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Abstract: Dissolved oxygen concentration has the characteristics of nonlinearity, time series and
instability, which increase the difficulty of accurate prediction. In order to accurately predict the
dissolved oxygen concentration in the dish-shaped lakes in Poyang Lake of Jiangxi Province, China,
a dissolved oxygen concentration prediction model, based on wavelet transform (WT)-based de-
noising, maximal information coefficient (MIC)-based feature selection, and the gated recurrent unit
(GRU), was proposed for this study. In experiments, the proposed model showed good prediction
performance, achieving a root-mean-square error (RMSE) of 0.087 mg/L, a mean absolute percentage
error (MAPE) of 0.723%, and a coefficient of determination (R2) as high as 0.998. It shows that the
prediction model based on the combination of the wavelet transform and the GRU has a relatively
high prediction accuracy and a better fitting effect. The model proposed in this study can provide a
reference for protecting this type of lake-water body and the restoration of missing values in lake
water quality monitoring data.

Keywords: dissolved oxygen prediction; dish-shaped lake; wavelet transform; maximal information
coefficient; gated recurrent unit

1. Introduction

Water quality prediction remains a fundamental task in water quality evaluation, man-
agement and protection. Advanced technologies, such as the Internet, Internet of things,
and intelligent sensors, have been increasingly applied to water quality monitoring. They
provide powerful tools for fast and real-time acquisition of water quality indicators and
hence facilitate accurate prediction of changes in water quality, which is of great importance
for establishing a water quality early-warning system [1]. The water environment of lakes is
an unstable system subject to the impacts of climate changes, variations in the river basins,
and socio-economic and human activities [2]. Establishing a prediction model based on
water quality indicators can help us better understand the internal mechanisms of changes
in the water environment, which is of great importance for water quality management
and protection, as well as the prevention of water pollution. The water quality of lakes
shows gradual, nonlinear, and uncertain changes [3], and macroscopically, seasonal and
periodical variations, which are hard to simulate by conventional methods or classical
mathematical models.

At the present time, as the online monitoring capacity and computing power for
water quality data improve, data-driven models are seeing wider adoption in water quality
prediction. The dissolved oxygen concentration is a crucial indicator of water quality
and ecological well-being of lakes [4,5], and the accurate prediction of dissolved oxygen
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concentration plays an important role in monitoring and managing the water quality
in lakes. As the studied area and the type of water bodies vary, the prediction model
differs as well. Many existing works have adopted machine-learning methods, such as the
support vector machine (SVM), multivariate adaptive regression splines (MARS), neural
networks (long short-term memory network, generalized regression neural network, and
backpropagation neural network), and polynomial chaos expansion to predict the dissolved
oxygen concentration in surface water bodies, such as rivers, lakes and ponds [6–18]. For
example, a multivariate adaptive regression spline (MARS) model using running water
to predict dissolved oxygen concentration was proposed, and when compared with many
machine-learning methods, it achieved better prediction results [19]. A feed forward neural
network (FFNN) model and a radial basis function neural network (RBFNN) mode were
proposed to predict the dissolved oxygen concentration of the Surma River, Bangladesh [20].
An Adaptive neuro-fuzzy inference system (ANFIS) was proposed to estimate accurately
the biochemical oxygen demand (BOD) of the Surma River in Bangladesh [21], and was
successfully applied to establish the river water quality prediction model. It was reported
that the SVM performed better at dissolved oxygen prediction than the backpropagation
(BP) neural networks, the generalized regression neural network (GRNN), MARS, and
the M5 model tree [7,8,16]. A hybrid model that combined an autoregressive integrated
moving average (ARIMA) with a support vector regression (SVR) was proposed in [14],
which supplemented the nonlinear changes by the SVR; the model was trained on the
samples of measured pH and dissolved oxygen concentration of Chaohu Lake in Anhui
province, China, in 2004–2015, and achieved a high prediction accuracy. A hybrid MIC-SVR
method was proposed in [10], which achieved an accurate prediction of dissolved oxygen
in the Pearl River Basin, with a coefficient of determination (R2) of 0.9; they also found that
using the MIC method could considerably reduce the error and improve the goodness of fit.
Antanasijević et al. estimated the dissolved oxygen concentration of the Danube in northern
Serbia by different neural networks, and found that the recurrent neural network (RNN)
performed better than the GRNN and BP neural networks [13]. Since the online-monitored
dissolved oxygen concentration data are time-series data, the RNN model is suitable for
time-series processing, but they are prone to vanishing and exploding gradients when
applied to a long time series [22].

Long short-term memory neural network (LSTM), a type of RNN [23,24], is specially
designed to prevent the neural network output, for a given input, from either decaying or
exploding as it cycles through the feedback loops. It can select memories, and the neurons
in the network are controlled by three gates: input gate, output gate, and forget gate, so
that the model can prevent the vanishing gradient problem and estimate the time-series
variables more accurately than conventional RNNs. It can dig deep into the inherent laws
of time series and learn long-term dependencies. However, the LSTM neural network has a
complex structure and many parameters, so training and prediction are not efficient. The
LSTM model can also be combined with data preprocessing methods, such as principal
component analysis (PCA), K-similarity, and wavelet transform, to denoise the data and
improve the prediction accuracy [25–28]. Liu et al. proposed a multi-factor water quality
prediction model that denoised the input data by K-similarity and performed prediction by
the LSTM model [26]; their model produced more accurate prediction results than the RNN
and conventional LSTM models. GRU, a popular and streamlined variant of LSTM, has
fewer parameters and simpler structures than the conventional LSTM models, and hence
can converge faster and achieve better prediction than other LSTM variants.

Poyang Lake receives water from the basin and is directly connected to the Yangtze
River. The water level changes with seasonal changes, and there are a large number of
dish-shaped lakes. The special geomorphological and hydrological characteristics cause
the dish-shaped lakes to play an increasingly important role in the basin ecosystem [29].
The dish-shaped lakes are connected to the main lake of Poyang Lake when the water
level is high (summer and autumn), and form independent dish-shaped lakes when the
water level falls (winter and spring). This unique environment means the dissolved oxygen
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in the water is affected by environmental factors, which are characterized by uncertainty
and instability. Even though dissolved oxygen is an important and direct indicator of the
health level of natural water ecosystems, there is minimal high-frequency and automatic
water quality monitoring equipment deployed in the field due to cumbersome maintenance
requirements and other factors, and the research is not in-depth, especially for complex
and changeable water quality. There are relatively few studies on the change of dissolved
oxygen concentration in the natural water body of dish-shaped lakes. In addition, long-
term water quality monitoring data is easily affected by factors such as equipment and
weather, and there is a certain amount of noise data, which affects the training speed and
performance of the model. In order to accurately predict the dissolved oxygen concentration
in the water body of the dish-shaped lakes in Poyang Lake, and to provide a scientific
decision-making basis for the monitoring, management and maintenance of the water
quality of Poyang Lake and its watershed, a dissolved oxygen concentration prediction
model for lakes, by combining the wavelet transform (WT)-based denoising method, the
maximal information coefficient (MIC)-based feature selection and the gated recurrent unit
(GRU), was proposed for this study. Specifically, the WT method was employed to denoise
the input data; then, the MIC method was used to calculate the correlation between each
feature and the classification label, and features with high correlations were selected as the
training features; finally, the GRU was used for model training. Furthermore, this proposed
model is compared with three other models (including LSTM, GRU, GRU-WT), and the
comparison results and the merits of the proposed model in this study are discussed. The
proposed model obtained reliable sample data through data cleansing and denoising, and
streamlined the prediction model through feature selection, which not only improved the
training speed and accuracy, but also avoided overfitting while enhancing the model’s
generalization capacity, providing a scientific decision-making basis for water quality
monitoring, management and maintenance of Poyang Lake and its watershed.

The remainder of the paper is organized as follows. Section 2 introduces the concepts
and theories related to the WT-MIC-GRU model, and then discusses the structure and flow
of the model. Section 3 presents the source of the data sample set and various descriptive
statistical metrics. Section 4 conducts experiments and discussions, including data denois-
ing, feature selection, and model training phases. In order to illustrate the effectiveness of
the model proposed in this paper, three baseline models are introduced for comparison,
and the performance of each model is discussed through the experimental results.

2. Modelling
2.1. Wavelet Transform-Based Data Denoising

The model’s prediction performance depends on the authenticity and reliability of the
data. The monitored water quality data, however, often have noise due to impacts from the
devices and weather, so it is necessary to cleanse and denoise the sampled data prior to
model training.

To reduce noise, we need to separate the signals from noise. Fourier analysis can
differentiate signals in the frequency domain, but cannot analyze unstable signals, while
the WT method can separate effective signals from noise by the differences between the two
in the time domain and the frequency domain [30,31]. In this study, the WT method was
employed to denoise the sampled data to maintain effective information while minimizing
noise [32], so that temporal continuity and reliability of the sampled dissolved oxygen
concentration data could be ensured. The WT method could decompose the original time-
series signals into sub-signals to reveal as many time-series details of the original signals as
possible. There are two common forms of wavelet transform, namely continuous wavelet
transform (CWT), and discrete wavelet transform (DWT). Compared to the continuous
wavelet transform, the discrete wavelet transform discretizes the scale and time, which can
keep the reconstruction error low and save time and computing resources. Therefore, the
DWT decomposition sequence is used in this paper.

The WT-based denoising steps are as follows.
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1. The optimal wavelet functions for different feature variables are selected to decompose
the signals. In this study, the Daubechies (db), Symlet (sym), Coiflet (coif) wavelet
functions were selected.

2. The threshold is selected. Thresholds should be set to the high-frequency coeffi-
cients for quantification. A proper threshold should be set for each layer, and soft-
thresholding is performed on high-frequency coefficients on each layer to smooth
the signals.

3. The wavelets are restructured. The wavelets of the signals are restructured based on
the high-frequency coefficient of each layer and the low-frequency coefficient of the
last layer.

4. The denoising effect is evaluated. Two indicators, i.e., the signal-noise ratio (SNR)
and the root-mean-square error (RMSE), are selected to evaluate the denoising effect.
The wavelet function with a larger SNR and a smaller RMSE is considered to have
better denoising performance.

2.2. Maximum Information Coefficient-Based Feature Selection

The monitored water quality data involve various feature parameters, which com-
plicate the model, affecting the model’s training speed and prediction performance. Fur-
thermore, the presence of features with weak or no relevance to the dissolved oxygen
concentration will impair the model’s prediction accuracy, so dimensionality reduction
should be performed on the features. There are two primary ways to reduce the dimension-
ality of features: feature transformation and feature selection [33].

The key to feature selection is constructing evaluation indicators for the sub-set of
effective features based on features of high correlation to the dissolved oxygen concentra-
tion. There are three primary feature selection approaches: encapsulation, embedding and
filtering [34].

The popular measures for the correlation between two features or between a feature
and the labeled feature include the linear correlation coefficient, the chi-square and mutual
information. The linear correlation coefficient indicates the closeness of the correlation
between two variables and is a statistical measure widely used in many fields. The Pearson
correlation coefficient is a correlation coefficient that gauges the linear correlation between
two variables and is established based on the linear correlation between variable X and
variable Y. The chi-square test is to test the correlation between the qualitative independent
variable and the qualitative dependent variable; the mutual information is a measure
of the correlation between two features with nonlinear relevance, but it applies only to
the measurement of correlations between discrete variables. The features of the sampled
water quality data of the lake in this study have no linear correlations, and all the features
and dissolved oxygen concentration are quantitative and continuous. Thus, in this study,
the MIC-based feature selection method was used to calculate the mutual information
between features.

The MIC is a new measure proposed by Reshef et al. [35] to gauge the degree of
nonlinear correlations between variables. The MIC-based method uses the maximal nor-
malized mutual information to measure the degree of correlation between any feature
and the target category, and applies the information theory and the idea of probability to
continued data. In the MIC-based method, the joint probability density is used to measure
the correlation between two random feature variables [36], which can measure the linear
and nonlinear correlations between random variables, and hence can mine the internal
correlations between variables. Besides, the MIC can label not only the discreteness of the
eigenvalues, but the continuity of the values.

If two variables are correlated, the set of their corresponding data points will be
distributed in 2D space. If the space is partitioned into m × n grids, there will definitely be
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a way to partition the scatter diagram of two variables. The MIC of variables x and y are
defined as follows:

MIC(X; Y) = max

{
I(X; Y)

log min
{

nx, ny
}} (1)

where MIC(X;Y) represents the mutual information of X and Y, and nx and ny represent the
number of segments of the variables X and Y during the grid partitioning process, respectively.

2.3. Construction of the WT-MIC-GRU Prediction Model
2.3.1. Gated Recurrent Unit

The GRU shares the same input structure with RNN: when the current input xt and
the cell state ht−1 (calculated at the preceding time point) are input to the GRU, the two
output states are the output of the current hidden node yt and the cell state ht.

Figure 1 shows the internal structure of the GRU.

Figure 1. Internal structure of GRU.

There are two gates in a GRU: the reset gate and the update gate.
(1) Update gate
The update gate determines how much information will be transmitted to the next time

step. The model can copy all previous information, which reduces the risk of vanishing
gradient. At the time step t, Equation (2) is used to calculate the gated signal at the
update gate:

zt = σ(Wz ∗ [xt, ht−1]) (2)

where xt is the input vector at the time step t, which is multiplied by the weight matrix
Wz to perform linear transformation; ht−1 stores the information obtained at the preceding
time step (t − 1), which will also undergo linear transformation. Information from these
two parts is summed and input to the sigmoid activation function, and the output is the
gated signal that is between 0 and 1. The closer the gated signal approaches 1, the more the
past information is memorized.
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(2) Reset gate
The reset gate, which determines how much information to forget, is used to screen

the current information. It involves three steps. The first step is to calculate the value of the
reset signal rt, and Wr is the reset weight matrix:

rt = σ(Wr ∗ [xt, ht−1]) (3)

The second step is to reset the state of the preceding cell to filter the information
transmitted from the preceding step. The information obtained through resetting is h′t−1,
the calculation equation for which is as follows:

h′t−1 = ht−1
⊗

rt (4)

Then, the current cell state h̃t is calculated, which means selectively memorizing the
filtered information and the input of the current time step. In the equations, ⊗means the
multiplication of elements in the matrix, tanh is the activation function, W is the weight.
The calculation equation for h̃t is as below:

h̃t = tan h(W∗
[
xt, h′t−1

]
(5)

Last, the network calculates the current cell state ht, which retains the information of
the current unit and transmits it to the next unit. The equation is as follows.

ht = (1− zt)
⊗

ht−1 + zt
⊗

h̃t (6)

The ultimate output of the current cell is:

yt = σ(W0 ∗ ht) (7)

where W0 is the weight matrix.

2.3.2. WT-MIC-GRU Prediction Model

A dissolved oxygen concentration prediction model for lake water based on WT-
MIC-GRU is proposed in this study, and the specific prediction workflow is shown in
Figure 2.

The WT-MIC-GRU prediction model was employed to predict the dissolved oxygen
concentration of Poyang Lake. Specifically, the sample dataset was denoised by the WT
method, and the eigenvalues of all features were normalized; then, the MIC was employed
for feature selection, and features with a MIC ≥ 0.3 [10] were selected for dissolved oxygen
concentration prediction; finally, the GRU model was trained and tested. The algorithm
was configured as follows: the time step of GRU was set at 3, the number of hidden units
was 32, the batch size was 100, the learning rate was 0.001, and the number of iterations was
set at 50. Among all the sampled data, 67% was used as the training set, and the remaining
33% used as the test set to perform prediction.
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Figure 2. Flowchart of the WT-MIC-GRU prediction model.

3. Acquisition of Sample Data

The sample data used in this study are real-time monitored data from the dish-shaped
lakes of Poyang Lake, and there are 11 monitoring indicators: atmospheric temperature,
wind direction, wind speed, atmospheric pressure, relative humidity, water temperature,
pH scale, conductivity, measured water depth, redox potential, and dissolved oxygen
concentration. The monitoring time is from April to November 2017 (eight months); the
data were sampled every two minutes, and a total of 7803 pieces of data were obtained.
Descriptive statistical indicators of the sampled data are shown in Table 1.

Table 1. Descriptive statistical indicators of sampled data.

Atmospheric
Tempera-

ture
(◦C)

Wind
Direction
(Degree)

Wind
Speed
(m/s)

Atmospheric
Pressure

(KPa)

Relative
Humidity

(%)

Water
Tempera-

ture
(◦C)

pH
(/)

Conductivity
(µS/cm)

Measured
Water

Depth (m)

Redox
Potential

(mv)

Dissolved
Oxygen
Concen-
tration
(mg/L)

Mean 23.11 144.42 3.37 1009.9 81 23.46 6.87 107.14 0.36 0.27 7.48
Maximum 36.89 359 13.2 1029 96 31.56 9.18 151.9 0.63 −0.1 17.23
Minimum 12.28 0 0.03 1001.7 49 16.4 5.79 93.2 0.25 −0.4 4.17
Standard
deviation 4.55 92.7 2.10 5.75 9.37 3.01 0.38 15.72 0.07 0.04 1.53

Coefficient
of variation 19.69% 64.19% 62.31% 0.57% 11.57% 12.83% 5.53% 14.67% 19.44% 14.81% 20.45%
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In order to improve the quality of the monitored data, it is necessary to perform data
cleaning on sample data before model training. The k-means clustering method is used to
identify abnormal data. For problems, such as missing data, according to the characteristics
of small samples and nonlinearity in the data, support vector regression is used to recover
the missing data [37].

4. Results and Analysis
4.1. Data Pretreatment

Data pretreatment involves two steps: normalization of eigenvalues of the samples;
and data denoising.

(1) WT-based data denoising
The model’s prediction performance relies on the authenticity and reliability of the

sample data. The monitored water quality data of the lake, due to system errors, random
errors and human errors, may be polluted by noise. Furthermore, the monitoring devices
deployed underwater for long periods are likely to be affected by pollutants and are
susceptible to the impacts of weather changes, which may produce data that deviate from
reality. Therefore, it is necessary to denoise the sampled data. In this study, the WT-based
denoising algorithm was employed to retain effective information and perform wavelet
decomposition on the sample data; the decomposed wavelet coefficient was processed by
the gate threshold, and the wavelet reconstruction was employed on the signals to reduce
the noise. The principle of determining the number of decomposition levels is that at least
one correct wavelet transform coefficient should be obtained when the decomposition
reaches the maximum level. That is, at this time, the length of the stretched wavelet mother
function should not be greater than the length of the signal to be analyzed to calculate
the maximum number of layers. This ensures that the results are reasonable. This paper
uses the dwt_max_level function of the PyWavelets analysis library to calculate the highest
decomposition order that the signal can achieve. In this study, different wavelet functions
were used to process the 11 feature variables to compare the denoising effect, the specific
results are shown in Table 2.

Table 2. Comparison of denoising effect of different functions on 11 feature variables.

Feature Variables Evaluation Indicators Coif5 Sym10 Db8

Atmospheric temperature SNR/db 25.976 27.162 23.85
RMSE 0.225 0.196 0.282

Wind direction
SNR/db 19.354 19.295 18.383

RMSE 9.623 9.693 10.655

Wind speed SNR/db 21.667 20.58 20.79
RMSE 0.169 0.191 0.184

Atmospheric pressure SNR/db 36.214 36.936 35.494
RMSE 0.089 0.082 0.096

Relative humidity SNR/db 24.052 23.956 22.325
RMSE 0.577 0.583 0.683

Water temperature SNR/db 29.468 30.894 27.133
RMSE 0.101 0.085 0.13

pH scale SNR/db 19.413 22.115 19.162
RMSE 0.039 0.029 0.039

Conductivity SNR/db 28.376 28.56 26.704
RMSE 0.597 0.585 0.722

Measured water depth SNR/db 33.009 32.887 31.849
RMSE 0.002 0.002 0.002

Redox potential SNR/db 18.102 18.271 17.947
RMSE 0.005 0.005 0.005

Dissolved oxygen SNR/db 20.926 22.161 19.233
RMSE 0.134 0.116 0.159
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Three wavelet functions, coif5, sym10, and db8, were used to denoise the feature
variables. The two indicators, SNR and RMSE, were used to evaluate the denoising
effect and select the optimal function for each feature variable. In the test, the global soft
threshold was used as the threshold, set at 0.004. As per the denoising effect, the function
with the minimum SRN and RMSE was identified as the optimal function, and hence the
combinations of features and wavelet functions were as follows:

The sym10 function was used for the features of atmospheric temperature, atmo-
spheric pressure, water temperature, pH scale, conductivity, redox potential, and dissolved
oxygen concentration; the coif5 function was used for the features of wind direction, wind
speed, relative humidity and measured water depth; and the db8 function was used for
other features.

After denoising, a dataset consisting of 7803 × 11 pieces of data was obtained, and
the data of specific features were denoised by the corresponding optimal wavelet function,
as mentioned above. Figure 3 shows the denoising results of data of the first six features
(atmospheric temperature, wind direction, wind speed, atmospheric pressure, relative
humidity, and water temperature). The figures on the left present the distribution of
samples before denoising, and the figures on the right show the distribution of samples
after denoising.

Figure 3. Denoising effect of data about the six features using corresponding wavelet functions.
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As can be seen from Figure 3, for each sample feature, after wavelet transform and
noise reduction, there is a certain degree of smoothing. Among them, the numerical
fluctuation of the wind direction feature is relatively large. After the noise reduction
process, the signal-to-noise ratio is improved, the noise level is reduced to a certain extent,
and the curve smoothing effect is obvious, thereby improving the accuracy and stability of
the dissolved oxygen prediction model to a certain extent.

(2) Eigenvalue normalization.
Because many water quality indicators were selected for this study, the sample data

consist of 10 variables that have different dimensionalities and differ greatly. To remove the
impact of differences in the unit and scale of the features, the variables were normalized; that
is, each feature was adjusted to a specific range. The max–min normalization was performed
to transform all eigenvalues into values within the range of [0, 1] to reduce the fluctuation
and complexity of data. The max–min normalization equation is presented below:

x′t = (xt − xmin)/(xmax − xmin) (8)

where xmax and xmin represent the maximum and minimum of the sample data for the
same feature, xt is the original value of the sample data, and x′t is the normalized value.

4.2. Feature Selection

The features of the sample data obtained in the present work do not necessarily
present a linear correlation with the feature of dissolved oxygen concentration, and the
values of all features are quantitative and continued data. The MIC-based feature selection
method was used to calculate the correlation between dissolved oxygen and other features,
and the features with high correlations were used as the input features to the LSTM
prediction model.

The variable of the dissolved oxygen concentration feature was set as Y, and that for
other features as X. The steps of the MIC-based method are as follows.

1. The i and j were given, and scatter diagram composed by X and Y were partitioned
into i columns and j lines, and the maximal mutual information was obtained;

2. The maximal mutual information was normalized;
3. The maximal mutual information under different scales was considered as the MIC value.

In this study, the monitored water quality dataset of the dish-shaped lake was used.
The minepy library of Python was employed to calculate the MIC between different features,
and the searborn library was utilized to visualize the MIC matrix between features, as
shown in Figure 4.

Figure 4 shows the correlation coefficients between features in this study. Numbers
0–10 represent the 11 features of atmospheric temperature, wind direction, wind speed, at-
mospheric pressure, relative humidity, water temperature, pH scale, conductivity, measured
water depth, redox potential and dissolved oxygen concentration, respectively. Table 3 lists
the correlation coefficient between dissolved oxygen and other features obtained by the
MIC algorithm.
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Figure 4. Correlation coefficient between sample features.

Table 3. Correlation coefficients between dissolved oxygen and other eigenvalues by the
MIC algorithm.

Features Correlation with Dissolved Oxygen

Atmospheric temperature 0.38
Wind direction 0.19

Wind speed 0.12
Atmospheric pressure 0.27

Relative humidity 0.49
Water temperature 0.33

pH scale 0.53
Conductivity 0.37

Measured water depth 0.23
Redox potential 0.073

As Table 3 shows, the pH scale and relative humidity have the largest correlation with
dissolved oxygen. To reduce the computation overhead of the LSTM model and improve
its generalization capacity, the threshold of MIC was set at 0.3 [10], and variables that have
little correlation to the target variable (dissolved oxygen) were removed (MIC < 0.3). Con-
sequently, the features used for model training were reduced to four features: atmospheric
temperature, relative humidity, pH scale, and conductivity.
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4.3. GRU Model Training and Evaluation

The sample data, after denoising and feature extraction, were transmitted to the GRU
model for training. The GRU model was optimized by the Adam algorithm [38]. The
Adam algorithm combines the advantages of Adagrad for dealing with sparse gradients
and RMSProp for dealing with non-stationary targets, and calculates different adaptive
learning rates for different parameters. A learning rate was set to update the weight, and
the test set was used to test the model’s performance.

To reflect the mean error between the predicted value and the measured value, the
root-mean-square-error (RMSE) was used to evaluate the model’s performance. RMSE
is the arithmetic square root of the mean error, while the mean square error (MSE) is
the expected value of the error between the predicted value and the measured value.
Equation (9) shows the calculation equation of MSE, where yi is the measured value, and pi
is the predicted value.

MSE =
1
N

N

∑
i=1

(yi − pi)
2 (9)

RMSE is the square root of Equation (9), which can well describe the deviation of the
predicted results from the reality, the unit of which is the same as that of the dataset. A
smaller RMSE indicates a more stable model.

The model’s accuracy and fitting effect were assessed by the mean absolute percentage
error (MAPE) and coefficient of determination (R2). MAPE represents the ratio of the abso-
lute value of error of all samples to the measured value. The closer the MAPE approaches
0, the more accurate the model is. The calculation equation of MAPE is:

MAPE =
1
N

N

∑
i=1

|yi − ŷi|
|yi|

(10)

where yi is the measured value, and ŷi is the predicted value.
The coefficient of determination, i.e., R2, represents the proportion of variance in the

dependent variable that can be explained by the independent variable. It indicates the
model’s fitting effect, and the range is set in [0, 1]. The larger the R2 is, the better the fitting
effect of the model. The calculation equation of R2 is shown in Equation (11):

R2 = 1− ∑N
i=1 (yi − ŷi)

2

∑N
i=1 (yi − yi)

2 (11)

where yi is the measured value, and yi is the mean value of the samples.
In this paper, Willmott’s Index of Agreement (WIA) is used to evaluate the generaliza-

tion performance of the model, and the calculation is shown in Equation (12):

WIA = 1− ∑N
i=1 (yi − ŷi)

2

∑N
i=1 (|yi − y|+|ŷi − y|) 2 (12)

4.4. Comparative Experiments

To verify the effectiveness of the proposed model, a proposed model that combines
WT-based denoising, MIC-based feature selection and GRU was compared with three
baseline models (LSTM, GRU, GRU-WT) by experiments. Table 4 shows the results.
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Table 4. A comparison of our proposed model with another standalone model.

Model RMSE MAPE% R2 WIA

LSTM 0.471 1.495% 0.954 0.986
GRU 0.128 0.712% 0.996 0.999

GRU-WT 0.126 0.666% 0.996 0.999
WT-MIC-GRU 0.087 0.723% 0.998 1.000

As Table 4 shows, GRU achieves higher accuracy than LSTM, with the R2 increased
from 0.954 to 0.996, and the RMSE reduced by 0.343. That is, the GRU model has improved
the dissolved oxygen prediction accuracy by 72.8% on average, and reduced the MAPE
from 1.495% to 0.712%. This means the GRU model has a higher prediction accuracy and
better fitting effect than the LSTM model.

Compared with the conventional GRU model, the WT-MIC-GRU model further im-
proves the R2 to as high as 0.998 and reduces the RMSE by 0.041. That is, our proposed
model achieves an accuracy 32.03% higher than that of the conventional GRU model, which
means that our model has considerably improved the dissolved oxygen prediction accuracy.
Compared with the conventional GRU model, the “WT-GRU” model that introduced WT
to denoise the data, reduced the MAPE from 0.712% to 0.666%, indicating that using the
dataset processed by WT for training would achieve a model with better fitting effect. Com-
pared with the “WT-GRU” model, however, our model that introduced the MIC method
further improved the MAPE from 0.666 to 0.723, which suggests that the MIC-based feature
selection has a positive impact on the fitting effect. Judging by all the evaluation indicators,
our model proved to be the best model among all the models compared.

From the WIA results of each comparative model, the GRU model has a certain
improvement in the WIA of the LSTM model, indicating that it has better generalization
ability; that is, a stronger prediction ability. The WIA of the model proposed in this paper
reaches 1.0, which is the best among all models.

There are many combination methods based on the LSTM model, and some studies
have achieved good prediction results. For example, Chi Dianwei et al. proposed a model
based on the combination of principal component analysis (PCA), maximal information
coefficient and long short-term memory neural network (LSTM) to predict the dissolved
oxygen content of the dish-shaped lake [39], and achieved good predictions. The coefficient
of the determination reached 0.99. Sun Longqing et al. proposed a prediction model of
dissolved oxygen content in pond water, based on IBAS and LSTM networks [40]; the root-
mean-square error of the model was 0.8026, and it had good generalization performance;
In Chen Yingyi et al., the dissolved oxygen content prediction model of CNN-LSTM [41]
achieved good results in predicting the dissolved oxygen content in aquaculture after 2
h. The model root-mean-square error was 0.229, and the coefficient of determination was
0.954. The above three models are all combined models based on LSTM, but their accuracy
and coefficient of determination cannot match the performance of the model proposed in
this paper. In addition, the GRU model has a simpler network structure than the LSTM
model, which can make the parameters converge faster, reduce the possibility of overfitting
to a certain extent, and have better prediction effects on certain tasks, which can meet the
forecasting needs of larger data samples size with longer time series.

In our experiment, 33% of the samples were used as the test set to test the models,
and then a curve line was drawn, according to the predicted value and the actual value
of the test sample data, where the abscissa represents the serial number of the test sample
point, and the ordinate represents the dissolved oxygen concentration value. Figures 5–8
show the fitted curve of the predicted value and the actual value of each model, and the
relationship between these two values.
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Figure 5. Dissolved oxygen prediction by the LSTM model.

Figure 6. Dissolved oxygen prediction by the GRU model.

Figure 7. Dissolved oxygen prediction by the WT-GRU model.
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Figure 8. Dissolved oxygen prediction by the WT-MIC-GRU Model.

As the fitting curves of the predicted dissolved oxygen concentration and the true
dissolved oxygen concentration show (Figures 5–8), the GRU model has a better fitting
effect than LSTM, and the WT-MIC-GRU model further improves the fitting effect than
the conventional GRU model without data denoising and feature selection. The presence
of noise in the sample data will impair the model’s prediction accuracy. Our proposed
WT-MIC-GRU model, however, effectively avoids the impact of noise and achieves a high
prediction accuracy; meanwhile, with the features highly correlated to the dissolved oxygen
concentration, identified by the MIC-based method as the inputs to the LSTM model, our
model has reduced the computation complexity and achieved a better fitting effect. In
conclusion, the model prediction proposed in this paper is relatively optimal in terms of
stability, accuracy and fitting effect, and is an effective method for predicting the dissolved
oxygen concentration of dish lake water. In order to improve the prediction model in the
future, the equipment that collects the data could be fitted with special cleaning equipment
to ensure that the data can reduce noise and redundancy from the root cause.

The data set used in this paper is based on the real-time online monitoring data of
the dish-shaped lakes. Poyang Lake is the largest freshwater lake in China and is directly
connected to the Yangtze River. High water level fluctuations lead to numerous dish-
shaped lakes, which are connected to Poyang Lake at its high water level in summer and
autumn, and form independent dish-shaped lakes in winter and spring. This unique
phenomenon can predict the dissolved oxygen in this district to be more complex. As
shown in Table 1, the dissolved oxygen in a dish-shaped lake is extremely unstable. The
range can reach 13.06 mg/L, which is higher than the range reported for deep lakes and
shallow lakes [42,43]. The WT-MIC-GRU model is a prediction model of dissolved oxygen
concentration proposed for the unique dish-shaped lake, and experiments have proved
its excellent prediction performance. Among them, the noise reduction and MIC-feature
extraction, based on wavelet transform, can significantly improve the stability and accuracy
of the model, and because the parameters of the GRU model are simplified compared to
the LSTM model, the prediction efficiency is higher, and is suitable for larger-scale data
prediction. Therefore, the WT-MIC-GRU model is useful for carrying out and improving
the water quality monitoring and protection of such lakes.

At the same time, judging from the actual observed value distribution in Figures 5–8,
there are two places between the sample point serial numbers 1500–2000 where the dis-
solved oxygen concentration fluctuates greatly, and the fitting effect is not good. The
dish-shaped lakes are connected to the main lake of Poyang Lake when the water level
is high in summer and autumn, and form independent dish-shaped lakes in winter and
spring. This unique environment means the dissolved oxygen in the water is affected
by environmental factors, which are characterized by uncertainty and instability. Both
long-term trends and seasonal effects, and the two places mentioned above, happen to
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coincide with the change of seasons, and this sharp fluctuation will have a certain impact
on the prediction results of the time series-based recurrent neural network model. In
the future, we will consider increasing the training sample data set to further improve
the generalization ability of the model; and we will consider adding seasonal factors to
the model construction, to provide stronger adaptability near the seasonally alternating
sample points.

5. Conclusions

In view of the many and complex factors affecting the dissolved oxygen in dish-shaped
lake water, combined with its time series and nonlinear characteristics, a WT-MIC-GRU
model for predicting the dissolved oxygen concentration in dish-shaped lake water is
proposed. Among them, WT noise reduction and MIC-feature extraction processing can
improve the reliability of data and reduce the complexity of the model, thereby significantly
improving the stability, accuracy and generalization ability of the model. The proposed
model was compared with LSTM, GRU, and the GRU-WT models in experiments. The
following major conclusions were reached:

1. Compared with the LSTM model, the GRU model achieved higher accuracy in the pre-
diction of the dissolved oxygen concentration in the dish-shaped Poyang Lake, with
the coefficient of determination increased from 0.954 to 0.996; meanwhile, the RMSE
was reduced by 0.343, and the MAPE dropped from 1.495% to 0.712%, indicating that
the GRU model achieves a better fitting effect than LSTM.

2. The GRU model, after introducing WT method for data denoising and the MIC method
for feature selection, increased the R2 of the conventional GRU model from 0.996 to
0.998, and reduced the RMSE by 0.041, indicating improved prediction accuracy. It
also indicates that data denoising and feature selection could considerably improve
the model’s performance.

3. The GRU model that incorporated the WT for data denoising, but not feature selection,
achieved an MAPE of 0.666%, and when the feature selection method was introduced,
the MAPE rose to 0.723%, which means that feature selection had a positive impact
on the fitting effect. Judging by all the evaluation indicators, our proposed model
achieved the best performance among all models that were compared.

Our study still has some limitations, which will be improved in future research. On
the one hand, the data time span used in the training of the model proposed in this paper
is 8 months, and it does not contain extreme period data, which affects the generalization
ability of the model. In future research, more years of data will be considered to enhance the
applicability and generalization ability of the model. On the other hand, although the GRU
model works well on long time-series problems, it does not distinguish the information of
each time step of the long time series, and may ignore some time-series nodes that have a
significant impact on the final prediction results. Therefore, in future research, the attention
mechanism based on time series will be considered to highlight the influence of different
nodes on dissolved oxygen, thereby improving the performance of the model.
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