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Abstract: Schrödinger noticed in 1952 that a scalar complex wave function can be made real by a
gauge transformation. The author showed recently that one real function is also enough to describe
matter in the Dirac equation in an arbitrary electromagnetic or Yang–Mills field. This suggests some
“symmetry” between positive and negative frequencies and, therefore, particles and antiparticles,
so the author previously considered a description of one-particle wave functions as plasma-like
collections of a large number of particles and antiparticles. The description has some similarities with
Bohmian mechanics. This work offers a criterion for approximation of continuous charge density
distributions by discrete ones with quantized charge based on the equality of partial Fourier sums,
and an example of such approximation is computed using the homotopy continuation method.
An example mathematical model of the description is proposed. The description is also extended
to composite particles, such as nucleons or large molecules, regarded as collections including a
composite particle and a large number of pairs of elementary particles and antiparticles. While it is
not clear if this is a correct description of the reality, it can become a basis of an interesting model or
useful picture of quantum mechanics.

Keywords: quantum; plasma; antiparticle; homotopy continuation

1. Introduction

Recent progress in quantum information processing puts a new emphasis on foun-
dations of quantum theory. However, it is probably safe to say that there is currently no
consensus on the interpretation of quantum theory [1–4]. This suggests that no existing
interpretation is completely satisfactory, so the formal description discussed in this work
may be of some interest, if not as a “how actually” model, then at least as a “how possibly”
model ([5], §3.3). The description is intuitive; uses some notions of quantum field theory,
such as vacuum polarization; and does not seem to have problems with wave function
spreading, although it implies that the wave function has something to do with charge
distribution. There are some similarities with de Broglie–Bohm interpretation (Bohmian
mechanics), especially for composite particles. Bohmian mechanics is sometimes consid-
ered not just as an interpretation, but also as another picture of quantum mechanics and a
basis for computational methods [6]. This can be also a way to assess the description of
this work.

There is a well-known analogy between quantum particles and plasma: the dispersion
relation for the Klein–Gordon equation (c = h̄ = 1)

ω2 = m2 + k2 (1)

is similar to the dispersion relation for waves in a simple plasma model

ω2 = ω2
p + k2. (2)

However, to expand this analogy, we need a description of both negatively and positively
charged particles.The description is based on the little-known possibility of using a real,
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rather than complex, wave function to describe charged particles. Schrödinger [7] noticed
that a charged scalar field can be made real by a gauge transformation, in spite of “the
widespread belief about ‘charged’ fields requiring complex representation.” As a general-
ization of this result, it was shown recently (see in [8–10]; see also in [11], pp. 24–25, [12])
that, in a general case, one can use just one real function instead of the four complex
components of the Dirac spinor in the Dirac equation in an arbitrary electromagnetic field
at the expense of getting a fourth-order partial differential equation. A similar result can be
derived for the Dirac equation in a non-Abelian gauge field [13].

Using one real wave function instead of complex functions introduces some “sym-
metry” between positive and negative frequencies and, thus, particles and antiparticles.
Therefore, a tentative description of such (one-particle electron) wave function was given
in [14,15]: the wave function can describe N + 1 electrons and N positrons, where N is very
large. This collection of particles and antiparticles has the same total charge (and mass) as
an electron, and the value of the wave function at some point (or some combination of the
wave function and its derivatives at the point) is a measure of both “vacuum polarization”
and the density of probability of finding an electron at this point (finding a positron at that
point is also possible, but probably requires much more energy). An electron found during
a measurement can be any of the N + 1 electrons. The results of the measurement on the
specific collection can depend, say, on the precise coordinates of the particles in the collec-
tion. One can consider such a collection as a “dressed” electron with a well-defined total
charge. The description assumes trajectories of the “bare” electrons and positrons, but the
uncertainty principle is valid for the “dressed” electron. The charge density distribution
of the “dressed” electron is defined by all charges of the “bare” electrons and positrons
and can be very close to the charge density distribution built from the traditional wave
function (see Section 2.1). If an electron is removed from the collection (for example, a pre-
cise position measurement means high momentum uncertainty, as a result, some particle
acquires high speed, quickly leaves the collection, and the area around the place vacated
by the particle will tend to be filled with the surrounding particles) and the energy of the
remaining collection is not high enough for the collection to manifest as pairs, it is difficult
to tell the collection from vacuum. This may be the source of discreteness emphasized
in [16]. It is also important to note that spreading of wave packets (which complicates,
e.g., the de Broglie’s double solution approach [17]) is not problematic for this description.

This description suggests an analogy between plasma and elementary particles. Such
analogy was discussed long ago. For example, Vigier [18] considered a vacuum containing
fermionic and antifermionic fields, and compared it to a plasma (see also references in
Section 3).

It is difficult to say if the vast body of work on quark–gluon plasma is directly relevant
to interpretation of quantum theory as quark-gluon plasma is a high-temperature or high-
density state of matter [19].

The description of this article only covers the unitary evolution of quantum theory,
but not the wave function collapse. On the one hand, the author would like to essentially
limit the discussion to matters of mathematical physics, on the other hand, there are now
some indications that unitary evolution may be sufficient to describe experiments. For ex-
ample, Schlosshauer reviewed experimental data and concluded [20]: “(i) the universal
validity of unitary dynamics and the superposition principle has been confirmed far into the
mesoscopic and macroscopic realm in all experiments conducted thus far; (ii) all observed
“restrictions” can be correctly and completely accounted for by taking into account envi-
ronmental decoherence effects; (iii) no positive experimental evidence exists for physical
state-vector collapse”. Furthermore, Allahverdyan e.a. theoretically studied dynamics of a
spin interacting with a quantum model of a measuring apparatus and concluded [21] that
“uniqueness of the outcome of each run and reduction can be derived from the Hamiltonian
dynamics of the macroscopic pointer alone”, and “recurrences might still occur, but at
inaccessibly large times”.
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One can object that the mass of such a collection of a large number of particles and
antiparticles would be too large, as each pair should have a mass of at least two electron
masses, but it is not necessarily so, as the energy of an electron and a positron that are very
close to each other can be significantly less than their energy when the distance between
them is large.

The above description is illustrated by Figure 1, where electrons and positrons are
represented by minus and plus signs, respectively. Collections (a) and (b) there are identical
except for an extra electron (represented by a blue minus sign) in collection (a). The col-
lections are difficult to visually tell from each other, but the total charges of the collections
are one and zero electron charge, respectively. Figure 1 is similar to M. Strassler’s Figure 3
at [22], but the figure here describes an electron, rather than a nucleon (which is a composite
particle), and the size of the collection is defined by the size of the volume where the wave
function does not vanish.

The description has obvious similarities with the Bohmian interpretation. Let us
discuss them for a single-particle system (as it is understood both traditionally and in the
Bohmian interpretation [23], because there are always numerous particles in the plasma-like
description). If the system is described by a wave function, the latter defines current lines,
which can be regarded as possible particle trajectories in both the Bohmian interpreta-
tion and the plasma-like description. There is only one particle and one trajectory in the
Bohmian interpretation (other trajectories are realized in other instances of the statistical
ensemble [23]), and there are numerous particles and trajectories in the plasma-like de-
scription. However, there is more similarity in the case of a composite particle, where the
trajectory of the composite particle itself seems singled-out/different from the trajectories
of the surrounding elementary fermions/antifermions in the plasma-like description (see
Section 3).

While single-particle systems are very important (for example, they are sufficient to
describe the double-slit experiment), it is necessary to discuss many-particle systems (cf.
V. Vedral’s comments [24] on the approach in [25]). The author does not have a complete
description of second quantization for such systems, but for fermions the Pauli principle
can emerge in the following way: for identical wave functions, the relevant collections
of discrete charges have identical or very similar coordinates of the charges and thus a
combination of such collections can have a very high energy, for example, due to Coulomb
interaction. Note that matter and radiation (and, eventually, Fermi and Bose fields) are
treated differently in the plasma-like description. Second quantization for bosons can be
performed using the same approach as in [15], Section 4 (the approach using a generalized
Carleman linearization [26,27] was proposed by nightlight): for a rather general system of
nonlinear differential equations of evolution in a 3-dimensional space, the set of solutions
can be embedded into the set of solutions of a system of linear differential equations of
evolution in the Fock space with a Hamiltonian built using boson operators.

In this article, we offer a tentative resolution of some important issues arising in this
description. In particular, we try to answer the following questions:

• How can a continuous charge density distribution be approximated by a discrete one
with a quantized charge?

• What mathematical model (equations of motion) can underlie such a description?
• How can the description be extended to composite particles?
• What are some implications of the obvious analogy with plasma?
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(a) (b)

Figure 1. Collections (a,b) have 201 and 200 electrons, respectively, and 200 positrons each.

2. Methods and Results
2.1. Approximation of a Continuous Charge Density Distribution by a Discrete One with a
Quantized Charge

How accurately can a continuous charge density distribution for a specific wave
function with a total charge equal to one electron charge be approximated by a collection of
discrete charges with values of ±1 electron charge? It is obvious that a Fourier expansion
of a point-like charge density distribution contains arbitrarily high spatial frequencies,
whereas high-spatial-frequency Fourier components of smooth charge density distributions
tend to zero fast; therefore, it is probably impossible to approximate a continuous charge
density distribution by a finite number of discrete quantized charges with a good accuracy.
However, quantum field theories are typically considered to be just effective theories:
“. . . we are now used to the idea that there are important interactions at many different
energy scales, some of them probably so large that we cannot see them, directly. Certainly
not now. Perhaps not ever. Nevertheless, we can use an effective field theory to describe
physics at a given energy scale, E, to a given accuracy, ε, in terms of a quantum field theory
with a finite set of parameters. We can formulate the effective field theory without any
reference to what goes on at arbitrarily small distances [28].” Therefore, we can look for
collections of discrete charges with values of ±1 electron charge that have the same Fourier
components with spatial frequencies below some limit value as the initial smooth charge
density distribution.

Let us illustrate this approach in the one-dimensional case. We assume that the smooth
charge density distribution is periodic, e.g., with a period of 2π, so we consider it on a
segment [−π, π]. Let us choose the following function for our example:

f (x) =
15

2π6 (x2 − π2)2(x +
π

8
) (3)

(see Figure 2). Let us note that ∫ π

−π
f (x)dx = 1 (4)

(the total charge in the charge density distribution is +1 (electron charge)). The charge
density distribution was chosen not to be non-negative everywhere, as we have in mind
applications not just to the Schrödinger equation and the Dirac equation, but also to
the Klein–Gordon equation, where the charge density does not have to be of the same
sign everywhere.
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Let us consider the Fourier expansion:

f (x) =
1
2

a0 +
∞

∑
k=1

(ak cos(kx) + bk sin(kx)), (5)

where
ak =

1
π

∫ π

−π
f (y) cos(ky)dy, bk =

1
π

∫ π

−π
f (y) sin(ky)dy. (6)

Figure 2. The smooth charge density distribution to be approximated by a collection of discrete
quantized charges.

We will try to find a discrete charge density distribution approximating f (x). Let us
assume that this distribution describes 2j + 1 particles with coordinates xn, including j + 1
electrons and j positrons, so the discrete charge density distribution is

g(x) =
2j+1

∑
n=1

(−1)n+1δ(x− xn). (7)

Let us demand that the k-th cosine Fourier components of distribution g(x) coincide
with ak for 1 ≤ k ≤ kc (the zeroth cosine Fourier component of g(x) automatically coincides
with a0 due to Equation (4)) and that the k-th sine Fourier components of distribution g(x)
coincide with bk for 1 ≤ k ≤ ks, where kc and ks are some natural numbers.

Let us introduce the following notation: un = cos(xn), vn = sin(xn). As

cos(kxn) =
1
2
((cos(xn) + i sin(xn))

k + (cos(xn)− i sin(xn))
k) =

1
2
((un + ivn)

k + (un − ivn)
k),

sin(kxn) =
1
2i
((cos(xn) + i sin(xn))

k − (cos(xn)− i sin(xn))
k) =

1
2i
((un + ivn)

k − (un − ivn)
k), (8)

cos(kxn) and sin(kxn) can be expressed as polynomials of un and vn, and the equality
of kc + ks Fourier components of g(x) to Fourier components ak and bk of f (x) can be
expressed as kc + ks polynomial equations for un and vn. Adding equations u2

n + v2
n = 1,
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we obtain a system of kc + ks + 2j + 1 polynomial equations for 2(2j + 1) unknowns un
and vn:

1
π

2j+1

∑
n=1

(−1)n+1 1
2
((un + ivn)

k + (un − ivn)
k) = ak, 1 ≤ k ≤ kc,

1
π

2j+1

∑
n=1

(−1)n+1 1
2i
((un + ivn)

k − (un − ivn)
k) = bk, 1 ≤ k ≤ ks,

u2
n + v2

n = 1, 1 ≤ n ≤ 2j + 1. (9)

It seems likely (but the author has not proven) that, given some values of kc and ks,
this system will always have some real solutions for sufficiently large j, or, in other words,
it is always possible to find a discrete charge density distribution with a sufficiently large
number of point-like particles that has the same kc + ks Fourier components as the initial
smooth charge density distribution. However, the polynomial system is very complicated
for large values of kc, ks, and j, and it is difficult to find such discrete distribution. It is
possible though to do that numerically, using the powerful homotopy continuation method
for polynomial systems (see [29] and references there). The idea of homotopic continuation
is as follows [30]. If there is a square system of polynomial equations F = ( f1(x), . . . , fm(x)),
where x = (x1, . . . , xm), f1(x), . . . , fm(x) are the left-hand sides of the equations, and the
right-hand sides equal zero, one uses the homotopy

Ht = (1− t)G + tF, t ∈ [0, 1], (10)

connecting a start system G = H0 with the target system F = H1. If we differentiate
Ht(x(t)) = 0 with respect to t, we obtain(

∂Ht

∂x
x′(t) +

∂Ht

∂t

)
x=x(t)

= 0. (11)

This yields a system of ordinary differential equations for x(t), which can be solved numer-
ically, if one knows a solution of the start system.

While the typical goal of the homotopy continuation method is finding all the solutions
of the target polynomial system, our goal is quite limited: we would like to find just one
solution of the target system to get an idea of how a discrete charge density distribution
with a quantized charge can approximate a smooth distribution. For this reason, we build
the start system G and its solution as follows. We generate 2j + 1 random values x̃n, such
that −π ≤ x̃n ≤ π, and obtain a sequence x̄n by sorting x̃n in ascending order. Then, we
construct sequences ūn = cos(x̄n) and v̄n = sin(x̄n) and obtain the start system by replacing
ak and bk in the right-hand sides of the first kc + ks equations of system (9) by the values of
their left-hand sides after substitution un = ūn, vn = v̄n. Obviously, ūn, v̄n is a solution of
the start system, so we can build a solution of system (9) using homotopy continuation.

We obtained such a solution for kc = 25, ks = 24, j = 24 (the target and start systems
are square for these values, with 98 unknowns and 98 equations, each) using the solver
from [29] (the latest version and documentation can be found at [31]). The results are
presented in Figure 3. The calculated coordinates of the discrete charges are given in
the Appendix A. Note that the partial Fourier sums coincide for the smooth and discrete
charge density distributions. Let us also note that the difference between the smooth
distribution and its partial Fourier sum is less than 0.1% of the maximum value of the
distribution. Empirically, the charges are mostly arranged in pairs; clusters of three charges
are denoted by the ellipses (this choice of the clusters is rather arbitrary, but may be useful
as an illustration). It is interesting that the solution of the start system was generated by
choosing random coordinates between −π and π and did not display many pairs/clusters.
The pairs/clusters in the solution of the target system probably appeared because the
charge density distribution to be approximated was smooth.
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The approach of this section can be useful for interpretation of quantum phase-space
distribution functions [32], such as the Wigner distribution function, which are not nec-
essarily non-negative. It is also interesting to compare the approach with the initial
Schrödinger’s interpretation of the wave function (see, e.g., in [33,34] and references
therein). Schrödinger’s interpretation of e|ψ|2 as charge density meets some objections.
For example, A. Khrennikov noted ([35], p. 23): “Unfortunately, I was not able to find
in Schrödinger’s papers any explanation of the impossibility to divide this cloud into a
few smaller clouds, i.e., no attempt to explain the fundamental discreteness of the electric
charge.” The plasma-like description suggests that e|ψ|2 (and its analogs for the Klein–
Gordon and Dirac equations) is just a smoothed charge density, and the description is
immune to the above objection.

Figure 3. The smooth charge density distribution (green) and the discrete charges of the approximat-
ing discrete charge density distribution. The charges are mostly arranged in pairs; the clusters of
three charges are encircled by ellipses.

2.2. An Example Mathematical Model

Let us define an example mathematical model (equations of motion) of collections of
charged particles and antiparticles interacting with electromagnetic field. As we want the
experimental predictions of such a model to be as close as possible to those of quantum
theory, we will use scalar electrodynamics (the Klein–Gordon–Maxwell electrodynamics)
as our starting point. Its equations of motion are as follows [7]:

(∂µ + ieAµ)(∂µ + ieAµ)ψ + m2ψ = 0, (12)

�Aµ − Aν
,νµ = jµ, (13)

jµ = ie(ψ∗ψ,µ − ψ∗,µψ)− 2e2 Aµψ∗ψ. (14)

The metric signature is (+,−,−,−), and � = ∂µ∂µ is the d’Alembertian.
The complex charged matter field ψ in scalar electrodynamics (Equations (12)–(14))

can be made real by a gauge transformation (at least locally), and the equations of motion
in the relevant gauge (unitary gauge) for the transformed four-potential of electromagnetic
field Bµ and real matter field ϕ are as follows [7]:

�ϕ− (e2BµBµ −m2)ϕ = 0, (15)

�Bµ − Bν
,νµ = jµ, (16)

jµ = −2e2Bµ ϕ2. (17)

Using a substitution Φ = ϕ2, one can obtain [15]

�Φ− 1
2

Φ,µΦ,µ

Φ
− 2(e2BµBµ −m2)Φ = 0, (18)
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�Bµ − Bν
,νµ = jµ, (19)

jµ = −2e2BµΦ. (20)

Let us start building the model emulating scalar electrodynamics. We assume that we
have N + 1 particles with charge e and N antiparticles with charge −e. The trajectory of
the n-th particle/antiparticle is xn(x0). Thus, the charge density distribution is

g0(x0, x) = e
2N+1

∑
n=1

(−1)n+1δ(x− xn(x0)). (21)

Here, xn(x0) = (x1
n(x0), x2

n(x0), x3
n(x0)) is the 3D coordinate of the n-th particle/antiparticle

at the time point x0. Greek indices run from 0 to 3 and Latin indices run from 1 to 3,
unless they denote the particle number. Particles have odd numbers, and antiparticles have
even numbers. Let us present g0(x) as a 3D Fourier integral:

g0(x0, x) = (2π)−
3
2

∫
G0(x0, k) exp(ikx)dk, (22)

where
G0(x0, k) = (2π)−

3
2

∫
g0(x0, x) exp(−ikx)dx. (23)

Let us now define a smoothed initial charge density at x0 = x0
in:

g0
sm(x0

in, x) = (2π)−
3
2

∫
|k|<λ

G0(x0
in, k) exp(ikx)dk, (24)

where λ > 0 is a large cutoff constant.
Let us construct the smoothed initial current density at x0 = x0

in as follows (the
smoothing process is chosen rather arbitrarily, but based on the requirement that the
directions of the 4-velocities of the particles and the 4-potentials of the electromagnetic
field in the same point coincide; up to a factor, the smoothed charge density is a sum of
smoothed delta-functions describing particles):

gi
sm(x0

in, x) =
Bi(x0

in, x)
B0(x0

in, x)
g0

sm(x0
in, x). (25)

Now, let the initial 4-current density be equal to the smoothed 4-current density:

jµ(x0
in, x) = gµ

sm(x0
in, x). (26)

Let us assume that Bµ(x0, x) and the temporal derivatives Ḃµ(x0, x) are defined everywhere
in the 3D space for x0 = x0

in in such a way that

�B0(x0
in, x)− Bν

,ν0(x0
in, x) = B,i

0,i(x0
in, x)− Ḃi

,i(x0
in, x) = j0(x0

in, x). (27)

As was shown in [15], Section 2, if Bµ and Ḃµ are defined in the entire 3D space at some point
in time x0, B̈µ(x0, x) can be calculated from Equations (18)–(20), so the Cauchy problem can
be posed and Bµ can be calculated in the entire spacetime (we use the following notation:
Ẏ = Y,0 and Ÿ = Y,00 are the first and second temporal derivatives of Y, correspondingly).
The trajectories of the particles/antiparticles can be calculated using the condition ẋn(x0) =
B(x0,xn)
B0(x0,xn)

.
On the one hand, the above equations of motions coincide with those of scalar electro-

dynamics for some choice of initial conditions, on the other hand, one can expect that for a
large cut-off constant the current will be close to that of a collection of point particles.

The current in this example model is not always time-like, but this problem is inher-
ited from scalar electrodynamics and can probably be overcome if we start with spinor
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electrodynamics (Dirac–Maxwell electrodynamics). This issue was discussed for the de
Broglie–Bohm interpretation of the Klein–Gordon field [36–39]. In the present article, how-
ever, the Klein–Gordon equation is regarded just as a reasonably decent approximation
for electrons.

As the model of this section emulates arbitrarily well (for a sufficiently large cut-off
constant) a quantum theory—the Klein–Gordon electrodynamics (scalar electrodynamics),
one can reasonably expect that the model should successfully describe a wide spectrum of
quantum phenomena. Modeling of specific experiments, such as the double-slit experiment,
is left for future work.

It is not clear if this model can describe pair creation or annihilation. One probably
needs to study continuation of the solutions at the points x where B0(x) = 0.

Let us emphasize again that one needs to choose the cutoff constant to fully define the
mathematical model. While this constant can be arbitrarily high, the model has problems at
very high temporal/spatial frequencies once this choice is made. However, these problems
seem similar to those of standard quantum field theories [28].

In the example mathematical model, the electromagnetic field guides numerous parti-
cles/antiparticles, whereas the particles/antiparticles act as a source of the electromagnetic
field. In comparison, previously the author showed that the Klein–Gordon–Maxwell elec-
trodynamics in the unitary gauge allows natural elimination of the particle wave function
and describes independent evolution of the electromagnetic field. Therefore, the electro-
magnetic field can be regarded as the guiding field in the Bohmian interpretation [14,15,25].

2.3. Extension to Composite Particles

Let us try to resolve the following problem of the description. Composite particles,
such as nucleons or large molecules, also demonstrate quantum properties [40,41]. It is
however difficult to imagine that molecule–antimolecule pairs play a significant role in
diffraction of large molecules (creation of such pairs is possible, but much less proba-
ble than creation of electron–positron pairs). However, composite particles take part in
some interactions (for example, electromagnetic or strong interactions), so the description
can be modified as follows in that case: composite particles are accompanied by a large
collection of fermion–antifermion pairs (for example, electron-positron pairs for electro-
magnetic interactions and quark–antiquark pairs for strong interactions; in some situations,
it can be difficult to tell such pairs from force carriers, such as photons or gluons). Such
fermions/pairs/force carriers are present at all locations where the wave function tradition-
ally describing the composite particle does not vanish, so the dimensions of the collection
are not limited by the range of the interaction (for example, the short range of strong
interaction). Thus, the composite particle can be detected at all locations where the wave
function does not vanish, although at most locations it is fermions/pairs/force carriers of
the collection that interact directly with the instrument, not the composite particle itself.
Such a composite particle with a collection of pairs is illustrated by Figure 4.

This does not mean that composite particles require an approach that is fundamentally
different from that for elementary particles. Fundamentally, composite particles consist of
elementary particles, which can be described as collections of particles and antiparticles,
but some part of them forms a bound state, so the “bare” composite particle (the blue disk
in Figure 4) retains its individuality. Thus, Figure 4 is just a higher-level (less detailed)
picture.

Let us note that in the processes of particle diffraction and interference, the mo-
mentum transfer is defined by Fourier components of matter distribution in the crystal
lattice/diffraction grating/screen [42–44], so the mass of the incident particle plays a “pas-
sive” role: for the same momentum transfer, the effective de Broglie wavelength is shorter
for a particle of a larger mass.

Such description is closer to the de Broglie–Bohm interpretation and the Couder
experiment [45] for composite particles than, e.g., for electrons, as a composite particle
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is different from other particles in the collection, and it seems natural to single out its
trajectory from all trajectories of the particles in the collection.
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Figure 4. A composite particle (the blue disk) and a collection of pairs.

2.4. The Plasma Analogy

There is an obvious analogy between this description and plasma. As the dispersion
relation for the Klein–Gordon equation ω2 = m2 + k2 (in a natural system of units) is similar
to a dispersion relation of a simple plasma model, such analogy was used previously (see,
e.g., in [18,46,47]). This analogy illustrates the effective long-range interaction within
a collection.

Let us try to use this analogy to get an idea of the density of particles in a collection
modeling what is perceived as one particle in traditional quantum experiments. If ne is the
electron density in the collection, the plasma frequency ωp in the electron–positron plasma
is
√

2 times greater than the traditional plasma frequency [48], i.e.,

ωp =

√
8πnee2

me
(28)

(we do not consider any renormalization of mass and charge in this preliminary treatment).
It is natural to suggest that this plasma frequency is equal (maybe on the order of magnitude)
to the angular frequency of Zitterbewegung 2mec2

h̄ [49,50], so we obtain

ne =
m3

e c4

2πh̄2e2
=
(mec

h̄

)3 ch̄
2πe2 =

1
2πα

(
h̄

mec

)−3
, (29)

where α = e2

h̄c is the fine structure constant. Thus, ne ≈ 3.8 · 1032cm−3 or 21.8 per cube with
an edge length equal to the reduced Compton wavelength h̄

mec ≈ 3.86 · 10−11cm. The high
electron density suggests that there is low energy per particle of a collection. Let us also
note that in this context the Zitterbewegung frequency plays a role of a “natural frequency”,
rather than a frequency of some “internal clock” [51].

The plasma analogy suggests that more complex equations of motion can be useful for
quantum theory, e.g., some analogs of the Vlasov equation.

3. Conclusions

We considered a possible description of one-particle wave functions as plasma-like
collections of particles and antiparticles, and proposed an approach to approximating
smooth charge density distributions by discrete ones with quantized charge based on
the requirement that partial Fourier sums are equal for the initial and the approximating



Entropy 2022, 24, 261 11 of 13

distributions. An example of an approximating discrete distribution was computed using
the homotopy continuation method for polynomial systems.

An example mathematical model based on the Klein–Gordon–Maxwell electrodynam-
ics (scalar electrodynamics) is proposed.

The description was extended to composite particles, and some implications of the
plasma analogy were derived.

One cannot be sure that this description correctly describes reality, but even if it does
not, it provides an interesting model or useful picture of quantum mechanics and an
approach to understanding quantum randomness.
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Appendix A

In the following table, the coordinates of the discrete charges in Figure 3 are given
for reference.

Electron Coordinates Positron Coordinates

−3.1126741447007592777837555796944 2.9530344365605025711769473845442
−2.8775683647214638678316386267493 −3.0951381769952591512118001250174
−2.6434375832598523581831400447478 −2.8614098696120820985572576736353
−1.9336327385447378036758712466442 −2.1882892356297157247876068745650
−1.6936070421273554090248068336325 −2.6326516523345556425794778026752
−2.1719682464297679903185420586677 −1.9710273543645197236521756279888
−1.4519956803651471460404417607211 −1.7555235230550466106754786539860
−1.2088029171600329445514113518049 −1.5403236844404032536985003739319
−0.96395311532928105718506480243987 −1.1039117628153018022432733933447
−0.71762228955760307445232301075533 −1.3237515410575950384914085327471
−0.47125651467198634491476595790667 −0.87873421856160715534322966231588
−0.22858211104030609796912348102868 −0.64632138885302414208246702251485
0.86186952364267439824952086701953 0.33294945631962504080286722164668
0.00616783249506095738298247885632 −0.40611981918357315216289810648891
0.23137130395092737580909635004611 −0.16042959567225122871033380542859
0.44789490782808160879397312969880 0.08676186721721802846687332761214
0.65746934747098210872577876522952 0.57756516301030844804631542526482
1.2615668189213491342215825540197 0.82076073717919350910333838443007
1.4597980397241581466451663147530 1.3035691589932125510920278727478
2.0643955075009215796102922944881 2.0187559332910846063814218989366
1.6587989484672624969753714473643 1.7817077278249609050042692119912
1.8599046587703446165936780433590 1.5432590795101890022517254564541
2.2734402898434140647729061709433 2.2542171585208840682836715659146
2.7088031793185310430667064345281 2.7204794077160776393522523646147
2.9363544347316877716974068736781
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