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Abstract: The prediction of chaotic time series systems has remained a challenging problem in recent
decades. A hybrid method using Hankel Alternative View Of Koopman (HAVOK) analysis and
machine learning (HAVOK-ML) is developed to predict chaotic time series. HAVOK-ML simulates
the time series by reconstructing a closed linear model so as to achieve the purpose of prediction.
It decomposes chaotic dynamics into intermittently forced linear systems by HAVOK analysis and
estimates the external intermittently forcing term using machine learning. The prediction performance
evaluations confirm that the proposed method has superior forecasting skills compared with existing
prediction methods.

Keywords: chaotic time series prediction; Koopman; machine learning; Hankel matrix

1. Introduction

A chaotic system refers to a deterministic system where there are irregular movements
that appear to be random, and its behavior is uncertain, unrepeatable, and unpredictable.
The high sensitivity to the initial conditions and the fact that they are inherently unpre-
dictable are the main characteristics of the chaotic systems. Chaotic phenomena are ubiqui-
tous in several scientific fields, such as atmosphere motions [1], population dynamics [2–4],
epidemiology [5], and economics. It has been a hot topic in such fields and attracted the
attention of many people. It is worth noting that the chaotic system is not completely
random as its name suggests but has certain structure and patterns. However, due to the
lack of understanding of the dynamic mechanism of chaotic systems, the prediction of
chaotic time series is still a very important but challenging problem.

With the development of big data and advanced algorithms in machine learning,
it has become a new research direction to solve prediction problems of chaotic systems
using a data-driven way. Several empirical models to predict chaotic time series based on
machine learning are proposed. Many famous artificial neural networks (ANN) models
such as Radial Basis Function (RBF) neural network [6], neuro-fuzzy model with Locally
Linear Model Tree (LoLiMoT) [7], feedforward neural network [8], multi-layer perceptron
(MLP) [9], recurrent neural networks (RNN) [10], finite impulse response (FIR) neural
network [11], deep belief nets (DBN) [12], Elman neural network [11,13,14], and wavelet
neural network (WNN) [15,16] have been introduced in the literature.

However, the setting of neural network model parameters will greatly affect the per-
formance of these models. Consequently, a substantial amount of work has also been
put into the optimization algorithm and parameter settings. Min Gan et al. present a
state-dependent autoregressive (SD-AR) model, which uses a set of locally linear radial
basis function networks (LIRBFNs) to approximate its functional coefficients [17]. In ad-
dition, Pauline Ong and Zarita Zainuddin presented a modified cuckoo search algorithm
(MCSA) to initialize WNN models [16]. A hybrid learning algorithm, called HGAGD,
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which combines genetic algorithm (GA) with gradient descent (GD) is proposed to opti-
mize the parameters of a quantum-inspired neural network (QNN) [18]. In the proposed
methodology, the embedding method is used along with ENN to predict the residual time
series [13]. A single hidden Markov model (HMM) combined with fuzzy inference systems
is introduced for time series predicting [19]. What is more, many hybrid methods are also
developed for improving the performance of these prediction models [20,21].

As mentioned above, model structure and parameter tuning are important factors
for chaotic time series prediction with machine learning, and a lot of research has focused
on it. To simplify the learning model, a hybrid method using Hankel Alternative View
Of Koopman (HAVOK) analysis and machine learning (HAVOK-ML) is developed to
predict chaotic time series in this research. Hankel Alternative View Of Koopman (HAVOK)
analysis was proposed by Brunton [22]. It combines the delay embedding method [23]
and the Koopman theory [24] to decompose chaotic dynamics into a linear model with
intermittent forcing. HAVOK-ML decomposes chaotic dynamics into intermittently forced
linear systems with HAVOK; then, it estimates the forcing term using machine learning.
Essentially, the prediction of the chaotic time series using the HAVOK-ML method is con-
ducted as solving linear ordinary differential equations, which can be calculated efficiently.
It can take different types of regression methods such as Linear Regression or Random
Forest Regression (RFR) [25] into the prediction framework and combines the advantages
of HAVOK theory and machine learning. Therefore, it can obtain better prediction results
than directly using those machine learning models.

This paper is organized as follows. Section 2 briefly describes the theory of the HAVOK
analysis combined with the machine learning method for time series prediction. Section 3
applies the proposed combined method to perform multi-step ahead prediction for some
well-known chaotic time series and also compares the obtained prediction performance
with that of existing prediction models. Finally, conclusions are given in Section 4.

2. HAVOK-ML Method

Consider a nonlinear system of the form:

dx(t)
dt

= f (x(t)) (1)

where x(t) ∈ Rn is the state of the system at time t and f denotes the dynamics of the
system. For a given state x(t0) at time t0, x(t0 + t) can be given discretely by:

x(t0 + t) = x(t0) +
∫ t0+t

t0

f(x(τ))dτ (2)

Generally speaking, for an observed chaotic time series x(t), the governing equation f
is highly nonlinear and unknown. HAVOK analysis [22] provides linear representations
for those unknown nonlinear systems. A Hankel matrix H, for a single measurement x(t),
by taking singular value decomposition (SVD), is given by:

H =


x(t1) x(t2) . . . x(tp)

x(t2) x(t3) . . . x(tp + 1)
...

...
. . .

...
x(tq) x(tq+1) . . . x(tm)

 = UΣVT (3)

where m = p + q− 1, p and q are two parameters that determine the dimension of H. The
columns of H are defined by:

h(i) = [x(ti), x(ti+1), . . . , x(ti+q−1)]
T(i = 1, . . . , p) (4)
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then
H = [h(1) h(2) . . . h(p)] (5)

Usually, H can be well approximated by the first r columns of U, V. According to the
HAVOK analysis [22], the first r− 1 variables in V can be built as a linear model with the
last variable vr as a forcing term:

dvr−1(t)
dt

= Avr−1(t) + B(t) (6)

where vr−1 = [v1, v2, . . . , vr−1]
T is the vector of the first r− 1 eigen-time-delay coordinates.

Note that Equation (6) is not a closed model because vr(t) is an external input forcing. In the
linear HAVOK model, matrix A and vector B may be obtained by the Sparse Identification
of Nonlinear Dynamics (SINDy) algorithm [26] or by a straightforward linear regression
procedure. vr is given by the rth column of V.

A machine learning method is used to predict vr(t + 1) by using previous observed
values [x(t−D∆t), x(t− (D− 1)∆t, . . . , x(t−∆t)], as shown in Figure 1. Suppose vr evenly
varies within interval [t, t + 1]. The evolution of vr(t) can be approximated by:

dvr(t)
dt

= (vr(t + 1)− vr(t))/∆t (7)

Then, the first r− 1 variables vr−1(t + 1) are obtained by solving the linear model Equa-
tion (6):

H =

 vr−1(t + 1)
vr(t + 1)

vr(t + 1)− vr(t)

 = exp

 Adt Bdt 0
0 0 I
0 0 0

 vr−1(t)
vr(t)

vr(t + 1)− vr(t)

 (8)

Assume that the integration starts at time tp for an input h(p). Then, the next step of
h(p + 1) can be written as:

h(p + 1) = UΣvr(tp + 1) (9)

where vr = [v1, v2, . . . , vr−1, vr] is a vector containing the first r variables. In order to
evaluate the efficiency of HAVOK-ML, RMSE, NMSE, and R2 score defined below are used
as a performance index.

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (10)

NMSE =
∑N

i=1 (yi − ŷi)
2

∑N
i=1 (yi − ȳi)2

(11)

R2score =
∑N

i=1 (ŷi − ȳi)
2

∑N
i=1 (yi − ȳi)2

(12)

where yi, ŷi, and ȳ represent the observed data, the predicted data, and the mean of the
observed data, respectively. The Root Mean Squared Error (RMSE) and the Normalized
Mean Squared Error (NMSE) are used to assess the accuracy of the prediction and to
compare the results with those of the literature. The R2 score is used to evaluate the score
of the machine learning based prediction for vr.
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Figure 1. The architecture of the HAVOK-ML method to perform one-step prediction. The SVD of
Hankel matrix H yields eigen time series VT . On the one hand, the HAVOK analysis gives a linear
system for the first r− 1 variables with vr(t) as an external input. On the other hand, by using the
machine learning method, the evolution of vr(t) can be established. Hence, a closed linear model
for the first r variables is available. The symbols with superscript + stand for values at the next step
t + 1.

3. Numerical Experiments

In this section, three different type of time series—Lorenz [1], Mackey–Glass [26],
and Sunspot—are applied to verify our proposed HAVOK_ML method. The parameters
adopted in the HAVOK analysis of these series are listed in Table 1.

Table 1. HAVOK analysis parameters for each system.

System Samples dt ∆t q Rank (r) Regressor for vr

Lorenz 20,000 0.01 s 0.001 s 40 11 RandomForest
Mackey-Glass 50,000 0.1 s / 5 5 LoLiMoT

Sunspot 2000 1 month 0.02 month 140 7 LoLiMoT

3.1. Lorenz Time Series

The Lorenz system [1] is among the most famous chaotic systems, which is described
by:

dx
dt

= σ(y− x)

dy
dt

= x(ρ− z)− y

dz
dt

= xy− βz

(13)

The chaotic time series is obtained with parameters σ = 10, ρ = 28, β = 8/3, and dt = 0.01
in the second sampling. In this study, only the time series of variable x(t), shown in
Figure 2, is considered.
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Figure 2. The time series x(t) in the Lorenz system. The initial condition is (−8, 8, 27). The training
data are chosen from the 3rd to the 100th seconds.

In this research, HAVOK-ML decomposes chaotic dynamics into intermittently forced
linear systems by HAVOK analysis; the settings of HAVOK analysis are given in Table 1,
and the sampling time step for each system is consistent with other references listed in
Table 2. However, according to the advice in paper [14], the samples of the Lorenz system
are interpolated at 0.001 s resolution in the HAVOK analysis.

By using HAVOK analysis for the training data, a linear HAVOK model (Equation (6)) is
developed. As shown in Figure 3, matrix A and vector B are sparse, and the reconstruction of
v1(t) and x(t) is coherent with the actual values for the full range of time. Since the vr (Figure 4)
is not smooth enough, many experiment results demonstrate that the RFR method [25] can
predict the vr best. Hence, an RFR method is adopted to train and estimate the next step
vr(t + 1) based on previously observed values [x(t− 40), x(t− 35), . . . , x(t− 10), x(t− 5)].
The samples from the 3rd to the 100th seconds are spilled into training set (first 80%) and test
set (20%). The R2 score for the RFR method on the test set is 0.87. We can observe that the
estimated results are mainly consistent with the actual values, as shown in Figure 4.

Table 2. Comparison of the models in one-step predicting for Lorenz chaotic series x(t), with
1000 testing samples. The last row represents the proposed HAVOK-ML combined with the RFR
method. The highest prediction accuracies achieved by the models are shown in bold.

Model RMSE NMSE Reference

Deep Belief Network 1.02 × 10−2 / [12]
Elman–NARX neural networks 1.08 × 10 −4 1.98 × 10−10 [13]
WNN / 9.84 × 10−15 [15]
Fuzzy Inference System 3.1 × 10−3 / [19]
Local Linear Neural Fuzzy / 9.80 × 10−10 [7]
Local Linear Radial Basis Function Networks / 4.53 × 10−12 [27]
WNNs with MCSA 8.20 × 10−3 1.22 × 10−6 [17]

HAVOK_ML(RFR) 1.43 × 10−5 3.23 × 10−12
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Figure 3. HAVOK analysis for Lorenz chaotic series x(t). From upper-left to bottom-right: matrix A,
vector B, reconstruction of v1(t) using the linear HAVOK model with forcing vr(t), reconstruction of
x(t) and the input of external forcing vr(t).

91.0 91.2 91.4 91.6 91.8 92.0
time

5

0

5

V r

Actual Vr

Predicted Vr

80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0

5

0

5

V r

RandomForestRegressor to predict Vr

Actual Vr

Predicted Vr

Figure 4. The random forest regressor for vr , using previously observed values at
[x(t − 40), x(t − 35), . . . , x(t − 10), x(t − 5)] to predict the next time value at vr(t + 1), with
∆t = 0.001.

In the next experiment, the HAVOK-ML method is used in the N-step recursive
prediction of Lorenz time series. In the recursive prediction, the current predicted values
are used for next predictions without any correction to the actual values. A comparison
between the multi-step predicted values and the original time series, with 1000 testing
samples, is shown in Figure 5. It can be seen that in the initial steps of predict (less than
10), the prediction results are coherent with the actual values. The error increases with
predict steps, especially at the region near the extreme point of the curve. The RMSE of
the prediction function of time is presented in Figure 6. It can be observed that the error
quickly increases with the increase of the predicted time, which means that a long-term
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prediction is basically impossible. At step 10, the obtained RMSE is 9.003× 10−3 (Figure 6),
which is significantly better than the result of the literature (0.014) [27].

0 200 400 600 800 1000
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15

10

5

0

5

10

15 Actual x
1 step prediction

0 200 400 600 800 1000
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15

10
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50 step prediction

Figure 5. Comparison of the original time series samples and the multi-step predicted values with
one-step length of 0.01 s on Lorenz time series.

Table 2 presents the one-step ahead prediction errors (RMSE and NMSE) for the
proposed method as well as some results obtained by existing methods, which were
extracted from the literature. It can be shown that the RMSE index of the proposed method
is optimal, while the NMSE index shows that the proposed method is second only to the
functional weight WNN state-dependent AR (FWWNN-AR) model [15].

0 2 4 6 8 10
N

0.000

0.002

0.004

0.006

0.008

lorenz rmse_x

Figure 6. Lorenz time-series RMSE of multi-step ahead prediction, function of the number of steps (N),
with one-step length of 0.01 s.

3.2. Mackey–Glass Time Series

The Mackey–Glass chaotic time series has been introduced as a white blood cell
production [26]. It is described by:

dx(t)
dt

=
ax(t− τ)

1 + xr(t− τ)
− bx(t), t > 0 (14)

where a = 0.2, b = 0.1, r = 10 and τ = 17, similar to other published papers presented in
Table 3. The Mackey–Glass equation is solved using the delay differential equation method
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dde23 of MATLAB. A chaotic time series samples set of 25,000 lengths, with time step
dt = 0.1, is generated. The samples from the 300th to 2000th seconds, shown in Figure 7,
are chosen as the training set, while the rest is used as the test set.

The HAVOK analysis settings for Mackey–Glass time series are given in Table 1. The
rows in the H matrix are for q = 5, and the rank of the SVD decomposition is r = 5. More
details on the HAVOK analysis and the multi-step ahead prediction for the Mackey–Glass
time series are presented in Figures A1–A4 in Appendix A. By considering the properties
of the vr curve, an LLN model with the LoliMoT optimization method [7] is determined
through experiments as a regressor to predict vr. A comparison between the prediction
accuracies of the proposed method and other models of the literature are summarized in
Table 3. As shown in Table 3, whether RMSE or NMSE, the effect of the proposed method
outperforms the existing models.

Table 3. Comparison of the models in six-time step ahead predicting Mackey–Glass time series, with
4000 testing samples. The last row shows the proposed HAVOK-ML method with the LLN model as
the regressor. The values in bold are the highest prediction accuracies achieved by the models.

Model RMSE NMSE Reference

ARMA with Maximal Overlap Dis-
crete Wavelet Transform

/ 5.3373 × 10−7 [16]

Ensembles of Recurrent Neural Net-
work

7.533 × 10−3 8.29 × 10−4 [20]

Quantum-Inspired Neural Network 9.70 × 10−4 / [28]
Recurrent Neural Network 6.25 × 10−4 / [18]
Type-1 Fuzzy System 4.8 × 10−4 / [21]
Fuzzy Inference System 7.1 × 10−4 / [19]
WNNs with MCSA 5.60 × 10−5 6.25 × 10−8 [17]

HAVOK_ML(RFR) 9.92 × 10−6 1.86 × 10−9

250 500 750 1000 1250 1500 1750 2000
time

0.4

0.6

0.8

1.0

1.2

x

Mackey-Glass training data

Figure 7. Time series of Mackey–Glass system. The initial condition is 0.8, and the training data are
chosen from the 300th to 2000th seconds.

3.3. Sunspot Time Series

The number of sunspots observed in the solar surface varies within a period of
approximately 11 years. The variation of the number of sunspots has a large impact on
Earth and on the climate. The monthly smoothed sunspot number time series, observed by
the Solar Influences Data Analysis Center (http://sidc.oma.be/index.php (accessed on 7
August 2021)), is used for training and forecasting the trend of the sunspot variation. In

http://sidc.oma.be/index.php
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order to compare the results with those extracted from the existing published papers of
the literature (listed in Table 4), the series from November 1834 to June 2001 (2000 data
points) are chosen and scaled between 0 and 1. The first 1000 samples are selected as the
training set (Figure 8), and the remaining 1000 samples are used as the testing set. The
settings of HAVOK analysis for sunspot time series are given in Table 1. Similar to the
Mackey–Glass time series, an LLN model is used as the regressor to predict vr. The details
of the HAVOK decomposition and the multi-step prediction for the sunspot time series
are shown in Figures A5–A8 in Appendix A. A comparison between the prediction errors
(RMSE and NMSE) obtained with the 1000 samples of the testing set and with other models
are presented in Table 4. It can be seen that the proposed HAVOK-ML method outperforms
the existing methods in predicting the sunspot chaotic time series.

Table 4. Comparison of the models in one-time step ahead predicting sunspot time series, with 1000
testing samples. The last row shows the proposed HAVOK analysis with the LLN model as the
regressor. The values in bold are the highest prediction accuracies achieved by the models.

Model RMSE NMSE Reference

Elman-NARX Neural Networks 1.19 × 10−2 5.90 × 10−4 [13]
Elman Recurrent Neural Networks 5.58 × 10−2 1.92 × 10−2 [29]
Ensembles of Recurrent Neural Net-
work

1.52 × 10−2 9.64 × 10−4 [20]

Fuzzy Inference System 1.18 × 10−2 5.32 × 10−4 [19]
Functional Weights WNNs State Depen-
dent Autoregressive Model

1.12 × 10−2 5.24 × 10−4 [21]

WNNs with MCSA 1.13 × 10−2 5.30 × 10−4 [17]

HAVOK_ML(RFR) 4.25 × 10−3 7.40 × 10−5

0 200 400 600 800 1000
time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

x

Sunspot  training data

Figure 8. Time series of sunspot normalized to [−1, 1]. The training period ranges between November
1834 and March 1918.

4. Discussion and Conclusions

In this paper, a HAVOK-ML method combining the HAVOK analysis with machine
learning to predict chaotic time series is proposed. Based on the HAVOK analysis, the
observed chaotic dynamic system could be reconstructed as a linear model with an external
intermittent forcing. A machine learning method was applied to predict the external forcing
term by using previously observed values. Finally, the combination of the HAVOK analysis
with machine learning produces a closed model for prediction. It is worth noting that
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the machine learning method used in HAVOK-ML will vary depending on the property
of the external forcing term. The developed method has been validated for multi-step
ahead prediction of several classic chaotic time series (the Lorenz time series, the Mackey–
Glass time series, and the Sunspot time series). The experimental results show that our
method can produce accurate forecasts even with simple machine learning algorithms. The
prediction performance of the proposed method has been compared with other forecasting
models of the literature. The comparison shows that the proposed method outperforms
the existing ones in terms of superior forecasting ability. Although HAVOK-ML can be
combined with different machine learning methods, it does not give suggestions on how to
choose machine learning methods for different time series forecasting problems. This is
worth studying in the future.
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Appendix A. Figures of Mackey–Glass Time Series and Sunspot Time Series
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Figure A1. Decomposition of the Mackey–Glass chaocit series with HAVOK analysis (similar to
Figure 3).
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Figure A2. The LLN model with the LoliMoT optimization method, which is used to predict vr of
the Mackey–Glass chaocit series. The previously observed values at [x(t− 5), x(t− 4), . . . , x(t− 3),
x(t− 2), x(t− 1)] are used to predict the next time value at vr(t + 1), with dt = 0.1 s.
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Figure A3. Comparison of the original time series samples of Mackey–Glass and the multi-step
predicted values, with one-step length of 0.1 s.
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Figure A4. Error growth of the multi-step prediction of Mackey–Glass chaocit series for 4000 samples,
with one-step length of 0.1 s.
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Figure A5. Decomposition of the sunspot series with HAVOK analysis (similar to Figure 3).
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Figure A6. The LLN model with the LoliMoT optimization method, which is used to predict
vr of sunspot series. The previously observed values at [x(t − 140), x(t − 125), x(t − 110), x(t −
95), . . . , x(t− 35), x(t− 20), x(t− 5)] are used to predict.
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Figure A7. Multi-step ahead prediction of sunspot series with one-step length of 1 month.
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