (bottom to top lines)). Insets: Three-tone results.

3.3. Effects of Computation

Understanding biological hearing necessitates the inclusion of the effect by EMOCS [78,79].
We first demonstrate that our modeling reliably reflects the biological effects by EMOCS
(see Figure 9) and highlight in Figure 10 that, at the level of the whole sensory organ,
EMOCS-changed individual amplifier behavior has striking effects.

At −60 dB input level (the typical strength of human speech) and under the absence
of EMOCS, the size s distribution of the number of network links triggered by two complex
tones of random amplitude and frequency follows the typical critical branching network
paradigm with exponent a = 3/2; see Figure 11a. Stronger input (−50 dB) would yield
distributions that are typical for supercritical states. Under the influence of EMOCS, the
previous power law changes into a subcritical distribution. These findings indicate that the
predisposition of the hearing system towards receiving unbiased information at the most
relevant working condition is at criticality, whereas dedicated listening implemented by
EMOCS will naturally lead to a subcritical distribution.
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Figure 9. EMOCS effects: (a) Gain isointensity curves at section 5 ( fch = 1.42 kHz) without (solid
lines) and with (dashed lines) EMOC input. From flat tuning (µ = −0.1 for all sections), EMOCS is
implemented by shifting µ5 to −1.0 (−80 and −100 dB lines collapse). (b) Corresponding phase shift
at section 5 (phase delays for frequencies below CF, phase leads above CF). (c) Comparison to animal
data: 16 and 19 kHz pure-tone EMOCS (left and right, respectively) implemented by a shift from a
flat tuned cochlea from µ2 = −0.05 to µ2 = −0.5 lead to BM level shifts at section 2 ( fch = 16.99 kHz)
from open circles to full circles. Insets: Corresponding experimental animal data [82].
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five harmonics.
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Figure 11. (a) Network size distributions (40,000 stimulations with two complex tones, random
amplitudes) for flat tuning (blue), and after detuning two frequency bands (sections 15–16, 19–21)
from µ = −0.25 to µ = −1.0 (red crosses), and µ = −2.0 (red stars). (b) In the thermodynamic
formalism, the observability O of an invariant measure ε decays with time t as O(ε, t) ∼ et(ε−S(ε)) (red
and blue arrows). States represented by entropy values on the diagonal ε = S(ε) do not experience any
temporal decay. Blue: Entropy function S(ε) of systems with power law distribution characteristics.
Red: Entropy function associated with non-power-law distributions, as the result of focusing on a
particular measure (green circle), where horizontal green arrows symbolize the effect by EMOCS
(adapted from Ref. [23]).

In the following, we will show that the predisposition towards the ‘preferred working
conditions’ does not naturally imply ‘optimal computation’. Computation is related to
the partial destruction of information of a certain degree of complexity. Earlier [45], we
posited that complexity is in its nature a complexity of prediction, i.e., is related to a
difficulty of the prediction of a future value based on past observations. The ‘richer’
the information produced by the process, the more difficult the prediction process is: it
is the appearance of the unexpected that is the hallmark of complexity. For measuring
the complexity of a dynamical system, the appropriately scaled integral of the entropy
function should therefore be used; the application of this measure to distinct classes of
dynamical behavior has revealed its great potential [45]. In particular, regular processes
have zero complexity, as well as entirely random ones. Highest complexity is therefore
obtained from dynamics based on a continuum of ‘observable measures’, expressed by
the power law distribution (the blue curves in Figure 11). How is now computation
related to this complexity? By computation, the complexity of prediction is reduced, where
the amount of this reduction provides a measure of the performed computation. In the
present case of hearing, the ‘natural power law ground state’ without EMOCS indicates the
absence of computation, whereas the states under EMOCS (Figures 10 and 11) express that
computation has taken place.

3.4. Real-World Example of EMOCS-Guided Computation

In the final section, we corroborate that EMOCS processes are naturally associated
with real-world computation, by showing the crucial role that EMOCS can play in the
separation (or the ‘identification’) of sounds from mixtures of sounds [27]; see Figure 12.

To achieve the separation, the listening process recalls a previously acquired subset of
excited amplifiers characteristic for the signal to extract, and disposes the parts of the spec-
trum that are not associated with the desired signal. This process is implemented by means
of EMOCS: nerves leading from the brain to the cochlea via medial olivocochlear stimula-
tion suppress the efficacy of sections unrelated to desired signals by, technically speaking,
pushing corresponding Hopf amplifiers further away from the point of bifurcation (for the
correctness of this translation from biology to the model, recall Figure 9).
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Figure 12. Sounds of a cornett and a flute at the same fundamental frequency f0 (left), superimposed
(right), static case.

In Figure 13, we report the result of our implementation of the listening process, where
panel (a) shows how the tuning of the amplifiers changes, as the target object (the musical
organ) increases its fundamental frequency in time. To assess how close we arrive to the
target, we evaluate our tuning error measure TE that has the expression

TE(x, y) =
|| norm.(∑i ACF( fi(x + y)))− NACF(x) ||2
|| norm.(∑i ACF( fi(x + y)))− NACF(y) ||2

,

where fi denotes the output at section i of the cochlea and the summations extend over the
N sections. NACF is the full normalized summary autocorrelation function accounting
for all sound characteristics (such as, e.g., timbre); to measure how strongly a mixture
of two input sounds x, y, is biased towards component x, we use the Euclidean distance
between the mixture’s NACF (‘NSACF’) and the target signal x’s NACF, divided by the
Euclidean distance between the mixture’s NSACF and the undesired signal y’s NACF. TE
values are between 0 and ∞, where TE = 0 indicates a perfect focus and a larger TE a less
successful target focus. If one source dominates the mixture, then TE values below unity
may emerge even before tuning. Panel (b) exhibits the implemented processes’ efficacy also
for time-varying target signals. For fixed target ground signals, panel (c) shows how close
we come in terms of NACF (red) to the target signals (blue).

More information can be extracted from the static case at the level of the signals’
spectra, evaluated at variable signal strengths, demonstrating how the combination tones
among the two signals are suppressed; see Figure 14a. Moreover, upon variation of the
input amplitudes of the two signals, the tuning errors remain small; see Figure 14b.
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Figure 13. Separation of sounds, dynamic case, where the target instrument changes the height of
the generated tone: (a) Tuning patterns, dynamical case. Colors indicate the Hopf parameter values
of the sections. Left: Cornett vs. flute (disturber). Right: Flute vs. cornett (disturber). (b) TE for the
two target signals of (a). Black: flat tuning. Red: µ-tuning. Full: cornett target, dashed: flute target.
(c) NSACF, NACF for the two target signals of (a,b) at a chosen target ground frequency. Black: flat
tuning. Red: µ-tuning. Blue: target signal. Targets at 392 Hz, disturbers at 2216 Hz. From Ref. [27].
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Figure 14. TE improvement by µ-tuning, static case. (a) Frequency spectrum at section 8
(CF = 1964 Hz). Blue: Flat tuning (−80 dB, target cornett f0 = 392 Hz, disturber flute f = 2216 Hz).
Cross-combination tones (CT, two explicitly labeled) between the flute’s fundamental f and higher
harmonics of the cornett are clearly visible. Red: Optimized tuning. f (flute) and cross-combination
frequencies are suppressed, leaving a harmonic series of the target (small arrows). (b) Averaged TE
over 13 different fundamental target frequencies (steps of 1 semitone) demonstrates input amplitude
independence. Blue lines: flat tuning. Red lines: optimized µ-tuning. Left panel: (full lines) target
sound cornett (277 to 554 Hz), disturbing sound flute (at 277 Hz); (dashed lines) same target but flute
at 2216 Hz. Right panel: same experiment with target and disturber interchanged. TE improvements:
arrows in (b). From Ref. [27].

3.5. Conclusions

We have taken mammalian hearing, an evolutionary ancestor of neural systems, as
our example to clarify the relation between criticality and computation. Sounds arriving at
the mammalian hearing sensor generate, as a consequence of the amplifier’s nonlinearity,
networks of activations, quite similar to how stimulations of the nervous system propagate
through the neural networks following stimulation-specific pathways. We showed that
critical states of the hearing system (expressed by power law activation distributions on the
network) correspond to unbiased information uptake (cf. Figure 8). In audition, this state
roughly represents what we describe as ‘hearing’. The process of ‘listening’, in contrast,
corresponds to a computational state, expressed by the ‘destruction’ of parts of the available
information complexity (cf. Figure 10). In this state, the corresponding distributions no
longer have the power law form required by criticality (cf. Figure 11). In the final section,
we gave an explicit demonstration that the computational process guided by EMOCS
enables mammals to identify auditory objects within a cocktail-party environment. The
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result of the computation is reduced information complexity that the nervous system then
uses in further processing steps.

This interpretation has a psychoacoustic correspondence. Asking what combinations
of two input sounds are most appreciated by humans (and, likely, more generally by mam-
mals), we found that tone combinations that generate the smallest (weighted) activation
networks are judged to be the most pleasant ones. This finding supports that the human
mind prefers simple information (as provided by EMOCS-tuned activation networks) over
complex information (exemplified by untuned critical activation networks). Indeed, from
the evolutionary perspective, it is plausible that living systems should prefer simple signals:
signals that are easily perceived, processed and interpreted.
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