
����������
�������

Citation: Contreras-Reyes, J.E.

Information–Theoretic Aspects of

Location Parameter Estimation under

Skew–Normal Settings. Entropy 2022,

24, 399. https://doi.org/10.3390/

e24030399

Academic Editor: Takuya Yamano

Received: 14 February 2022

Accepted: 11 March 2022

Published: 13 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Information–Theoretic Aspects of Location Parameter
Estimation under Skew–Normal Settings
Javier E. Contreras-Reyes

Instituto de Estadística, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
jecontrr@uc.cl

Abstract: In several applications, the assumption of normality is often violated in data with some
level of skewness, so skewness affects the mean’s estimation. The class of skew–normal distributions
is considered, given their flexibility for modeling data with asymmetry parameter. In this paper,
we considered two location parameter (µ) estimation methods in the skew–normal setting, where
the coefficient of variation and the skewness parameter are known. Specifically, the least square
estimator (LSE) and the best unbiased estimator (BUE) for µ are considered. The properties for BUE
(which dominates LSE) using classic theorems of information theory are explored, which provides
a way to measure the uncertainty of location parameter estimations. Specifically, inequalities
based on convexity property enable obtaining lower and upper bounds for differential entropy and
Fisher information. Some simulations illustrate the behavior of differential entropy and Fisher
information bounds.

Keywords: skew–normal distribution; location parameter; skewness; differential entropy; Fisher
information; Cramér–Rao bound; convexity

1. Introduction

A typical problem in statistical inference is estimating the parameters from a data
sample [1], especially if the data have some level of skewness. Therefore, the estimation
of these parameters is affected by asymmetry. Recent research addressed data asymmetry
with the class of skew–normal distributions, given their flexibility for modeling data with
the skewness (asymmetry/symmetry) parameter [2]. In particular, Ref. [3] focused on
estimating location parameter (µ), assuming that the coefficient of variation and skewness
parameter are known. Specifically, they presented the least square estimator (LSE) and the
best unbiased estimator (BUE) for µ. The precision of the location parameter estimation is
directly influenced by skewness [4] and, hence, affects the confidence intervals and sample
size [5,6].

Given that complex parametric distributions with several parameters are often con-
sidered [2], the information measures (entropies and/or divergences) play an important
role in quantifying uncertainty provided by a random process about itself, and it is suf-
ficient to study the reproduction of a marginal process through a noiseless system. One
main application is related to the selection of models and detection of the number of
clusters [7], or the interpretation of physical phenomena [8,9]. However, the use of en-
tropies and/or divergences is widely considered to compare estimations [1]. For example,
Ref. [10] considered the Kullback–Leibler (KL) divergence as a method to compare sample
correlation matrices to an application in financial markets, assuming two multivariate nor-
mal densities. Using the estimated parameters based on maximum likelihood estimation,
Refs. [11–13] considered the KL divergence for an asymptotic test to evaluate the data
skewness and/or bimodality.

Given that precision was evaluated with confidence intervals in [5], the quantification
of uncertainty for location parameter estimation under skew–normal settings motivated
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this study. The properties for MSE and (emphasizing) BUE, using classic theorems and
properties of information theory are explored, which enable measuring the uncertainty of lo-
cation parameter estimations based on differential entropy and Fisher information [1]. The
Cramér–Rao inequality [14] linked Fisher information with the variance of an unbiased
estimator, which is considered to find a lower bound for Fisher information. In addi-
tion, considering a stochastic representation [15] of a skew–normal random variable,
the convexity property of Fisher information is also used to find an upper bound for
Fisher information.

This paper is organized as follows: some properties and inferential aspects based on
information theory are presented in Section 2. In Section 3, the computation and description
of information–theoretic theorems related to location parameter estimation of skew–normal
distribution are presented. In Section 4, some simulations illustrate the usefulness of the
results. Final remarks conclude the paper in Section 5.

2. Information-Theoretic Aspects

In this section, some main theorems and properties of information theory are described.
Specifically, these properties are based on differential entropy and Fisher information.

Definition 1. Let X be a random variable with support in R and continuous probability density
function (pdf), f (x; θ), which depends on parameter θ. The differential entropy of X [1] is defined by

H(X) = −E[log f (X; θ)] = −
∫
R

f (x; θ) log f (x; θ)dx,

where notation E[g(X)] =
∫
R g(x) f (x; θ)dx was used.

Differential entropy depends only on the pdf of the random variable. In the following
theorem, the scaling property of differential entropy is presented.

Theorem 1. For any real constant a, the differential entropy of aX Theorem 8.6.4 of [1] is given by

H(aX) = H(X) + log |a|.

In particular, for two random variables, the following differential entropy bounds hold.

Theorem 2. Let X and Y be two independent random variables. Suppose Z D
= X + Y, where “ D

=”
denotes equality in distribution, then

(i)
H(X) + H(Y) + log 2

2
≤ H(Z) ≤ H(X) + H(Y).

(ii) For any constant ρ such that 0 ≤ ρ ≤ 1,

ρH(X) + (1− ρ)H(Y) ≤ H(
√

ρX +
√

1− ρY).

Proof. For part (i), consider first the general case for X1, X2, . . . , Xn independent and
identically distributed (i.i.d.) random variables see Equations (5) and (6) of [16], then

H(X1) ≤ H
(

X1 + X2√
2

)
≤ · · · ≤ H

(
1√

n− 1

n−1

∑
i=1

Xi

)
≤ H

(
1√
n

n

∑
i=1

Xi

)
.

Considering the latter inequality for two variables, X and Y, and the scaling property of
Theorem 1, we obtain 2H(X + Y) − log 2 ≥ H(X) + H(Y), yielding the left side of the
inequality. For the right side, see [17]. The inequality of part (ii) is proved in Theorem 7
of [14].
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The inequality of Theorem 2 (ii) is based on the convexity property, and allows
obtaining a lower bound for differential entropy Theorem 8.6.5 of [1].

Theorem 3. Let X be a random variable with zero mean and finite σ2, then

H(X) ≤ 1
2

log(2πeσ2),

and equality is achieved if, and only if, X ∼ N(0, σ2).

Theorem 3, also known as the maximum entropy principle, implies that Gaussian
distribution maximizes the differential entropy over all distributions with the same vari-
ance. This theorem has several implications for information theory, mainly when the
differential entropy of an unknown distribution is hard to obtain. Thus, this upper bound
is a good alternative. Another consequence is the relationship between estimation error
and differential entropy, which includes the Cramér–Rao bound as described next. First,
the Fisher information for continuous densities needs to be defined as follows.

Definition 2. Let X be a random variable with support in R and continuous density function
f (x; θ), which depends on parameter θ, so

∫
R f (x; θ)dx = 1. The Fisher information of X [1] is

defined by

J(X) = E
[{

∂

∂x
log f (x; θ)

}2
]
=
∫
R

(
∂

∂x
f (x; θ)

)2 1
f (x; θ)

dx. (1)

The Fisher information is a measure of the minimum error in estimating a parameter
θ of a distribution. Classical definitions of Fisher information considered differentiation
with respect to θ to define J(θ); however, by considering a parametric form as f (x− θ; θ),
differentiation with respect to x is equivalent to differentiation with respect to θ as in
Equation (1) [1]. The following inequality links Fisher information and variance.

Theorem 4. Let X = (X1, X2, . . . , Xn)> be a sample of n random variables drawn i.i.d. ∼ f (x; θ),
the mean-squared error of an unbiased estimator T(X) of parameter θ is lower bounded by the
reciprocal of the Fisher information Theorem 11.10.1 of [1]:

Var[T(X)] ≥ 1
J(X)

, (2)

where J(X) is defined in Equation (1) and, if the inequality is achieved, T(X) is efficient.

Theorem 4, also known as the Cramér–Rao inequality, allows determining the best
estimator of θ to obtain a lower bound for Fisher information. The Cramér–Rao inequality
was first planned for any estimator T(X) (not necessarily unbiased) of θ in terms of mean-
squared error, in this case

E[{T(X)− θ}2] ≥

(
1 + ∂

∂θ Bias(θ)
)2

J(X)
+ Bias(θ)2,

where Bias(θ) = E[T(X)− θ]; see Equation (11).290 of [1]. Clearly, if T(X) is an unbiased
estimator of θ, Theorem 4 is a particular case of the latter inequality. Inequality (2) was
obtained through the Cauchy–Schwarz inequality on the variance of all unbiased estimators.
The following inequality, also known as the Fisher information inequality, is based on the
convexity property and is useful to obtain an upper bound for Fisher information.
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Theorem 5. For any two independent random variables X and Y, and any constant ρ such that
0 ≤ ρ ≤ 1, then

J(
√

ρX +
√

1− ρY) ≤ ρJ(X) + (1− ρ)J(Y).

Proof. See proof of Theorem 13 in [14].

3. Location Parameter Estimation

The skew–normal distribution is an extension of the normal one, allowing for the
presence of skewness.

Definition 3. X is called a skew–normal random variable [15] and denoted as X ∼ SN1(µ, σ2, λ)
if it has pdf

f (x; θ) =
2
σ

φ

(
x− µ

σ

)
Φ
[

λ

(
x− µ

σ

)]
, x ∈ R, θ = (µ, σ2, λ);

with location µ ∈ R, scale σ2 ∈ R, and shape λ ∈ R parameters. In addition, φ(x) is the pdf of the
standardized normal distribution with 0 mean and variance 1, denoted as N(0, 1), and Φ(x) is the
corresponding cumulative distribution function (cdf) of the standardized normal distribution.

Random variable X is represented by the following stochastic representation:

X d
= µ + σ(δ|U0|+

√
1− δ2U), (3)

where δ = λ√
1+λ2 , and U0 and U ∼ N(0, 1) are independently distributed; see Equation (2.14)

of [15].
Additionally, X has a representation based on a link between differential entropy and

Fisher information, due to de Bruijn’s identity. By matching the stochastic representation (3)
with Equation (20) of [16], it is possible to assign Y = µ + σδ|U0| with fixed δ. Then,

H(Y) =
1
2

log(2πe) +
∫ ∞

−∞
λ
{
(1 + λ2)J(X)− 1

}
dλ,

where an approximation for Fisher information J(X) appears in the proof of Proposition 5
below (with n = 1 observation).

Definition 4. X is called a multivariate skew–normal random vector [18] and denoted as X ∼
SNn(µ, Σ, λ) if it has pdf

fn(x; θ) = 2φn(x; µ, Σ)Φ[λ>Σ−1/2(x− µ)], x ∈ Rn, θ = (µ, Σ, λ),

with location vector µ ∈ Rn, scale matrix Σ ∈ Rn×n, and skewness vector λ ∈ Rn parameters.
In addition, φn(x; µ, Σ) is the n-dimensional normal pdf with location parameter µ and scale
parameter Σ.

Let X = (X1, . . . , Xn)> ∼ SNn(µ, Σ, λ), with µ = 1nµ, Σ = σ2In, and λ = 1nλ,
where 1n = (1, . . . , 1)> ∈ Rn and In denotes the n× n-identity matrix. Following [3] and
Corollary 2.2 of [5], the following properties hold.

Property 1. Xi ∼ SN1(µ, σ2, λ∗), i = 1, . . . , n, with λ∗ =
λ√

1+(n−1)λ2
.

Property 1 indicates that X1, . . . , Xn is a random sample with identically distributed
but random variables not independent from a univariate skew–normal population with
location µ, scale σ2, and shape λ∗ parameters.
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Property 2. E[Xi] = µ + σbδ∗ and Var[Xi] = σ2(1− nb2δ2
∗
)
, with b =

√
2
π and δ∗ =

λ
1+nλ2 .

Property 3. X = 1
n ∑n

i=1 Xi ∼ SN1(µ, σ2

n ,
√

nλ).

Property 4. ( n−1
σ2 )S2 ∼ χ2

n−1 with S2 = 1
n−1 ∑n

i=1(Xi − X)2, where χ2
n−1 denotes the chi-

square distribution with n− 1 degrees of freedom, and sample mean X and sample variance S2

are independent.

3.1. Least Square Estimator

Assuming that the coefficient of variation τ = |σ/µ| and shape parameter λ are known,
Theorem 4.1 of [3] provides the least square estimator for µ and its variance, given by

TLSE(X) = ωX, (4)

Var[TLSE(X)] = ω2(1− nδ2
n)

σ2

n
, (5)

ω =
n

n + τ
(

τ+nδn
1+δnτ

) ,

where δn = bδ∗, and δ∗ is defined in Property 2. The least square estimator for µ was
obtained by minimizing the MSE of ncX with respect to a constant c. The MSE of TLSE(X) is

MSE[TLSE(X)] =
(

σ2

n
+ µ2 + 2µδnσ

)
ω2 − 2µω(µ + σδn) + µ2. (6)

Proposition 1. Let X = (X1, . . . , Xn)> ∼ SNn(µ1n, σ2In, 1nλ), with known τ and λ. Thus,

(i)

H(TLSE(X)) =
1
2

log
(

2πe
σ2

n
ω2
)
− HN(η),

HN(η) = E[log{2Φ(ηW)}],
W ∼ SN1(0, 1, η),

η = σλ.

(ii)

H(TLSE(X)) ≤
1
2

log
(

2πe
σ2

n
ω2(1− nδ2

n)

)
.

Proof. Part (i) follows straightforwardly from Theorem 1, Property 3, (4) and Proposition 2.1
of [19] (for the univariate case). Part (ii) is straightforward from Theorem 3 and (5).

Differential entropy of TLSE(X) corresponds to the difference of the normal dif-
ferential entropy and a term called negentropy, HN(η), that depends on σ and λ pa-
rameters. Additionally, note that part (ii) yields the upper bound for HN(η) of part (i),
HN(η) ≤ 1

2 log(1− nδ2
n).

As a particular case of Proposition 1, it is possible to obtain the differential entropy of
sample mean X by choosing ω = 1:

H(X) =
1
2

log
(

2πe
σ2

n

)
−E[log{2Φ(ηW)}]; (7)

its respective upper bound

H(X) ≤ 1
2

log
(

2πe
σ2

n
(1− nδ2

n)

)
;
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and, from Equation (6), its respective MSE

MSE[X] =
σ2

n
. (8)

3.2. Best Unbiased Estimator

Assuming that the coefficient of variation τ = |σ/µ| and shape parameter λ are
known, Theorem 5.1 of [3] provides the best unbiased estimator (BUE) for µ, given by

TBUE(X) = (1− α)d1(X) + αd2(X), (9)

d1(X) =
X

1 + δnτ
,

d2(X) = cn
√

n− 1S,

cn =
1√
2τ2

Γ
(

n−1
2

)
Γ
( n

2
) , (10)

α =
1

(1 + δnτ)[(n− 1)cn]2
, (11)

where Γ(x) denotes the usual gamma function and S is defined in Property 4.

Remark 1. Equation (10) can be approximated using an asymptotic expression for the gamma
function given by Γ(x + a) ≈

√
2πxx+a−1/2e−x, a < ∞, as |x| → ∞ [19]. Then,

cn ≈
1√
nτ2

, (12)

as n→ ∞. Since the exact form (10) can be undefined for large samples (n > 200), approximation
(1) is very useful for these cases. Note that from (11) and (1), δn, α→ 0 as n→ ∞, which implies
that estimator TBUE(X) is only influenced by d1(X) for large samples.

From Properties 3 and 4, Ref. [3] also proved that

d1(X) ∼ SN1

(
µ

1 + δnτ
,

σ2

n(1 + δnτ)2 ,
√

nλ

)
, (13)

Var[d1(X)] =
(µτ)2(1− nδ2

n)

n(1 + δnτ)2 , (14)

Var[d2(X)] = 2(µτ)2
(

1− 1
2(n− 1)(τcn)2

)
. (15)

Given that Cov(d1, d2) = 0, from Equations (9), (14) and (15), we obtain

Var[TBUE(X)] = (1− α)2Var[d1(X)] + α2Var[d2(X)]. (16)

The following proposition provides two upper bounds of differential entropy for
TBUE(X) based on Theorem 3.

Proposition 2. Let X = (X1, . . . , Xn)> ∼ SNn(µ1n, σ2In, 1nλ), with known τ and λ. Thus,

(i)

H(TBUE(X)) ≤
1
2

log

(
4πe

n

(
σ2α(1− α)

1 + δnτ

)2(
1− 1

2(n− 1)(τcn)2

))
,

(ii)

H(TBUE(X)) ≤
1
2

log(2πeVar[TBUE(X)]}).
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Proof. From Theorem 3 and Equations (14) and (15), the differential entropies of d1(X)
and d2(X) are, respectively, upper bounded by

H(d1(X)) ≤
1
2

log
(

2πe
σ2

n(1 + δnτ)2

)
, (17)

H(d2(X)) ≤
1
2

log
(

2πe2σ2
(

1− 1
2(n− 1)(τcn)2

))
. (18)

Considering the right side on the inequality of Theorem 2(i), with Z = X + Y, X =
(1− α)d1(X) and Y = αd2(X) (thus Cov(X, Y) = 0), we obtain

H(TBUE(X)) ≤ H((1− α)d1(X)) + H(αd2(X)) = H(d1(X)) + H(d2(X)) + log |(1− α)α|,

where Theorem 1 is applied later. Then, Equations (17) and (18) yield part (i). On the other
hand, by considering directly Theorem 3 on TBUE(X), Equation (16) implies part (ii).

The following proposition provides two lower bounds of differential entropy for
TBUE(X).

Proposition 3. Let X = (X1, . . . , Xn)> ∼ SNn(µ1n, σ2In, 1nλ), with known τ (0 < τ < 1)
and λ. Thus

(i)
H(d1(X)) + H(d2(X)) + log(2α2(1− α)2)

2
≤ H(TBUE(X)),

(ii)
(1− α2)H(d1(X)) + α2H(d2(X)) ≤ H(TBUE(X));

where

H(d1(X)) =
1
2

log
(

2πeσ2

n(1 + δnτ)2

)
− HN(η1),

HN(η1) = E[log{2Φ(η1W1)}],
W1 ∼ SN1(0, 1, η1),

η1 =
∣∣∣ λσ

1 + δnτ

∣∣∣;
and

H(d2(X)) = log

 |α|
[
Γ
(

n−1
2

)]n

2
[
τΓ
( n

2
)]n−1

− (n− 2)Γ
(

n−1
2

)
4(2c2

n)
−( n−1

2 )

(
ψ

(
n− 1

2

)
+ log(2c2

n)

)

+
Γ(n + 1)

c2
n

[
Γ
(

n−1
2

)]n+2

[
τΓ
( n

2
)]n+3 .

Proof. Differential entropy of d1(X) is straightforward from evaluating (13) on Proposition 2.1
of [19] (for the univariate case). Given that distribution of d2(X) is unknown, Ref. [3] pro-
vided its pdf

fd2(x; µ, σ) = 2

[
τΓ
( n

2
)]n−1[

Γ
(

n−1
2

)]n xn−2e
− x2

2c2
n . (19)
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Through Equations (19) and (3.381.4) of [20], the moments of d2 are given by

Ed2 [X
m] = 2Γ(m + n− 1)

[
Γ
(

n−1
2

)]2m+n−2

[
τΓ
( n

2
)]2m+n−1 , m = 0, 1, . . . ; (20)

and, using Equation (4.352.1) of [20], the moment of log x is

Ed2 [log X] =
∫ ∞

0
fd2(x; µ, σ) log xdx,

= 2

[
τΓ
( n

2
)]n−1[

Γ
(

n−1
2

)]n

∫ ∞

0
xn−2e

− x2

2c2
n log xdx,

=
(2c2

n)
n−1

2 Γ
(

n−1
2

)
4

(
ψ

(
n− 1

2

)
+ log(2c2

n)

)
, (21)

where ψ(x) = d
dx log{Γ(x)} is the digamma function. Therefore, by definition (1), the

differential entropy of d2(X) is computed as

H(d2(X)) = −
∫ ∞

0
fd2(x; µ, σ) log fd2(x; µ, σ)dx,

= − log

 2
[
τΓ
( n

2
)]n−1

|α|
[
Γ
(

n−1
2

)]n

− (n− 2)
∫ ∞

0
fd2(x; µ, σ) log xdx︸ ︷︷ ︸

Ed2
[log X]

+
1

2c2
n

∫ ∞

0
fd2(x; µ, σ)x2dx︸ ︷︷ ︸

Ed2
[X2]

.

Thus, Equations (20) and (21) are evaluated in the latter expression to obtain H(d2(X)).
By assuming Z = X + Y in Theorem 2(i) (Cov(X, Y) = 0), with X = (1− α)d1(X) and
Y = αd2(X), the inequality of part (i) is obtained.

By assuming Z = X + Y in Theorem 2(ii), with X = d2(X), Y = d1(X) (thus
Cov(X, Y) = 0), and ρ = α2, and since d1(X) and d2(X) are two unbiased estimators
of µ [3], the inequality of part (ii) is obtained.

The following proposition provides a lower bound for Fisher information of parameter
µ based on TBUE(X).

Proposition 4. Let X = (X1, . . . , Xn)> ∼ SNn(µ1n, σ2In, 1nλ), with known τ and λ. Thus,

J(µ) ≥
[
(1− α)2 σ2(1− nδ2

n)

n(1 + δnτ)2 + α22σ2
(

1− 1
2(n− 1)(τcn)2

)]−1

.

Proof. Considering that TBUE(X) is an unbiased estimator of µ, from the Crámer–Rao
inequality of Theorem 4 and Equations (14)–(16), we obtain

J(µ) ≥ 1
(1− α)2Var[d1(X)] + α2Var[d2(X)]

,

yielding the result.

The following Proposition provides an upper bound of Fisher information for parame-
ter µ based on TBUE(X) and the convexity property.

Proposition 5. Let X = (X1, . . . , Xn)> ∼ SNn(µ1n, σ2In, 1nλ), with known τ (0 < τ < 1)
and λ. Thus

J(µ) ≤ (1− α2)J(d1(X)) + α2 J(d2(X)),
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where

J(d1(X)) ≈ 1 +
n(bλ)2

√
1 + 2nb4λ2

,

J(d2(X)) =
2(n− 2)(n2 − 2n− 2)Γ(n− 2)(

1
2c2

n

)n−3

[
τΓ
( n

2
)]n−1[

Γ
(

n−1
2

)]n +
1
c4

n
,

Proof. By assuming Z = X + Y in Theorem 5, with X = d2(X), Y = d1(X) (thus
Cov(X, Y) = 0), and ρ = α2, and since d1(X) and d2(X) are two unbiased estimators
of µ [3], we obtain J(µ) ≤ α2 J(d2(X)) + (1− α2)J(d1(X)). Note that condition 0 < τ < 1
ensures that 0 ≤ α2 ≤ 1.

For J(d1(X)), the steps of Section 3.2 of [9] were considered. By Equations (1) and (13),
and the change of variable z = (x− µ∗)/σ∗, with µ∗ = µ/(1+ δnτ), σ∗ = σ/

√
n(1 + δnτ)2

and λ∗ =
√

nλ, J(d1(X)) can be computed as

J(d1(X)) =
∫ ∞

−∞

(
∂

∂x
f (x; θ)

)2 1
f (x; θ)

dx

=
∫ ∞

−∞
f (z; λ∗)[−z + λ∗ζ(λ∗z)]2dz

=
∫ ∞

−∞
z2 f (z; λ∗)dz− 2λ∗

∫ ∞

−∞
zζ(λ∗z) f (z; λ∗)dz + [λ∗]2

∫ ∞

−∞
ζ(λ∗z)2 f (z; λ∗)dz

=
∫ ∞

−∞
z2 f (z; λ∗)dz− 4λ∗

∫ ∞

−∞
zφ(λ∗z)φ(z)dz + 2[λ∗]2

∫ ∞

−∞
φ(z)

φ(λ∗z)2

Φ(λ∗z)
dz, (22)

where ζ(x) = φ(x)/Φ(x) is the zeta function. From Equation (22), the first and second
terms are the second moment of a standardized skew–normal random variable (E[Z2] = 1)
and the first moment of a standardized normal random variable (E[R] = 0, R ∼ N(0, 1)),
respectively. The third term is

∫ ∞

−∞
φ(z)

φ(λ∗z)2

Φ(λ∗z)
dz =

∫ ∞

0
φ(z)

φ(λ∗z)2

Φ(λ∗z)
dz +

∫ ∞

0
φ(z)

φ(λ∗z)2

1−Φ(λ∗z)
dz

=
∫ ∞

0
φ(z)

φ(λ∗z)2

Φ(λ∗z)[1−Φ(λ∗z)]
dz

The following approximation of normal densities (see p. 83 of [15]),

φ(y)√
Φ(y)[1−Φ(y)]

≈ πb2φ(b2y), ∀y ∈ R,

and some basic algebraic operations of normal densities are useful to approximate the third
term of Equation (22) as

∫ ∞

0
φ(z)

φ(λ∗z)2

Φ(λ∗z)[1−Φ(λ∗z)]
dz ≈ π2b4

∫ ∞

0
φ(z)φ(b2λ∗z)2dz

=
π2b4

2π
√

1 + 2b4[λ∗]2

∫ ∞

0
φ(z; 0, {1 + 2b4[λ∗]2}−1)dz

=
πb4

4
√

1 + 2b4[λ∗]2
.
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Given that πb4

2 = b2 and λ∗ =
√

nλ, we obtain

J(d1(X)) ≈ 1 +
n(bλ)2

√
1 + 2nb4λ2

.

Using Equation (19), J(d2(X)) is computed as

J(d2(X)) =
∫ ∞

0

(
∂

∂x
fd2(x; µ, σ)

)2 1
fd2(x; µ, σ)

dx

=
∫ ∞

0
fd2(x; µ, σ)[(n− 2)x−1 − 1

c2
n
]2dx

= (n− 2)2
∫ ∞

0
x−2 fd2(x; µ, σ)dx− 2

(n− 2)
c2

n

∫ ∞

0
x−1 fd2(x; µ, σ)dx +

1
c4

n

= 2(n− 2)2
[
τΓ
( n

2
)]n−1[

Γ
(

n−1
2

)]n

∫ ∞

0
xn−4e

− 1
2c2

n
x2

dx︸ ︷︷ ︸
M1

−4(n− 2)
c2

n

[
τΓ
( n

2
)]n−1[

Γ
(

n−1
2

)]n

∫ ∞

0
xn−3e

− 1
2c2

n
x2

dx︸ ︷︷ ︸
M2

+
1
c4

n

=
2(n− 2)(n2 − 2n− 2)Γ(n− 2)(

1
2c2

n

)n−3

[
τΓ
( n

2
)]n−1[

Γ
(

n−1
2

)]n +
1
c4

n
,

where Equation (3.381.4) of [20] is applied to solve integrals M1 and M2.

Remark 2. Considering the same argument as in Remark (1), it can be noted that inequalities of
Propositions 4 and 5 are only affected by J(d1(X)), i.e., for large samples, we obtain

1
Var[d1(X)]

≤ J(µ) ≤ J(d1(X)).

4. Simulations

All location parameter estimators, variances, Fisher information and differential en-
tropies were calculated with R software [21]. Samples based on skew–normal random
variables were drawn based on stochastic representation (3) and with the rsn function of
sn package. All R codes used in this paper are available upon request from the correspond-
ing author.

In general, τ takes a value between 0 and 1. If τ is close to 0, the sample has low
variability, and if it is close to 1, the sample has high variability and mean loss reliability.
For example, if τ > 0.3, the mean is less representative of the sample. Sometimes, if µ
is close to zero, τ takes high values (high variability) and could exceed unity. Therefore,
for illustrative purposes, in all simulations, a coefficient of variation set of τ = 0.1, . . . , 1
is considered. Additionally considered are positive asymmetry parameters λ = 0.1, . . . , 5,
sample sizes n = 10 and 250, and theoretical location parameters µ = 0.1, 0.5 and 1. For the
computation of information measures, σ is replaced by τ|µ| and location parameters µ are
evaluated by their respective estimators.

The MSE of TLSE(X) is given in Equation (6), and MSE of TBUE(X) is the variance of
the (unbiased) estimator (see Equation (16)). Without loss of generality, τ = 1 is considered
in Figure 1 because the same pattern is repeated for values of τ between 0 and 1. Comparing
the MSE of both estimators, Figure 1 shows for all cases that differences between MSEs tend
to increase for large values of µ, and MSEs turn around a specific value when the sample
size increases. Moreover, MSEs of the unbiased estimator are less than those obtained by
LSE, i.e., BUE dominates LSE Equation (11.263) of [1]. Therefore, the analysis focuses on
BUE in the next section.
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Figure 1. Mean square errors (MSE) for TLSE(X) [blue dots] and TBUE(X) [red dots] considering
τ = 1 and several skewness λ and location µ parameters in the simulations.
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Behavior of differential entropy bounds given in Propositions 2 and 3 is illustrated in
Figure 2 as 3D plots. Without loss of generality, τ ∈ (0, 1] is considered in Figure 2 because
the same pattern is repeated for values of τ > 1, i.e., entropies keep increasing. The upper
bound corresponds to the minimum value between bounds given in Proposition 2(i) and
(ii), which is the one given in (ii). Thus, the upper bound of H(TBUE(X)) is determined by
the variance (or MSE) of the estimator. In contrast, the lower bounds correspond to the
maximum value between bounds given in Proposition 3 (i) and (ii) [17].
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Figure 2. Differential entropy bounds for TBUE(X) considering n = 10 and 250, µ = 0.1, 0.5 and 1;
and several skewness λ and coefficient of variation τ parameters in the simulations.

Sample sizes (n = 250) imply that α ≈ 0 and lower bounds only depend on H(d1(X)).
For small sample sizes (n = 10), α could be an intermediate value of the interval (0, 1),
thus, lower bounds depend on H(d1(X)) and H(d2(X)). For n = 10, the surfaces are rough,
given the randomness of bounds produced by the small sample. When λ ≈ 0 (symmetry
condition), the bounds decay to negative values. This is analogous to considering the
skew–normal density as a non-stationary process [15], when λ is near zero, so the Hurst
exponent decreases abruptly [8]. On the other hand, for n = 250, surfaces are soft and
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bounds increase slightly for large λ. For all cases, information increases when τ tends to 1
because it produces more variability in samples.

For practical purposes, the average between bounds can be considered to provide
an approximation of differential entropy [7] in similar form to average lengths of the
confidence interval [3]. Given that all lower bounds of differential entropy depend on the
entropy of d1(X), which depends on variance and sample size, they could take negative
values and tend to zero when τ tends to 1. Therefore, the difference between lower and
upper bounds could increase and turn out an inadequate approximation if the lower bound
is negative. For the latter reason, the Fisher information considers only positive values,
as studied next.

The Fisher information bounds given in Propositions 4 and 5 are illustrated in Figure 3
as 3D and 2D plots, respectively. As in the differential entropy case, and without loss
of generality, τ ∈ (0, 1] is considered in Figure 3 because the same pattern is repeated
for values of τ > 1, i.e., entropies keep decreasing. Following the Cramér–Rao theorem,
the variance of BUE corresponds to the reciprocal of the Fisher information. In contrast,
the lower bound corresponds to a combination of the Fisher information of d1(X) and d2(X).
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Figure 3. Fisher information lower bounds for TBUE(X) considering n = 250, µ = 1, 2.5 and 5;
and several skewness λ and coefficient of variation τ parameters in the simulations. The fourth
panel shows the upper bounds for TBUE(X) considering n = 100, . . . , 1000 and several skewness
parameters λ.

As in the differential entropy case, large sample sizes (n = 250) imply that α ≈ 0 and
lower bounds only depend on J(d1(X)), as mentioned in Remark 2. For small sample sizes
(n = 10), α could be an intermediate value of the interval (0, 1), thus lower bounds depend
on J(d1(X)) and J(d2(X)). When τ ≈ 0 (low variability condition), the lower bounds
take the highest values. This reciprocal relationship is determined by the Cramér–Rao
theorem: more variability, less Fisher information. In addition, the 2D plot shows that the
smallest upper bounds of J(TBUE(X)) are produced when λ ≈ 0 [9]. Given that upper
bounds do not depend on τ and µ because the skew–normal densities are standardized,
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these measures are illustrated with respect to n and λ. In addition, when λ and n increase
simultaneously, the upper bounds of Fisher information take the largest values.

5. Concluding Remarks

In this paper, some properties of the best unbiased estimator proposed by [3] were
presented, using classic theorems of information theory, which provide a way to measure
the uncertainty of location parameter estimations. Given that BUE dominates LSE, this
paper focused on this estimator. Inequalities based on differential entropy and Fisher infor-
mation allowed obtaining lower and upper bounds for these measures. Some simulations
illustrated the behavior of differential entropy and Fisher information bounds.

Classical theorems of information theory considered the obtained additional proper-
ties of unbiased location parameter estimators. However, these theorems could be applied
to other estimators, such as Bayesian [22] (as long as the prior pdf density is known),
shrinkage [23], or bootstrap-based [24] ones. The assumption of the sample that came from
a multivariate skew–normal distribution is too strong and not always applicable in the real
world, so the properties revised here could be extended to more complex densities, for ex-
ample, those that assess bimodality and heavy tails in data [7,11,13,19]. On the other hand,
and given that Fisher information bounds under skew–normal settings were considered in
this study, further work could focus on developing time-dependent Fisher information for
skew–normal density [25], which could be applied to real data in survival analysis.
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