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Abstract: Only the smell perception rule is considered in the butterfly optimization algorithm (BOA),
which is prone to falling into a local optimum. Compared with the original BOA, an extra operator,
i.e., color perception rule, is incorporated into the proposed hybrid-flash butterfly optimization
algorithm (HFBOA), which makes it more in line with the actual foraging characteristics of butterflies
in nature. Besides, updating the strategy of the control parameters by the logistic mapping is used
in the HFBOA for enhancing the global optimal ability. The performance of the proposed method
was verified by twelve benchmark functions, where the comparison experiment results show that
the HFBOA converges quicker and has better stability for numerical optimization problems, which
are compared with six state-of-the-art optimization methods. Additionally, the proposed HFBOA
is successfully applied to six engineering constrained optimization problems (i.e., tubular column
design, tension/compression spring design, cantilever beam design, etc.). The simulation results
reveal that the proposed approach demonstrates superior performance in solving complex real-world
engineering constrained tasks.

Keywords: hybrid-flash butterfly optimization algorithm; firefly algorithm; logistic mapping; optimization;
engineering constrained issues

1. Introduction

Many meta-heuristic algorithms have been proposed and successfully used for solving
numerical optimization problems [1], engineering design problems [2], future selection [3],
etc. For the swarm intelligence algorithm, the classical method is particle swarm opti-
mization (PSO) algorithm [4], which is widely used in various fields [5]. There are many
novel approaches proposed in recent years, which are inspired by the group behavior of
the animals in nature, such as ants, bees, fireflies, wolves, and so on. These swarm algo-
rithms are named like ant colony optimization (ACO) [6], bee colony optimization (BCO)
algorithm [7], firefly algorithm (FA) [8], grey wolf optimizer (GWO) [9], etc. Moreover,
the classical evolution algorithms, such as genetic algorithm (GA) [10] and differential
evolution (DE) [11], are well-known in the evolution computation field.

A recent introduction in the swarm intelligence field is butterfly optimization algo-
rithm (BOA) [12], which imitates the foraging and mating behavior of the butterfly in
nature. To improve the global ability of the basic BOA, there are various improved ver-
sions of BOA that have been developed, which can be divided into the improvement
of control parameters [13,14] and hybrid algorithm [15] from the improved strategies in
brief. Additionally, the major applications of BOA and its variants are, including but not
limited to, the node localization in wireless sensor networks [16], optimization of wavelet
neural networks [17], and the feature selection task [18]. For more details, Zhang et al. [15]
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proposed a hybrid algorithm for solving the high-dimensional numerical optimization
tasks, named HPSOBOA, which is combined BOA with PSO, and cubic mapping is used to
adjust the parameter a. Moreover, EL-Hasnony et al. [19] improved this method to solve the
feature selection task, which includes a case dataset of COVID-19. In addition, An et al. [20]
used the HPSOBOA method to solve the inverse kinematic problem. However, no available
information in the above studies was presented for modifying the BOA’s mathematical
model to match the actual foraging behavior of butterflies.

A novel hybrid-flash butterfly optimization algorithm (HFBOA) is proposed for solv-
ing the constrained engineering problems, aiming to improve the optimization accuracy
of the original BOA. Only the smell perception rule in foraging and mating is considered,
which leads to the poor optimal precision of the BOA. Relevant ecological studies [21] have
shown that the vision of butterflies plays a critical role in searching for food (collecting
pollen). In the HFBOA, smell and vision are taken into consideration for global and local
search, respectively, which makes it more in line with the actual butterfly foraging char-
acteristics. Furthermore, updating the control parameters by logistic mapping is used to
enhance the global optimization capability of the HFBOA. According to the no free lunch
(NFL) theory [22], a new optimization algorithm should be used to deal with a certain type
of problem.

To verify the performance of the proposed algorithm, 12 benchmark test functions are
fairly selected from the CEC benchmark functions in this paper. The performance of the
HFBOA was compared with six state-of-the-art meta-heuristic methods. The comparison
results show that the proposed algorithm is not only superior to the original BOA but also
its variants, such as LBOA [16], IBOA [13], MBOA [14], HPSOBOA [15], and other meta-
heuristic algorithms, which indicates the effectiveness of HFBOA. Furthermore, HFBOA
has been successfully used to solve six constrained engineering problems, which are tubular
column design, three bar truss design, tension/compression spring design, welded beam
design, cantilever beam design, and speed reducer design optimization problems. In
general, the main highlights and contributions of the proposed method are summarized as
follows: (i) A novel hybrid-flash butterfly optimization algorithm (HFBOA) is proposed.
(ii) HFBOA has an overall competitive performance according to the statistical results and
convergence curves. (iii) We also used the proposed approach to solve six constrained
engineering problems, which are compared with many advanced methods.

The rest of this paper is organized as follows: Section 2 presents the mathematical
model of the original BOA. In Section 3, a novel hybrid-flash butterfly optimization al-
gorithm is proposed, and chaos improvement strategies and time complexity of HFBOA
are also presented. Section 4 illustrates comparative analysis for solving the numerical
optimization and engineering constrained optimization problems, the experimental results
are also performed in detail. Section 5 presents the discussion of the proposed method for
solving the numerical and engineering optimization issues. Finally, the conclusions and
future studies are summarized in Section 6.

2. Model of the Basic BOA

The BOA [12] is based on the foraging and mating behavior of the butterfly in nature.
Three phases (fragrance, global search, local search) are presented in the basic BOA. The
fragrance is given by:

fi = cIa (1)

where fi is the perceived magnitude of fragrance, c represents the sensory modality, I
is the stimulus intensity, and a represents the power exponent based on the degree of
fragrance absorption.

The sensory modality c in the optimal search phase of the basic BOA is given by:

ct+1 = ct +
0.025

ct
· Tmax (2)
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where Tmax is the maximum number of evolutionary iterations, and the initial value of
parameter c is set to 0.01. According to Equation (2), the value range of the parameter c is
in (0, 1, 0.3).

A switch parameter p in (0, 1) is used to choose the pase between global search and
local search. The global search movement of the butterfly is given by:

xt+1
i = xt

i + (r2 × gbest − xi)× fi (3)

where xt
i denotes the solution vector xi of the ith butterfly in the t iteration and r is a

random number in [0, 1]. Here, gbest is the current best solution found among all each stage
solutions. The local search phase is given by:

xt+1
i = xt

i + (r2 × xk
i − xt

j)× fi (4)

where xt
j and xk

i are the j-th and k-th butterflies chosen randomly from the solution space. If

xt
j and xk

i belong to the same iteration, it means that the butterfly becomes a local random
walk. If not, this kind of random movement will diversify the solution.

3. Hybrid-Flash Butterfly Optimization Algorithm

We have taken the search strategy of the firefly algorithm (FA) [8] into consideration,
and used vision of butterflies for the local optimization in HFBOA. Each stage of HFBOA
is presented, including the initialization phase, optimization phase, global search, local
search, and switch parameter setting.

3.1. Initialization Phase

The population initialization positions of the butterflies are set by the random function,
here, the general formula of the initial position is as follows:

Xi,j = Xlb,j + rand× (Xub,j − Xlb,j) (5)

where xi,j is the i-th solution for the j-th dimension, i ∈ [1, 2, 3, · · · , n], j ∈ [1, 2, 3, · · · , Dim].
xub,j and xlb,j represent the upper and lower bounds of the problem, respectively, and rand
is a uniform random number in [0, 1]. This strategy is usually used to initialize the position
of the population of the swarm intelligence algorithms.

3.2. Optimization Phase

Particularly, Ft
i represents the fragrance of the i-th butterfly in the t-th iteration, it can

be calculated as:
Ft+1

i = c · (Ft
i )

a (6)

where c is the sensory modality, it can be set to a random number in (0, 1) during the search
stage of the HFBOA. Due to the interval (0, 1) of parameter c, we use the chaotic strategy
to update its value with a one-dimensional chaotic mapping, named logistic mapping. In
the original BOA, the power exponent a is set to 0.1, thus, we also take it in the proposed
method in the following experiments.

3.3. Global Search

We take the parameter r into consideration so that α is used to replace it. Hence, the
mathematical model of the butterflies’ global search movements of the proposed approach
can be formulated as follows:

Xt+1
i = Xt

i + (α2 × gbest − Xi)× Ft
i (7)

where Xt
i represents the solution vector Xi of the i-th butterfly in the t-th iteration and α is

a random number in (0, 1). gbest is the current best solution found among all the solutions
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in the current stage. To some extent, parameter α can be regarded as a scaling factor, which
is utilized to adjust the distance between the i-th butterfly and the best solution.

3.4. Local Search

Two phases of the HFBOA should be switched when the individuals search the optimal
value. We take vision of butterfly into the local search phase of the HFBOA. Thus, this
search stage of butterfly can be formulated as follows:

Xt+1
i = Xt

i + β× (Xk
i − Xt

j) + α · ε (8)

where Xt
j and Xk

i are the j-th and k-th agents, which are chosen randomly from the solution
space. Further, ε is a random value such that ε ∈ [−0.5, 0.5]. α is a random number in [0, 1].
The attractiveness β can be formulated as:

β = β0 · e−Rij (9)

where β0 is the attractiveness when R = 0. The initial value of parameter β is usually set
to 1, that is, β0 = 1. Rij represents the distance between Xi and Xj, which calculates by the
2-norm. The formulation of Rij is:

Rij =|| Xi − Xj ||2 (10)

According to the four phase analysis, the optimization process of the proposed HFBOA
can be shown briefly in Figure 1.

Figure 1. Optimization process of the proposed HFBOA in brief.

3.5. Switch Parameter sp

The switch parameter sp is set to convert the normal global search and the intensive
local search. In each iteration, it randomly generates a number in [0, 1], which is compared
with the switch probability sp to decide whether to conduct a global search and local search.
While the value of sp is set to 0; that is, only the local search stage is performed. On the
contrary, only the global search phase is carried out with the value sp taken to 1.

3.6. Chaotic Map and Parameter α

Chaos is a relatively common phenomenon in nonlinear systems. Logistic map-
ping [23] is one classical mapping of the one-dimensional maps, it is defined as:

zn+1 = µ · zn · (1− zn) (11)

where µ denotes the chaotic factor, µ ∈ (0, 4]. The chaotic system is characterized by
initial value sensitivity. Therefore, we analyze the speciality of the logistic mapping, where
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Figure 2 shows chaotic bifurcation and the Lyapunov exponent of the chaos. When µ = 4
and z(0) = 0.35, the chaotic sequence and Lyapunov exponent of logistic mapping are in
(0, 1) and 0.6839, respectively.
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Figure 2. Bifurcation and Lyapunov exponent of the logistic mapping. (a) Bifurcation of Logistic
mapping. (b) Lyapunov exponent of logistic mapping.

As we known, as long as the initial value is not 0.25, 0.5, and 0.75, the iterative value
will not produce a fixed point of the logistic mapping strategy. Thus, this chaotic mapping
is used to update the parameter c of the proposed HFBOA, where µ = 4 and c0 is set to 0.35
in the following experiments.

The parameter α is updated using chaotic strategy, which substituted the strategy of
rand in (0, 1) each iteration. The formula is as follows:

αt+1 = 4αt · (1− αt) (12)

where the initial value of parameter α is set to 0.2, and the maximum number of iterations
is set to 500 during the optimization process. Thus, the iteration results of αt and α2

t are
shown in the Figure 3. The reason the initial value α is set to 0.2, not 0.35, is the direct
difference of parameters c and α.
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Figure 3. The iterative curves of α and α2. (a) Iterative curve of parameter α. (b) Iterative curve of
parameter α2.

In this paper, parameters c and α are updated by logistic mapping. It can been seen
from Figures 2 and 3 that the values of c and α are in (0, 1), which is the same as a rand
number in (0, 1) using function rand each iteration.

3.7. Complexity Analysis
The time complexity is a important factor, which can reflect the performance of the

algorithm in a way. It is necessary to compute the time complexity of the algorithm when
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the algorithm has a finite time to find the global optimal value. The pseudo-code of the pro-
posed algorithm is shown in Algorithm 1, and it shows the steps of the proposed HFBOA.

Algorithm 1. The pseudo-code of HFBOA

Generate the initialize population of the butterflies Xi(i = 1, 2, · · · , n) randomly;
Initialize the parameters β0, γ, and µ

Define sensory modality c, power exponent a and switch probability p
for i = 1 : n

Calculate the fitness value of each butterflies
end for
while t < Tmax
for i = 1 : n

Update the fragrance of current search agent by Equation (6)
for j = 1 : n
if f itnessi < f itnessj

Update the attractiveness β and Rij by Equation (9) and Equation (10) respectively
else

Continue
end if

% Case 1
if rand < sp

Update the position using Equation (7)
else

Update the position using Equation (8)
end if

% Case 2
if rand < sp

Update the position using Equation (3)
else

Update the position using Equation (8)
end if

Calculate the fitness value of each butterflies
Find the best fitness Fi

end for
end for

Update the value of power exponent c and parameter α using Equations (11) and (12)
t = t + 1

end while
Output the best fitness

According to the pseudo-code, the time complexity of the proposed method can be
computed as follows. The initialization phase depends on randomization, which gives
n× d random numbers in (0, 1). For the initialization, there are n butterflies and the object
function is the d dimension of the search space; thus, the initialization step costs O(nd). In
addition, the maximum evaluation times (Tmax) also influence the time complexity. The
computational complexity of calculating the fitness of all agents is O(nd). Updating the
position in the HFBOA is O(n2logn), the quick sort is O(n2), and updating the parameter
costs O(nd). Therefore, the final computational complexity of HFBOA is as follows:

O(HFBOA) = O(nd) + O(Tmax)O(nd + n2logn + n2 + nd) ≈ O(Tmax)O(nd + n2logn + n2 + nd) = O(Tmax × n× (2d + nlogn + n)) (13)

However, the original BOA has the same initialization numbers (n), maximum eval-
uation times (Tmax), and the dimension of search space (d) as the proposed HFBOA. The
time complexity of the initialization phase is O(nd); calculating the fitness of all agents is
O(Tmaxnd); updating the position is O(Tmaxn2logn); the quick-sort is O(Tmaxn); updating
the parameter costs O(Tmaxnd). Hence, the time complexity of the BOA is:
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O(HFBOA) = O(nd) + O(Tmaxnd) + O(Tmaxn2logn) + O(Tmaxn) + O(Tmaxnd) = O(nd) + O(Tmax × n× (2d + nlogn + 1)) (14)

Distinctly, although the complexity of the proposed HFBOA is higher than BOA, the
performance of the modified algorithm is superior to the BOA and both of them are in the
same order of magnitude. The scalability, convergence accuracy, optimization capability,
and robustness of the proposed method can be proved in the following experiments,
including the scalability test, 12 benchmark functions test, and constrained engineering
problems test, respectively.

4. Results of Experiments

In this section, the performance of the HFBOA is substantiated extensively. To ver-
ify the performance of the proposed algorithm, 12 benchmark functions from the CEC
benchmark functions were tested. Moreover, three experiments were performed with
proposed algorithms and other well-known meta-heuristic methods for scalability analysis
and statistical analysis, respectively. In addition, the proposed HFBOA was also applied to
deal with the six constrained engineering problems.

The experiments were carried out on the same experimental platform. The comparison
of all algorithms was conducted in MATLAB 2018a installed over Windows 10 (64 bit),
Intel (R) Core (TM) i5-10210U, and @2.11G with 16.0 GB of RAM.

Different types of benchmark functions can help comprehensively evaluate the per-
formance of all competitions in a study of the proposed method. Table 1 shows the 12
benchmark functions, including four unimodal (F1–F4), three multimodal (F5–F7), two
fixed (F8, F9) [9], shifted (F10), rotated (F11), and rotated and shifted functions (F12) [24].

Table 1. Benchmark test functions.

Fun Function Name Range Dim Type Optimal Accept

F1 Sphere [−100, 100] 30 U 0 10−35

F2 Schwefel 2.22 [−10, 10] 30 U 0 10−35

F3 Schwefel 1.2 [−100, 100] 30 U 0 10−35

F4 Schwefel 2.21 [−100, 100] 30 U 0 10−35

F5 Rastrigin [−5.12, 5.12] 30 M 0 10−20

F6 Ackley [−32, 32] 30 M 0 10−15

F7 Griewank [−600, 600] 30 M 0 10−20

F8 Shekel 5 [0, 10] 4 fixed −10.1532 −10.1530
F9 Shekel 7 [0, 10] 4 fixed −10.4028 −10.4020

F10 Shifted schwefel 1.2 [−100, 100] 30 U 0 10−5

F11 Rotated griewank [−10, 10] 30 M 0 10−5

F12 Rotated and shifted ackley [−32, 32] 30 M 0 10−0

The performance of the HFBOA was proved by a set of statistical tests conducted on
three criteria, the mean (Mean), standard deviation (Std), and success rate (Sr); values of all
runs are presented. Here, the success rate (Sr) can be calculated as follows:

Sr =
Msu

Mall
× 100% (15)

where Mall denotes the total number of optimization test runs, and Msu is the times the
algorithm successfully reached the specified value. Here, the specified values are shown in
Table 1.

4.1. Scalability Analysis of Comparison with Improved Algorithms

The performance of the modified butterfly optimization algorithms was improved
to a certain extent. Thus, two test functions F1 and F7 from Table 1 were used to verify
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the performance of HFBOA compared with four improved algorithms, namely LBOA [16],
IBOA [13], MBOA [14], and HPSOBOA [15]. The values of parameter settings of the
algorithms were from the original references. In addition, four different dimensions of
scalability analysis were considered: 30, 100, 500, and 1000. The same conditions were
constructed using 30 individual butterflies with 600 iterations.

It can be seen from Table 2 that the mean optimal value of the test function increased
when number of dimension increased. Table 2 shows the comparison results of different
comparison algorithms, and the bold face indicates the superior performance of the HFBOA
in F1 and F7, except MBOA. Generally speaking, it can be considered as a large-scale
complex problem when the dimension of the test function exceeds 300.

Table 2. Comparison results of improved algorithms.

Fun Algorithm Dim = 30 Dim = 100 Dim = 500 Dim = 1000
Mean/Sr Std Mean/Sr Std Mean/Sr Std Mean/Sr Std

F1

BOA 1.41× 10−11/0.00 1.25 × 10−12 1.60× 10−11/0.00 1.25 × 10−12 1.63× 10−11/0.00 1.29 × 10−12 1.67× 10−11/0.00 1.33 × 10−12

LBOA 4.82× 10−13/0.00 5.00 × 10−13 5.74× 10−13/0.00 6.65 × 10−13 7.03× 10−13/0.00 6.61 × 10−13 7.35× 10−13/0.00 6.96 × 10−13

IBOA 1.27× 10−33/43.33 1.74 × 10−33 3.05× 10−33/23.33 6.57 × 10−33 4.74× 10−33/20.00 8.59 × 10−33 2.18× 10−32/13.33 6.00 × 10−32

MBOA 0.00 × 100/100.00 0.00 × 100 0.00 × 100/100.00 0.00 × 100 0.00 × 100/100.00 0.00 × 100 0.00 × 100/100.00 0.00 × 100

HPSOBOA 6.96× 10−46/100.00 3.58 × 10−45 7.89× 10−51/100.00 4.17 × 10−50 1.95× 10−35/100.00 6.00 × 10−35 8.09× 10−42/100.00 4.26 × 10−41

HFBOA 0.00 × 100/100.00 0.00 × 100 0.00 × 100/100.00 0.00 × 100 0.00 × 100/100.00 0.00 × 100 0.00 × 100/100.00 0.00 × 100

F7

BOA 9.02× 10−13/0.00 8.90 × 10−13 1.35× 10−11/0.00 6.38 × 10−12 1.91× 10−11/0.00 1.43 × 10−12 1.83× 10−11/0.00 1.74 × 10−12

LBOA 4.38× 10−14/0.00 1.25 × 10−13 6.05× 10−13/0.00 9.55 × 10−13 8.91× 10−13/0.00 9.60 × 10−13 8.24× 10−13/0.00 9.98 × 10−13

IBOA 0.00 × 100/100.00 0.00 × 100 0.00 × 100/100.00 0.00 × 100 0.00 × 100/100.00 0.00 × 100 0.00 × 100/100.00 0.00 × 100

MBOA 0.00 × 100/100.00 0.00 × 100 0.00 × 100/100.00 0.00 × 100 0.00 × 100/100.00 0.00 × 100 0.00 × 100/100.00 0.00 × 100

HPSOBOA 0.00 × 100/100.00 0.00 × 100 0.00 × 100/100.00 0.00 × 100 0.00 × 100/100.00 0.00 × 100 0.00 × 100/100.00 0.00 × 100

HFBOA 0.00 × 100/100.00 0.00 × 100 0.00 × 100/100.00 0.00 × 100 0.00 × 100/100.00 0.00 × 100 0.00 × 100/100.00 0.00 × 100

4.2. Results of Comparison with Meta-Heuristic Algorithms

To verify the performance of the proposed HFBOA, we compared the proposed
algorithm with several meta-heuristic algorithms, namely, PSO [1], CS [25], FA [8], GWO [9],
HBO [26], and BOA [12]. The parameter settings of the seven approaches are shown in
Table 3. The population number of each algorithm was set to 30, and the max iteration was
set to 600. Moreover, statistical tests were conducted on three divisions, and each algorithm
was run 30 times, independently.

Table 3. Parameter settings.

Methods Parameter Settings

PSO c1 = c2 = 2, Vmax = 1, Vmin = −1, ω ∈ [0.2, 0.9]
CS [C, p1, p2] from corresponding equations
FA β0 = 1, γ = 1

GWO a f irst = 2, a f inal = 0
HBO Pa = 0.25
BOA a = 0.1, p = 0.6, c0 = 0.01

HFBOA a = 0.1, p = 0.6, µ = 4, β0 = 1, α0 = 0.2, c0 = 0.35

The comparison results of the mean (Mean), standard deviation (Std), and success
rate (Sr) are shown in Table 4. The Wilcoxon rank-sum (WRS) [27] test was used to verify
the significance of the proposed method when compared with other algorithms, and the
Friedman rank [28] test was used to rank compared approaches. The alpha was set to
0.05 in the WRS and Friedman rank test. Two hypotheses (null and alternative) were used
to prove the effectiveness of statistical tests. According to the statistical value, the null
was accepted if the statistical value was greater than the value of alpha; otherwise, the
alternative was accepted. The p-value of the WRS test and the Friedman rank depicted that
this supremacy was statistically significant.
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Table 4. Comparison results of HFBOA and other optimization algorithms.

Fun Item CS GWO PSO HBO FA BOA HFBOA

F1

Mean 5.02 × 10−39 6.05 × 10−34 9.03 × 10−7 1.65 × 10−9 1.99 × 10−9 1.41 × 10−11 0.00 × 100

Std 1.65 × 10−38 1.14 × 10−33 1.35 × 10−6 2.05 × 10−9 1.81 × 10−10 1.25 × 10−12 0.00 × 100

Sr 100.00 13.33 0.00 0.00 0.00 0.00 100.00
p-value 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 -
Rank 2.0 3.0 7.0 5.2 5.8 4.0 1.0

F2

Mean 3.77 × 10−20 2.37 × 10−20 2.02 × 10−3 3.75 × 10−7 1.83 × 10−5 5.58 × 10−9 0.00 × 100

Std 7.77 × 10−20 2.37 × 10−20 2.58 × 10−3 1.11 × 10−6 1.76 × 10−6 6.32 × 10−10 0.00 × 100

Sr 0.00 0.00 0.00 0.00 0.00 0.00 100.00
p-value 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 -
Rank 2.2 2.8 7.0 5.0 6.0 4.0 1.0

F3

Mean 5.48 × 10−38 1.98 × 10−7 6.41 × 100 2.02 × 104 1.29 × 10−4 1.17 × 10−11 0.00 × 100

Std 2.07 × 10−37 7.35 × 10−7 3.40 × 100 7.57 × 103 1.72 × 10−4 1.42 × 10−12 0.00 × 100

Sr 100.00 0.00 0.00 0.00 0.00 0.00 100.00
p-value 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 -
Rank 2.0 4.0 6.0 7.0 5.0 3.0 1.0

F4

Mean 1.44 × 10−19 2.25 × 10−8 2.63 × 10−1 1.13 × 101 2.68 × 100 7.54 × 10−9 0.00 × 100

Std 3.03 × 10−19 1.98 × 10−8 8.77 × 10−2 4.82 × 100 3.82 × 100 8.50× 10−10 0.00 × 100

Sr 0.00 0.00 0.00 0.00 0.00 0.00 100.00
p-value 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 -
Rank 2.0 3.7 5.3 7.0 5.7 3.3 1.0

F5

Mean 0.00 × 100 1.39 × 100 5.01 × 101 1.13 × 101 6.11 × 101 5.23 × 101 0.00 × 100

Std 0.00 × 100 3.21 × 100 1.44 × 101 2.90 × 100 1.70 × 101 8.55 × 101 0.00 × 100

Sr 100.00 13.33 0.00 0.00 0.00 43.33 100.00
p-value NaN 1.65 × 10−10 1.21 × 10−12 1.21 × 10−12 2.21 × 10−6 1.21 × 10−12 -
Rank 1.5 2.7 5.5 4.4 6.4 3.7 3.7

F6

Mean 8.88 × 10−16 4.27 × 10−14 3.29 × 10−4 1.77 × 10−5 1.04 × 10−5 5.38 × 10−9 8.88 × 10−16

Std 0.00 × 100 3.81 × 10−15 2.45 × 10−4 2.28 × 10−5 7.05 × 10−7 1.13 × 10−9 0.00 × 100

Sr 100.00 0.00 0.00 0.00 0.00 0.00 100.00
p-value NaN 7.17 × 10−13 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 -
Rank 1.5 3.0 7.0 5.5 5.5 4.0 1.5

F7

Mean 0.00 × 100 3.54 × 10−3 2.03 × 101 1.40 × 10−3 3.20 × 10−3 9.02 × 10−13 0.00 × 100

Std 0.00 × 100 7.24 × 10−3 5.88 × 100 3.77 × 10−3 5.22 × 10−3 8.90 × 10−13 0.00 × 100

Sr 100.00 0.00 0.00 0.00 0.00 0.00 100.00
p-value NaN 5.58 × 10−3 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 -
Rank 1.9 2.9 7.0 5.2 5.4 3.8 1.9

F8

Mean −1.02 × 101 −9.65 × 100 −5.73 × 100 −9.89 × 100 −9.40 × 100 −4.94 × 100 −1.02 × 101

Std 3.23 × 10−15 1.54 × 100 3.51 × 100 1.30 × 100 1.99 × 100 7.68 × 10−1 4.19 × 10−6
Sr 100.00 6.67 36.67 93.33 86.67 0.00 100.00

p-value 5.89 × 10−2 3.02 × 10−11 7.57 × 10−2 1.88 × 10−9 1.09 × 10−6 3.02 × 10−11 -
Rank 3.5 5.3 4.9 1.4 2.7 6.4 3.8

F9

Mean −1.04 × 101 −1.04 × 101 −7.42 × 100 −1.04 × 101 −9.80 × 100 −4.72 × 100 −1.04 × 101

Std 8.30 × 10−15 6.66 × 10−4 3.73 × 100 7.19 × 10−2 1.89 × 100 6.47 × 10−1 1.69 × 10−6

Sr 100.00 50.00 60.00 93.33 90.00 0.00 100.00
p-value 1.21 × 10−12 3.02 × 10−11 1.79 × 10−1 1.24 × 10−9 1.05 × 10−7 3.02 × 10−11 -
Rank 4.4 5.4 3.7 1.5 2.9 6.6 3.4

F10

Mean 2.05 × 10−10 9.22 × 100 6.26 × 102 1.97 × 104 1.08 × 101 4.95 × 101 3.81 × 100

Std 4.02 × 10−10 3.60 × 100 2.85 × 102 7.20 × 103 4.60 × 100 2.78 × 101 9.02 × 10−1

Sr 100.00 0.00 0.00 0.00 0.00 0.00 0.00
p-value 3.02 × 10−11 6.70 × 10−11 3.02 × 10−11 3.02 × 10−11 2.61 × 10−10 3.02 × 10−11 -
Rank 1.0 3.1 6.0 7.0 3.9 5.0 2.0

F11

Mean 1.00 × 1010 8.93 × 10−12 5.14 × 10−1 2.20 × 10−1 5.98 × 10−12 1.29 × 10−5 0.00 × 100

Std 0.00 × 100 3.18 × 10−11 3.77 × 10−1 1.26 × 10−1 1.41 × 10−12 5.81 × 10−6 0.00 × 100

Sr 0.00 100.00 0.00 0.00 100.00 100.00 100.00
p-value 1.69 × 10−14 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 -
Rank 7.0 2.1 5.7 5.3 2.9 4.0 1.0

F12

Mean 1.00 × 1010 1.13 × 100 1.18 × 100 1.08 × 100 9.75 × 10−1 1.13 × 100 1.00 × 100

Std 0.00 × 100 4.64 × 10−2 7.25 × 10−2 5.57 × 10−2 3.79 × 10−2 4.36 × 10−2 5.06 × 10−2

Sr 0.00 0.00 0.00 0.00 76.67 0.00 43.33
p-value 1.21 × 10−12 2.61 × 10−10 1.46 × 10−10 5.86 × 10−6 1.38 × 10−2 3.16 × 10−10 -
Rank 7.0 4.7 6.0 3.0 1.1 4.3 1.9

Overall Avg.rank 3.00 3.56 5.92 4.79 4.44 4.34 1.94
Total rank 2 3 7 6 5 4 1

Table 4 shows that the HFBOA yielded the best results on the 12 test functions with
Dim = 30 except F10 and F12. For F9, the HFBOA obtained the optimal fitness value, which
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was close to other algorithms, but slightly worse. However, for F5 and F7, the CS algorithm
also obtained the best solution of the theoretical optimal value. Additionally, combining
the comparison results in Table 4, we see that the HFBOA was better than others in the
Sr rank, which was set to the specified value. The Sr of HFBOA was 100% except F10
and F12 because the complexity of function F10 and F12 was higher than the others in the
12 CEC benchmark functions. According to the Friedman test results, the order of seven
comparison algorithms was HFBOA > CS > GWO > BOA > FA > HBO > PSO. Note, the
last row in Table 4, the Friedman rank results of the comparison algorithms depicted that
the supremacy of the proposed method was statistically significant.

As can be concluded from Table 4, the proposed HFBOA has superior convergence
accuracy and optimization capability in unimodal and multimodal functions than other
comparison algorithms, especially the basic BOA. For the fixed functions F8 and F9, the
optimization results of CS algorithm were slightly better than HFBOA in Std. For the
shifted, rotated, and shifted functions F10 and F12, the performance of the proposed
method can be further improved in future work.

It can be seen from the convergence curves of comparison algorithms in Figures 4 and 5
that HFBOA has the fastest convergence rate when solving the four unimodal and three
multimodal test functions. In functions F1 to F5, and F7, HFBOA obtained the global
optimal solution. From Figure 4 and Table 4, HFBOA converged to the global optimal
value with a rapid convergence rate in F8, F9, and F11. However, the Std of F8 and F9 by
the CS algorithm was better than HFBOA, where NaN means not applicable in Table 4.
Furthermore, in function F12, the optimal value of HFBOA was slightly worse than FA
from the Mean and Std.
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Figure 4. Convergence curves of HFBOA for test functions F1 to F6.
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Figure 5. Convergence curves of HFBOA for test functions F7 to F12.

4.3. Practical Constrained Engineering Problems

In this subsection, six real-world optimization problems were solved to verify the
effectiveness of the HFBOA. The constrained engineering problems (CEPs) are tubular
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column design [25], three bar truss design [29], tension/compression spring design [25],
welded beam design [2], cantilever beam design [29], and speed reducer design [30]. All
the considered engineering problems have several inequality constraints that should be
handled. They can be formulated by the nonlinear programming (NLP) [31,32], which is
formally described as:

f (x) = Min F(xi) (16)

Subject to:
gi(x) ≤ 0, i = 1, 2, · · · , m
lbj ≤ xj ≤ ubj,j = 1, 2, · · · , n
where xi = (x1, x2, · · · , xn)T ∈ Rn, f (x) is the objective function, and gi(x)(i = 1, 2, · · · , m)
is the ith inequality constrain, which is defined on Rn.

The dimension and constrain of the six constrained engineering problems can be
summarized in Table 5, and the iteration was set to 300 for each optimization problem
using the proposed HFBOA and original BOA. Each constrained engineering problem was
optimized as ten times and the statistical results are shown in Table 6.

Table 5. Parameter of HFBOA for solving the CEPs.

Item Problems Dim Cons Iter

CEP1 Tubular column
design 2 6 300

CEP2 Three bar truss
design 2 3 300

CEP3 Tension spring
design 3 4 300

CEP4 Welded beam
design 4 7 300

CEP5 Cantilever beam
design 5 1 300

CEP6 Speed reducer
design 7 11 300

Table 6. Statistical results of the six CEPs.

Problems Algorithms Best Mean Std

CEP1
BOA 26.512782 26.611700 6.31 × 10−2

HFBOA 26.499503 26.499571 4.12 × 10−5

HFBOA1 26.499543 26.499662 1.08 × 10−4

CEP2
BOA 263.935051 264.254896 1.84 × 10−1

HFBOA 263.895867 263.895929 3.49 × 10−5

HFBOA1 263.895895 263.895993 7.93 × 10−5

CEP3
BOA 0.012790 3.6498 × 1011 7.81 × 1011

HFBOA 0.012666 0.012781 2.25 × 10−4

HFBOA1 0.012667 0.012711 5.23 × 10−5

CEP4
BOA 2.189107 2.1944 × 10−7 6.94 × 107

HFBOA 1.725080 1.725458 3.11 × 10−4

HFBOA1 1.725997 1.727217 1.24 × 10−3

CEP5
BOA 1.359825 1.371087 9.59 × 10−3

HFBOA 1.339963 1.339977 7.52 × 10−6

HFBOA1 1.340032 1.340069 3.36 × 10−5

CEP6
BOA 3178.596571 2.2771 × 101 3.26 × 1011

HFBOA 2999.091940 2999.129526 4.38 × 10−2

HFBOA1 2999.122912 2999.174810 4.93 × 10−2

As can be seen from Table 6, the performance of HFBOA was superior than BOA for
solving the constrained engineering problems. The basic BOA had poor stability in CEP3,
CEP4, and CEP6 from the statistical results. HFBOA denotes case 1 in the pseudo-code,
and HFBOA1 represents case 2 in Algorithm 1, which is used to prove the effect of the
updating strategy of parameter α with Logistic mapping instead of function rand. Table 6
shows that HFBOA was superior than HFBOA1 except CEP3 by the statistical results. For
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CEP3, HFBOA1 was better than HFBOA in the Std, which indicates that the stability of
HFBOA1 was higher for solving the tension spring design problem.

The statistical result verified that the performance of the proposed HFBOA was
improved, and the robustness of the proposed method was proved for solving different
constrained engineering problems. The best results of the state-of-the-art approaches are
listed in Tables 7–12 in this paper. We compared the best results obtained by the algorithms
to show the convergence accuracy and optimization capability of the HFBOA.

Table 7. Best results of tubular column design.

Item x1 x2 fmin

CS 5.45139 0.29196 26.53217
Rao 5.44 0.293 26.5323
KH 5.451278 0.291957 26.5314
CSA 5.451163397 0.291965509 26.531364472
BOA 5.448426 0.292463 26.512782

HFBOA 5.451157 0.291966 26.499503

Table 8. Best results of three bar truss design.

Item x1 x2 fmin

CS 0.78867 0.40902 263.9716
MBA 0.788565 0.4085597 263.8958522
HHO 0.788662816 0.4082831338329 263.8958434
DSA 0.788675136 0.408248285 263.8958434
BOA 0.783880758 0.422200913 263.935051

HFBOA 0.78869137 0.408202602 263.895867

Table 9. Best results of tension/compression spring.

Item x1 x2 x3 fmin

PSO 0.015728 0.357644 11.244543 0.0126747
GWO 0.05169 0.356737 11.28885 0.012666
WOA 0.051207 0.345215 12.004032 0.0126763
GSA 0.050276 0.323680 13.525410 0.0127022
BOA 0.051129 0.341493 12.326899 0.012789

HFBOA 0.051841 0.360377 11.078153 0.012666

Table 10. Best results of welded beam design.

Item x1 x2 x3 x4 Optimal

GSA 0.182129 3.856979 10.000000 0.202376 1.879952
GWO 0.205676 3.478377 9.036810 0.205778 1.726240
WOA 0.205396 3.484293 9.037426 0.206276 1.730499
DSA 0.205731 3.475599 9.036601 0.205731 1.725555
BOA 0.175591 5.214398 7.785997 0.279475 2.189107

HFBOA 0.205607 3.473369 9.036766 0.205730 1.725080

Table 11. Best results of cantilever beam design.

Item CS MMA SOS MFO BOA HFBOA

x1 6.0089 6.0100 6.01878 5.984871 5.785193 6.016838
x2 5.3049 5.3000 5.30344 5.316726 4.942404 5.313519
x3 4.5023 4.4900 4.49587 4.497332 4.786671 4.495334
x4 3.5077 3.4900 3.49896 3.513616 3.692129 3.495149
x5 2.1504 2.1500 2.15564 2.161620 2.585670 2.152926

fmin 1.33999 1.3400 1.33996 1.339988 1.359825 1.339963
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Table 12. Best results of speed reducer design.

Item CS KH MFO DSA BOA HFBOA

x1 3.5015 3.499966 3.507524 3.500006 3.6 3.500036
x2 0.7000 0.7 0.7 0.7 0.7 0.700001
x3 17.0000 17.00001 17 17 17 17
x4 7.6050 7.36601 7.302397 7.300490 7.3 7.3
x5 7.8181 7.822665 7.802364 7.8 7.8 7.800207
x6 3.3520 3.350358 3.323541 3.350216 3.459341 3.458402
x7 5.2875 5.286674 5.287524 5.286759 5.461176 5.245883

fmin 3000.981 2997.447 3009.571 2996.4034 3178.5965 2999.0919

4.3.1. Tubular Column Design

The tubular column design [25] is one of the mechanical engineering issues, and can
be formulated as follows:

Minimize:
f (x1, x2) = f (d, t) = 9.8x1 · x2 + 2x1

Subject to:
g1 = P

πx1·x2σy
− 1 ≤ 0

g2 = 8PL2

π3Ex1·x2(x2
1+x2

2)
− 1 ≤ 0

g3 = 2.0
x1
− 1 ≤ 0

g4 = x1
14 − 1 ≤ 0

g5 = 0.2
x2
− 1 ≤ 0

g6 = x2
0.8 − 1 ≤ 0

where x1(d) denotes the mean diameter of the column, x2(t) is the column. Moreover, P
is a compressive load, σy represents the yield stress, E is the modulus of elasticity, ρ is the
density, and L denotes the length of the designed column.

Variable range:
2 ≤ x1 ≤ 14 and 0.2 ≤ x2 ≤ 0.8, P = 2500 kgf, σy = 500 kgf/cm2, E = 0.85 × 106 kgf/cm2,
L = 250 cm, and ρ = 0.0025 kgf/cm3.

Table 7 presents the solutions of tubular column design obtained by HFBOA and those
reported by CS [25], Rao [33], KH [30], and CSA [33]. As shown, the optimal value of
HFBOA was 26.499503, which means that when x1 and x2 are set to 5.451157 and 0.291966,
respectively, the total cost of the tubular column design is the minimum. It can be concluded
that the results obtained by HFBOA were better than those of the previous studies.

4.3.2. Three Bar Truss Design

The mathematical modeling of the three bar truss design [29] is given as follows:
Minimize:

f (x1, x2) = f (A1, A2) = (2
√

2A1 + A2) · l
Subject to:

g1 =
√

2 A1+A2√
2 A2

1+2A1 A2
P− σ ≤ 0

g2 = A2√
2 A2

1+2A1 A2
P− σ ≤ 0

g3 = 1
A1+
√

2 A2
P− σ ≤ 0

where l is the length of the bar truss, A1 and A2 denote the cross-sectional areas of the long
bar truss and short bar truss, respectively.

Variable range:
0 ≤ A1, A2 ≤ 1, l = 100 cm, P = 2 kN/cm2, and σ = 2 kN/cm2.

Table 8 presents the solutions of the three bar truss design obtained by HFBOA and
those reported by CS [25], MBA [34], HHO [35], and DSA [36]. As shown, the optimal
value of HFBOA was 263.895867, which means that when x1 and x2 were set to 0.78869137
and 0.408202602, respectively; the total cost of the tension/compression spring was the
minimum. The results obtained by HFBOA were better than the CS algorithm and BOA
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with 300 iterations. However, the results of MBA, HHO, and DSA were slightly better than
the proposed method.

4.3.3. Tension/Compression Spring Design

From Ref. [25], the tension/compression spring design was modeled as follows:
Minimize:

f (x1, x2, x3) = f (d, D, N) = x2
1 · x2x3 + 2x2

1 · x2
Subject to:

g1 = 1− x3
2x3

71785x4
1
≤ 0

g2 =
4x2

1−x1x2

12566(x1·x3
2−x4

2)
+ 1

5108x2
2
− 1 ≤ 0

g3 = 1− 140.45x2
x2

1x3
≤ 0

g4 = x1+x2
1.5 − 1 ≤ 0

The parameters d, D, and N are the three design variables. Where x1(d) denotes
the wire diameter, x2(D) represents the mean coil diameter, and x3(N) is the number of
active coils.

Variable range:
0.25 ≤ x1 ≤ 1.3 , 0.05 ≤ t ≤ 2.0, and 2 ≤ x3 ≤ 15.

Table 9 presents the solutions of the tension/compression spring obtained by HFBOA
and those reported by PSO [2], GWO [9], WOA [37], and GSA [9]. As shown, the optimal
value of HFBOA was 0.012666, which means that when x1, x2, and x3 are set to 0.051841,
0.360377, and 11.078153, respectively, the total cost of the tension/compression spring is
the minimum. It can be seen from Table 9 that the results obtained by HFBOA are superior
than those of the previous studies, except the GWO algorithm.

4.3.4. Welded Beam Design

There were four main constraints and other side constraints of the welded beam
design. τ is the shear stress, δ denotes the bending stress in the beam, Pc is the buckling
load on the bar, σ is the end deflection of the beam. The mathematical modeling of the
welded beam design [2] can be stated as follows:

Minimize:
f (x1, x2, x3, x4) = f (h, l, t, b) = 1.10471x2

1 · x2 + 0.04811x3 · x4(14.0 + x2)
Subject to:

g1 = τx − τmax ≤ 0,
g2 = σx − σmax ≤ 0,
g3 = δx − δmax ≤ 0,
g4 = x1 − x1 ≤ 0,
g5 = P− Pc (x) ≤ 0,
g6 = 0.125− x1 ≤ 0,
g7 = 1.1047x2

1 + 0.04811x3 x4 (14.0 + x2 )− 5.0 ≤ 0.
where x1(h) is the thickness of the weld, x2(l), x3(t), and x4(b) denote the length of the
attached part, the height, and the thickness of the bar, respectively. Additionally,

τ(x) =
√
(τ′)2 + 2τ

′
τ
′′ x2

2R + (τ′′)2,

τ
′
= P√

2x1x2
, τ
′′
= MR

J , M = P(L + x2/2),

R =

√
x2

2
4 + ( x1+x3

2 )2, J = 2
√

2x1x2[
x2

2
4 + ( x1+x3

2 )2 ], σ(x) = 6PL
x4 x2

3
, δ(x) = 6PL3

Ex4x2
3

,

Pc(x) = 4.013E
√

(x2
3 x6

4)/36
L2 (1− x3

2L sqrt E
4G ),

P = 6000 lb, L = 14 in., τmax = 13,600 psi, σmax = 30,000 psi, δmax= 0.25 in., E = 30 × 106 psi,
G = 12 × 106 psi

Variable range:
0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10 and 0.1 ≤ x4 ≤ 2.
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Table 10 presents the solutions obtained by HFBOA and those reported by GSA [9],
GWO [9], WOA [37], and DSA [36]. As shown, the optimal value of HFBOA was 1.725080,
which means that when Ts, Th, R, and L were set to 0.205607, 3.473369, 9.036766, and
0.205730, respectively, the total cost of the welded beam design was the minimum.
Thus, it can be concluded that the results obtained by HFBOA were the best in the
comparison algorithms.

4.3.5. Cantilever Beam Design

The variables of cantilever beam design were the x1 to x5 (heights or widths) of the
different beam elements and the thickness was held fixed in the problem. The mathematical
modeling of the cantilever beam design [25] is given as follows:

Minimize:
f (x1, x2, x3, x4, x5) = 0.0624(x1 + x2 + x3 + x4 + x5)

Subject to:
g1 = 61

x3
1
+ 37

x3
2
+ 19

x3
3
+ 7

x3
4
+ 1

x3
5
− 1 ≤ 0

where x1 to x5 denote heights or widths of the different beam elements.
Variable range:

0.01 ≤ xi ≤ 100 and i = 1, 2, 3, 4, 5.
Table 11 presents the solutions of the cantilever beam obtained by HFBOA and those

reported by CS [25], MMA [29], SOS [38], and MFO [39]. As shown, the optimal value of
HFBOA was 1.339963, which means that when x1, x2, x3, x4, and x5 were set to 6.016838,
5.313519, 4.495334, 3.495149, and 2.152926, respectively, the total cost of the cantilever beam
was minimum. As can seen from Table 11, the results obtained by HFBOA were better than
the comparison approaches.

4.3.6. Speed Reducer Design

According to Ref. [30], the optimization problem of speed reducer design can be
mathematically formulated as follows:

Minimize:
f (x1, x2, x3, x4, x5, x6, x7) = 0.7854x1x2

2(3.333x2
3 + 14.9334x3− 43.0934)− 1.508x1(x2

6 + x2
7)+

7.4777(x3
6 + x3

7) + 0.7854(x4x2
6 + x5x2

7)
Subject to:
g1 = 27

x1x2
2x3
− 1 ≤ 0

g2 = 397.5
x1x2

2x3
3
− 1 ≤ 0

g3 =
1.93x3

4
x2x3x4

6
− 1 ≤ 0

g4 =
1.93x3

5
x2x3x4

6
− 1 ≤ 0

g5 =

√
745( x4

x2x3
)2+16.9×106

110x3
6

− 1 ≤ 0

g6 =

√
745( x5

x2x3
)2+157.5×106

85x3
7

− 1 ≤ 0

g7 = x2x3
40 − 1 ≤ 0

g8 = 5x2
x1
− 1 ≤ 0

g9 = x1
12x2
− 1 ≤ 0

g10 = 1.5x6+1.9
x4

− 1 ≤ 0

g11 = 1.1x7+1.9
x5

− 1 ≤ 0
where x1 is the face width, x2 denotes the module of teeth, x3 is the number of the teeth
on pinion. x4 is the length of shaft 1 between bearings, x5 represents the length of shaft 2
between bearings, x6 and x7 are, respectively, the diameter of shaft 1 and shaft 2.

Variable range:
2.6 ≤ x1 ≤ 3.6,0.7 ≤ x2 ≤ 0.8,17 ≤ x3 ≤ 28,7.3 ≤ x4 ≤ 8.3,7.3 ≤ x5 ≤ 8.3,2.9 ≤ x4 ≤ 3.9
and 5.0 ≤ x4 ≤ 5.5.
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Table 12 presents the solutions obtained by HFBOA and those reported by CS [25],
KH [30], MFO [39], and DSA [36]. As shown, the optimal value of HFBOA was 2999.0919,
which means that when x1, x2, x3, x4, x5, x6, and x7 were set to 3.500036, 0.700001, 17, 7.3,
7.800207, 3.458402, and 5.245883, respectively, for speed reducer design. It can be seen from
Table 12 that the results obtained by DSA were better than other algorithms. Moreover, the
optimal value of HFBOA was slightly worse than the KH algorithm and DSA.

5. Discussion

Table 2 shows that the performance of the HFBOA in F1 and F7 was superior to
the other improved BOA methods, except MBOA, for solving the high-dimensional op-
timization problems. For the test results of the 12 benchmark functions in Table 4, the
proposed method had better global capability and higher convergence rate. According to
the statistical test, the order of seven comparison algorithms was HFBOA > CS > GWO
> BOA > FA > HBO > PSO for solving the twelve functions. Moreover, the results on
the engineering constrained optimization tasks show that the proposed HFBOA had the
vast potential ability to deal with real-world problems as well. However, the performance
of the HFBOA should be also enhanced, while the parameters can be reduced without
degrading performance.

6. Conclusions

To effectively solve constrained engineering problems, a novel hybrid-flash butterfly
optimization algorithm (HFBOA) is proposed. The HFBOA combines smell and vision for
foraging of global optimization and local optimization, respectively. Besides, updating
the control parameters by logistic mapping is synchronously applied into the HFBOA for
enhancing the global optimal ability. To evaluate the performance of the HFBOA, experi-
ments were compared with the proposed algorithm and other meta-heuristic algorithms
for statistical analysis on 12 benchmark functions.

Compared with seven algorithms, the results of the experiments show that the HFBOA
has a significant improvement in terms of solution accuracy performance and convergence
speed. Furthermore, the statistical test and complexity analysis are used to verify the
efficiency of the HFBOA from different aspects. Moreover, the results on engineering
design problems show that HFBOA has the vastly potential ability to deal with real-world
problems as well.

In the future work, we will focus on the following tasks:

• We will theoretically prove the convergence and steady properties of the proposed
HFBOA using Markov chain theory [40].

• Due to the high complexity of the main framework of HFBOA, we will further enhance
the HFBOA on the premise of ensuring the optimization precision with Quantum theory.

• The proposed HFBOA will be further applied to solve the three-dimensional wireless
sensor network node deployment problem.
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