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Abstract: Some problems of describing biological systems with the use of entropy as a measure of
the complexity of these systems are considered. Entropy is studied both for the organism as a whole
and for its parts down to the molecular level. Correlation of actions of various parts of the whole
organism, intercellular interactions and control, as well as cooperativity on the microlevel lead to a
more complex structure and lower statistical entropy. For a multicellular organism, entropy is much
lower than entropy for the same mass of a colony of unicellular organisms. Cooperativity always
reduces the entropy of the system; a simple example of ligand binding to a macromolecule carrying
two reaction centers shows how entropy is consistent with the ambiguity of the result in the Bernoulli
test scheme. Particular attention is paid to the qualitative and quantitative relationship between
the entropy of the system and the cooperativity of ligand binding to macromolecules. A kinetic
model of metabolism. corresponding to Schrödinger’s concept of the maintenance biosystems by
“negentropy feeding”, is proposed. This model allows calculating the nonequilibrium local entropy
and comparing it with the local equilibrium entropy inherent in non-living matter.

Keywords: biological systems; statistical entropy; cooperative interactions; macromolecule-ligand
binding; adsorption model; kinetic model of metabolism; dissipative structures; Schrödinger’s
concepts; negentropy feeding

1. Introduction

The concept of entropy plays an important role in describing complex processes
including thermodynamics, statistics, communications, etc. (for review, see ref. [1]). Some
problems of an adequate description of biological structures at microscopic and macroscopic
scales are related to entropy.

There is extensive literature dealing with theoretical problems of life phenomena,
e.g., see ref. [2]. Some current approaches are presented in ref. [3]. The authors note that:
“Although knowledge of biological systems has evolved exponentially in recent decades,
it is surprising to realize that the very definition of Life continues to present theoretical
challenges.” For the purposes of this article, we can mention some trends in the description
of biological organisms as open systems that overlap to a greater or lesser degree with
kinetic approaches. For example, work [4] clarifies some of the views that were discussed
in the 20th century. The first one is related to E. Bauer, the second to L. von Bertalanffy.
Bauer discussed the “stable nonequilibrium” and intended to prove the specificity of the
biological sciences against physics; he postulated the need to formulate specific laws of
motion that are valid for living matter itself. We assume that ordinary physics is sufficient
for describing biological processes. Von Bertalanffy developed the organismic-system
theory, in which the process dynamics is inherent inside this system.
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It is useful to note other works [5–9]. In ref. [5] the entropy production in the dissipa-
tion and irreversibility processes for the open systems is studied. The authors of ref. [6]
studied the problem of reconstruction of gene interaction networks after discussing the
significance of the notion of entropy in the description of biological systems. Then they con-
sidered extensions and potential limitations of the maximum entropy approach. Caro et al.
examined the influence of conformational entropy in protein interactions [7]. Demirel
studied the use of information (and entropy) notions in living systems and the influence on
fluctuations [8]. General physical ideas combined with the modern biological methods are
considered in detail in ref. [9].

To consider the biological system as a whole, we develop a kinetic approach, see
refs. [10,11], which describes this structure as a nonequilibrium open system. In doing so,
biological systems are considered in accordance with Schrödinger’s idea that a biological
organism “feeds on negentropy”. Kinetic theory is the basis for at least a qualitative
confirmation of this viewpoint. Our approach can be associated with the ideas of von
Bertalanffy and Bauer, who introduced the concept of unstable equilibrium related to the
characteristics of biological systems. But Bauer, for instance, did not consider a known
physical apparatus and appealed to a hypothetical unknown matter and tool.

Schrödinger wrote in his book [12]: “What an organism feeds upon is negative entropy.
Or, to put it less paradoxically, the essential thing in metabolism is that the organism
succeeds in freeing itself from all entropy it cannot help producing while it is alive.” But
Schrödinger proposed his idea without a concrete model. We intend to determine the
complexity of biological structures as open nonequilibrium systems.

We can also cite the following judgements of Volkenstein from ref. [13], which in
different senses support our approach: “A stationary state is possible only in an open
system; such a state might be termed a “flowing equilibrium” . . . at the heart of all
biological phenomena we find the physics of open systems far from equilibrium”. This
fuzzy assumption (to return to Bauer’s words) can be related to the kinetic model of
the “flowing nonequilibrium” because states far from equilibrium are maintained by two
factors: the flow (blood, water, etc.), which transfers the nonequilibrium distribution from
input to output, and the reactions of different interactions in this open system.

Some works devoted to various aspects of the concept of entropy as applied to biolog-
ical systems should be mentioned. Lucia and Grisolia showed that cells are able to convert
only part of the energy absorbed [14]. They assert that life is an organizational process,
i.e., result of system cooperation between components, with an interconnection between
subsystems and super-systems, such that for survival the super-system must export equal
or more entropy products than its sub-systems produces, towards maximum conversion
of available exergy sources to entropy products. Some thermodynamic models applied
to living systems address the investigations for the difference between input and output
energy and entropy fluxes (see ref. [15]). Here, the analysis of irreversibility related to this
wasted heat can represent a new approach to study the behavior of the cells. Some general
proposition has been formulated in ref. [16], where new methods of the bioengineering
thermodynamics of a cell are discussed. This allows us to consider the living systems
as black boxes and analyze only the inflows and outflows and their changes in relation
to the modification of the environment. The authors of ref. [17] attempted to describe
systematically the rate of entropy production associated with irreversible processes. They
apply the model to the most interesting and relevant case of metabolic network, the glucose
catabolism in normal and cancer cells. They expect that their method could potentially
be a support for cancer detection. Various issues regarding entropy transformation, in
particular those related to lactic fermentation and respiration, are discussed in ref. [18]. The
rate of entropy model for irreversible processes in living systems is computed. This model
is applied to glucose metabolism. The authors deal with phenomena under conditions
of local equilibrium inside and outside a typical cell. Glucose catabolism for normal and
cancer cells has been considered and the comparison of thermodynamic ratios between
the corresponding entropy rates. The same authors discussed some issues regarding en-
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tropy generation and its correlation with heat transfer in cell biology with special concern
for glucose catabolism representing the prototype of irreversible reactions and a crucial
metabolic pathway in stem cells and cancer stem cells [19]. The questions regarding two
thermodynamic principles of the minimum energy dissipation and fastest descent are
considered in ref. [20], where decreasing specific entropy production in different biological
processes is discussed. It is important to emphasize that all relationships in this and in the
other mentioned papers are based on the methods of the nonequilibrium thermodynamics
with assumption of the local equilibrium. The important recent paper is ref. [21]. Here,
the nonequilibrium description can be as an adequate apparatus. Protein folding should
be modeled as it occurs in vivo, that is, in a nonequilibrium, active, energy-dependent
process. This can and should stimulate a dedicated program of theoretical, modeling and
experimental studies. Schrödinger’s ideas are discussed by Kauffman [22], in particular the
need to introduce new laws; we believe that the kinetic method can adequately describe
biological systems.

In contrast to and in accordance with the concepts of the mentioned works, we intend
to explain some properties of life on the basis of notions of nonequilibrium local states,
not in a phenomenological sense but in the rigorous physical model as the first, general
physical view of a biological system is explored. From our point of view, statistical entropy
is able to reflect a high level of correlation between different parts of a biosystem. The
traditional method based on the classical definition of entropy (with local thermodynamic
equilibrium) overestimates the entropy of the entire system. Indeed, if the number of
microstates for independent parts of the biosystem is calculated in this way, the result will
not differ from a similar value for a sample, e.g., a piece of granite of the same mass. But in
a real biosystem, its different parts, in particular different organs, depend on each other. In
this case, the total entropy is much less than in the first mentioned case.

The purpose of this paper is to define and apply an appropriate measure of the
complexity of a biological structure using various entropy concepts. Kinetic, statisti-
cal, and thermodynamic theories are the basis for an adequate description of complex
entropy transformations.

From the macroscopic point of view, the situation of a real biological system can be
reproduced in two (actually related) ways of calculating entropy. The first involves an
extended definition of entropy and takes into account correlations in the behavior of parts
of the biosystem. The other uses a kinetic equation to describe nonequilibrium states.
Entropy of cooperative systems can also be considered.

For Boltzmann entropy, the total entropy of a system can be calculated as the sum of
the entropies of nonequilibrium parts of the system. Some generalizations of the concept
of entropy will be reviewed and analyzed in order to introduce them into an adequate
description of biological systems. In particular, the Kullback–Leibler relative entropy can
be used for estimations. This approach can be productive, but it must also describe the
dynamics of the biological system over time. A kinetic approach based on model relaxation
equations can provide such a model.

The outline of the paper is as follows. In the first part, we considered statistical entropy
and its application to macroscopic and microscopic scales, namely, to estimate entropy for
the organism as a whole and to transform in cooperative processes for biological molecules
with ligand binding to the polymer lattice. In the second part, a simple kinetic model of
metabolism allows us to study a biological organism as an open nonequilibrium system
maintained by feeding the negentropy (H-function in terms of Boltzmann theory). From
our point of view the parts of our paper are connected; we consider microscopic and
macroscopic limits for entropy and their link through kinetic equation. The statistical
combinatorial principle is applied to the biological system (or its subsystems) as a whole,
i.e., this is “macroscopic entropy”. Then we calculate the “microscopic statistical entropy”
for a simple element of the system. Finally, the statistical entropy is a main part of kinetic
description which can connect different levels.
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2. Entropy and the Role of Correlations of Parts of an Organism as a Whole

First, we want to give precise meaning to the intuitive idea that a biosystem has less
entropy than a “non-living” system of the same mass. The traditional formulation of the
statistical entropy related to the logarithm of the system’s possible states is given in ref. [23].
The probabilities of each state are equal. The increase in the total entropy after thermal
contacts of parts of the system is maintained.

There is an important proposition in ref. [24] that real biological systems can be main-
tained due to slow relaxation processes in high-molecular-weight compounds. Therefore,
we can consider stable biological structures for a scale of the mean relaxation time. The
kinetic relaxation model equation is used to describe the nonequilibrium steady systems.
This true correlation can be described by a model of the biological organism as a whole,
and this apparatus can be provided by the kinetic equation with an appropriate problem
statement, but one can estimate the entropy by a simple method.

The traditional thermodynamic approach considers a biological system as a combina-
tion of subsystems in equilibrium, so it is natural to estimate entropy as a set of independent
parts, with entropy equal to the non-biological object of the same mass (or a colony of
unicellular organisms). This view is based on the assumption that the probabilities of all
states are equal, but a different formula must be used to estimate entropy. Indeed, we
must calculate the value of nonequilibrium statistical entropy. This value will, of course, be
smaller than the first one due to the multiple connections between different parts and or-
gans in a biological system. Thus, correlations denote that these parts are not independent,
and the probability is less.

Total entropy is not a sum of entropies of different parts of a nonequilibrium system,
because the total probability is not the product of the probabilities of the different parts.
The probability for the nature piece of the non-living material, say granite, can be calculated
as the product of the probabilities of different independent parts. We can exchange parts.
But for the living system it is not so: all parts in fact are connected one to the other. To
compute total entropy, we can calculate the product of the probabilities of the different
parts and then subtract the correlation term between those parts. This term may depend on
the manner of dividing the parts on the subsystems.

Let us evaluate the entropy of a biological system in terms of explaining that system
as a composition of independent parts and correlated parts. This is incorrect because
the parts of an organism are strongly connected. For a colony of one-cell organisms this
is the number of all rearrangements, namely (1013)!. For a multicell organism, each cell
can be unique (for example, in the brain). In this case the number of combinations must
be equal to 1. An example of a biological system with unique arrangement of each cell
(neuron) is the brain. In this case entropy S = ln 1 = 0. A similar estimation was made
in ref. [24], but, according to the thermodynamic criterion, it can be proposed that any
biological system is almost no more ordered than a piece of rock of the same mass. Thus,
the entropy of a set of 1013 different one-cell organisms is almost equal to the entropy of the
human body containing 1013 cells. This strange statement is based on the analogy with the
thermodynamic estimate of entropy, for example, when cooling a relatively large amount
of water. But building a living organism (related to the mentioned value of entropy) is a
very difficult task because an organism is a complex nonequilibrium system (see further
the kinetic model of metabolism).

We tried to explain in more detail the basis of our model, and in this section we
consider the stationary state of the organism. So here we are not studying organ growth.
But combinatorial formulas are used in the traditional way. We distinguish between a piece
of inanimate matter, where rearrangements are possible, and living matter, where these
operations are in question. This approach is common for various statistics, in our situation
corresponding to Boltzmann statistics, where particles can be rearranged at a given level.
In any case, a living organism is fundamentally different from inanimate matter, in which
parts can be changed without changing the essence of the system. In fact, assuming that
it is possible to rearrange the cells of only individual organs, we generalized the result
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of Blumenfeld [24], who considered the limit when all living cells are unique. But let
us emphasize the difference with this position on the ease of obtaining a large value of
negentropy by the body in comparison with the thermodynamic process of cooling a small
amount of water. Blumenfeld also tried to introduce the not entirely explained term “value
of entropy”. But a really large amount of living negentropy can be explained from the
statistical point of view applied to nonequilibrium systems. Here we must consider the
growth of the organism. “Cooking” a living organism is not like cooling (or heating) a
little water. The organism develops from an ovulated cell through the embryonic stage to
a complex hierarchical living system. The transition from one level to the next requires a
large amount of statistical negentropy, which can be calculated for nonequilibrium states.

The common view (presented, for example, in the mentioned work) that, strictly
speaking, the concepts of entropy and thermodynamic probability make sense only for
equilibrium states, is wrong. After all, Boltzmann’s theory is not limited to this case. The
statistical entropy of kinetic theory can also be applied to nonequilibrium systems.

Thus, for a rough (but correct) estimate, it is possible to divide the organism into
organs; in every organ it is possible to exchange cells but for organs it is not possible. The
number of combinations in this case will be less than in the case of an independent set of
cells. In the first case the number of combinations is (1013)! and in the second case ((1012)!)10

if there are 10 different organs and each contains 1012 cells. It is clear that the number of
combinations in the second case is less, and therefore entropy is also less.

It is more correct to calculate this number of variants as ((1012)!)10 for the Boltzmann
formalism. Thus, the thermodynamic probability is (1013)!/((1012)!)10. For the simplest
example, we consider 100 cells. For a set of 100 cells we have 100!. If we have 10 organs
of 10 cells each, the number of variants is (10!)10. The thermodynamic probability is
100!/(10!)10, and it is greater than one. Note that we use the so-called thermodynamic
probability of the macroscopic state. It is equal to the number of ways (the number of
microscopic states) in which a given macroscopic state can be realized. This probability is
greater than or equal to one. The thermodynamic probability W is related to the entropy S
by S = kB ln W, where kB is Boltzmann constant.

Therefore, in this example, the entropy for the distribution function with “num-
bers of completeness” equal to 10 is actually constructed. And if we take the value of
ln W = ln 100!/(10!)10 (here a constant kB is omitted for simplicity), we obtain the well-
known expression for the entropy, and one can see that this value for a multicellular
biological organism is significantly less than the entropy for a set of different cells.

The entropy calculation for this case is analogous to the classical calculation of the
statistical Boltzmann entropy with the total number of particles N and the numbers of
particles in states N1, . . . , Nm. The number of complexes (thermodynamic weight) is equal
to N!/(N1! . . . Nm!). Here m is the number of levels or in terms of biological approach the
number of organs.

The final conclusion is as follows: entropy of a multicell biological organism according
to statistical approach is less with respect to the matter of the same mass. Therefore,
statistical entropy, used even in the model version of Boltzmann statistics, can be used. This
leads to the proposal to measure the entropy of the living organism.

3. Statistical Entropy in Description of Living Systems at the Molecular Level

For more than a century, equilibrium statistical thermodynamics has been success-
fully applied to describe biological processes at the molecular level. Physico-chemical
experiments in model in vitro systems, where such biological macromolecules as proteins,
their complexes, RNA and DNA, as well as small molecules (peptides, dyes, oligonu-
cleotides or proteins etc. to be further referred to as ligands) are present, have shed light
on many mechanisms underlying cellular processes. Conventionally, model experiments
are performed at room temperature and constant pressure; therefore, Gibbs free energy,
∆G, and the related equilibrium association constant, K, are used to describe the relevant
thermodynamic system. In terms of physics, the process of reversible ligand binding on
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the macromolecule surface is a physical adsorption phenomenon that belongs to the class
of lattice models, where the lattice polymer consists of ligand binding sites [25,26].

Consider a polymer with bound ligands as an open system, i.e., it can exchange
substance (ligands) with the solution. Cooperative interactions often occur between bound
ligands close to each other on the macromolecule surface. Of particular interest are the so-
called allosteric effects in proteins and nucleic acids, when binding of one ligand molecule
to a macromolecule causes its rearrangement, i.e., a change in conformation at a certain
distance from the bound ligand, so that the binding of subsequent ligand molecules occurs
with a different constant. A typical allosteric effect is the interaction of oxygen with the
hemoglobin tetramer. Thousands of papers have been devoted to the study of this process,
and its quantitation led to the famous Hill equation more than a hundred years ago, then
the Adair equation and a dozen other models and equations that are now considered
classical (e.g., see refs. [27,28]). Note that the current COVID-19 pandemic makes relevant
some works devoted to the influence of medium acidification and the cooperative oxygen
binding to hemoglobin (the so-called Verigo–Bohr effect) [29–31].

Cooperative effects are manifested in the vast majority of processes occurring at differ-
ent levels in living organism: from molecules to cells and tissues. Such effects are found
when ligands bind to various macromolecules, in particular to receptors, during signal
transduction in cell or in the case of intercellular interactions. Although low-molecular-
weight ligands do not take part in the processes of protein folding [32–34] and DNA
melting, the latter are substantially cooperative. Thus, cooperativity significantly affects
both intracellular and intercellular regulation of life processes [25,35–38].

When binding on the macromolecule, ligands can both help each other and hinder
binding; the first case corresponds to positive cooperativity, and the second one, to negative
cooperativity, or anticooperativity. The authors of ref. [39] investigated negative cooper-
ativity and showed that it leads to ultrasensitivity of the system, which means “the way
the system responds to various doses of the ligand can change dramatically from a very
gradual one to a switch-like behavior”. Cooperative effects appear in the aggregation of
small molecules [40–45], which also plays an important role in biomedical applications.

For a rigorous thermodynamic description of cooperative processes, it is necessary to
understand how basic state functions behave depending on the parameters of cooperativity.
One of the fundamental state functions describing the nature of a system is statistical, or
configurational, entropy. The role of mixing entropy in the reactions of intermolecular
stacking aggregation was elucidated in ref. [46]. Below we will try to study the behavior of
statistical entropy using the example of adsorption of small molecules on a linear polymer
and show that calculations of entropy make it possible to shed light on the processes
occurring in the system.

4. Model of Adsorption and Entropy Evaluation

Consider the following thermodynamic system: macromolecules with N equivalent
binding sites and the ligand molecules with molar concentration c, capable of occupying
one binding site are in equilibrium in solution at constant temperature and pressure. Let us
denote the equilibrium constant of ligand binding to a single macromolecule site as K, and
the parameter of cooperativity as ω. The cooperativity can be due to contact interactions
between ligands occupying adjacent binding sites. Values of ω < 1 correspond to negative
cooperativity, or anticooperativity, and values of ω > 1 correspond to positive cooperativity;
when ω = 1 the adsorption is non-cooperative [39].

The grand partition function is the quantity that most completely describes the system.
There are several ways of constructing a grand partition function for a system in which
ligands are adsorbed on the polymer lattice, namely, matrix method based on the Ising
model [47], the combinatorial method first used by Scatchard [48], and some others. The
grand partition function, Ξ, of a system consisting of ligands and a macromolecule with N
= 2 binding sites is actually the sum over all 2N = 4 possible microstates. Taking 1 and Kc
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as the statistical weights of an empty and an occupied site, respectively, one can readily
construct the grand partition function going over all the states (see Figure 1) [49]:

Ξ = 1 + 2Kc + ω(Kc)2. (1)

Entropy 2022, 24, 172 7 of 18 
 

 

The grand partition function is the quantity that most completely describes the sys-
tem. There are several ways of constructing a grand partition function for a system in 
which ligands are adsorbed on the polymer lattice, namely, matrix method based on the 
Ising model [47], the combinatorial method first used by Scatchard [48], and some others. 
The grand partition function, Ξ, of a system consisting of ligands and a macromolecule 
with N = 2 binding sites is actually the sum over all 2N = 4 possible microstates. Taking 1 
and Kc as the statistical weights of an empty and an occupied site, respectively, one can 
readily construct the grand partition function going over all the states (see Figure 1) [49]: 

( )ωΞ = + +
2

1 2Kc Kc . (1)

Once the grand partition function is known, we can calculate all thermodynamic 
parameters of the system, in particular entropy. 

    

=
Ξ00
1p  01

Kcp =
Ξ

 =
Ξ10
Kcp  ( )ω

=
Ξ

2

11

Kc
p  

Figure 1. Four possible states of the system consisting of two-site lattice and binding ligands, and 
their corresponding probabilities (indices 0 and 1 stand for an empty and an occupied site, respec-
tively). 

Let us define the statistical, or configurational, entropy of the system as a measure of 
the uncertainty arising from the adsorption of ligands on the lattice. Indeed, if it is known 
that q ligands are bound on the lattice, uncertainty arises as to which of the N sites are 
occupied by ligands and which are free. This entropy is due to the number of arrange-
ments in the linear sequence of q occupied sites and (N–q) free sites. It is known from 
statistical mechanics that such entropy, S, per mole of lattices is equal to: 

= =

= − 
1 1

0 0
lnij ij

i j
S R p p , (2)

where R is the gas constant, pij is the probability of finding the lattice in which two sites 
are in the ith and jth states. The explicit forms of the probabilities are given in Figure 1. 

The question arises: how does the entropy of the system behave when the ligand 
concentration and the cooperativity parameter change? Let us find the explicit form of 
entropy, S, on the basis of Equation (2): 

( )00 00 01 01 10 10 11 11ln ln ln lnS R p p p p p p p p= − + + + . (3)

Substitution of the probabilities from Figure 1 to Equation (3) yields 

( ) ( )( )ln 2 1 log lnKcS R Kc Kc Kcω ω ω = Ξ − + + Ξ 
. (4)

Let us represent entropy S as the function of two independent variables Kc and ω. 
Generally, the equilibrium constant K and the concentration c are physically distin-
guishable quantities, but in our analysis they exist inseparably. Moreover, the constant K 
is the measure of steady-state affinity of ligand to a site of the macromolecule, hence 
playing the role of an additional coefficient to the concentration. Therefore, we will fur-
ther use them as a single quantity to be referred to as generalized ligand concentration or 
simply ligand concentration. Figure 2 shows the corresponding surface. 
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Once the grand partition function is known, we can calculate all thermodynamic
parameters of the system, in particular entropy.

Let us define the statistical, or configurational, entropy of the system as a measure of
the uncertainty arising from the adsorption of ligands on the lattice. Indeed, if it is known
that q ligands are bound on the lattice, uncertainty arises as to which of the N sites are
occupied by ligands and which are free. This entropy is due to the number of arrangements
in the linear sequence of q occupied sites and (N–q) free sites. It is known from statistical
mechanics that such entropy, S, per mole of lattices is equal to:

S = −R
1

∑
i=0

1

∑
j=0

pij ln pij, (2)

where R is the gas constant, pij is the probability of finding the lattice in which two sites are
in the ith and jth states. The explicit forms of the probabilities are given in Figure 1.

The question arises: how does the entropy of the system behave when the ligand
concentration and the cooperativity parameter change? Let us find the explicit form of
entropy, S, on the basis of Equation (2):

S = −R(p00 ln p00 + p01 ln p01 + p10 ln p10 + p11 ln p11). (3)

Substitution of the probabilities from Figure 1 to Equation (3) yields

S = R
[

ln Ξ− Kc
Ξ
(2(1 + ωKc) log(Kc) + ωKc ln ω)

]
. (4)

Let us represent entropy S as the function of two independent variables Kc and ω.
Generally, the equilibrium constant K and the concentration c are physically distinguishable
quantities, but in our analysis they exist inseparably. Moreover, the constant K is the
measure of steady-state affinity of ligand to a site of the macromolecule, hence playing the
role of an additional coefficient to the concentration. Therefore, we will further use them
as a single quantity to be referred to as generalized ligand concentration or simply ligand
concentration. Figure 2 shows the corresponding surface.
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Figure 2 shows that the entropy has an absolute maximum at Kc = 1 and ω = 1. For a
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values of the cooperativity parameter. The set of dependencies S(Kc) at fixed values of ω is
shown in Figure 3.
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Obviously, the dependence of entropy on generalized ligand concentration turns out
to be non-trivial, since it acquires two maxima instead of one at values of the cooperativity
parameter ω < 1. The two maxima are due to the fact that two states at the same concentra-
tion of free ligand in solution have the same statistical weight. One of the maxima always
corresponds to Kc = 1. When ω � 1, the state with statistical weight ω(Kc)2 = 1 competes
with the latter state.

Figure 4 shows the dependencies of the probability density of the system states on Kc.
If the cooperativity parameter is sufficiently small (ω � 1), the three states successively
replace each other. With increasing ligand concentration, the probability of the empty lattice
begins to decrease, while the probability of the lattice with occupied and free sites increases.
As ligand concentration continues to increase, the probability of a fully occupied lattice
increases. In the limit of ω → 0, one would expect the latter event to occur at infinitely
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high ligand concentrations, which is impossible, and this is in perfect agreement with our
ideas. Indeed, the existence of two neighboring occupied sites is prohibited in the infinitely
anticooperative process (neighbor exclusion model) [50].
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This model is the link to lattice model of “solid rod gas”, in which one ligand occupies
several sites at once upon binding. Equations of state for such a system were first derived
by Tonks [51]. However, the equation for the case of ligand adsorption on the lattice was
not known, and it was derived again [52,53].

Cooperative interactions between such ligands were considered by Zasedatelev, Gursky,
and co-authors [54,55]. Also worth mentioning is the approach of McGhee and von Hip-
pel [56], which has become widespread among biochemists and molecular biologists. The
next step forward in the description of cooperative interactions was the application of the
Ising model to describe the situation when ligands can bind to DNA in different orientations
(see refs. [57,58]) and to describe the cooperative binding of ligands to microarrays [59]).

In the model described, macromolecules without ligands, with one and two adsorbed
ligands (as well as free ligand molecules) are in equilibrium in solution. Let us assume
that we are conducting tests according to the generalized Bernoulli scheme: we take a
macromolecule out of the solution and look at how many ligands are adsorbed on it, then we
return it to the solution and take out the next one. In this case, we have three test outcomes.
But in the limit of infinite cooperativity ω→ ∞, only two types of macromolecules will be
observed: without ligands and with two adsorbed ligands at once (see ref. [60]).

From the comparison of Figures 4 and 5 follows an important conclusion that the entropy
of the system is maximal at the intersection of probability densities, i.e., when corresponding
events are equally probable. Equal probability means that there is no prevailing state of the
system and leads to uncertainty, the quantitative measure of which is statistical entropy. In
the case of negative or positive cooperativity, the processes of ligand binding depend on each
other, whereas in the case of noncooperative binding these processes proceed independently.
For this reason, the greatest value of entropy in the maximum (see Figures 4 and 5) is observed
precisely for the non-cooperative process (ω = 1).

Representing the projection of the two-dimensional surface onto the (S, ω) plane, one
can obtain the dependence of maximum values of entropy on the cooperativity parameter
(see Figure 5). Obviously, the maximum of statistical entropy corresponds to the system
with non-cooperative interactions (ω = 1) in which all four states are equally probable.
As the cooperativity parameter (ω � 1) decreases, the state with completely filled lattice
becomes less and less probable, and as the cooperativity parameter (ω � 1) increases, the
states with a half-filled lattice become less and less probable.

The maximum of molar entropy of the system, Smax, absolutely coincides with the
fundamental Boltzmann equation, up to Avogadro constant, NA:

Smax = NA · kB ln W = R ln W,
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where W is thermodynamic probability, which bears the similar meaning as the same
quantity mentioned above.

Note that in real systems, when ligands bind to receptors, substrates bind to ribosomes,
etc., and the ligand binding to the first and second sites can be characterized by different
constants [61,62]. When analyzing experimental data, the researcher confronts the so-called
inverse problem, i.e., with the reconstruction of model parameters of the binding curves. In
this case, uncertainty arises, and the cooperativity parameter can be determined only under
specific assumptions. There is also a known problem that the results of calculating the
curves in a model with included anticooperative interactions between ligands coincide with
the results of calculations in the presence of heterogeneous binding, but not cooperative.
To solve this problem, the researcher needs to set up binding kinetics experiments [38].
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5. Kinetic Model of Metabolism and Entropy

The kinetic method actually uses the H-theorem as a sequence of the kinetic theory.
The developed simple kinetic model of metabolism [10,11] makes it possible to implement
the mentioned idea that a living system feeds on negentropy (not positive energy). This
model, based on ref. [11] can relate the size (and age) of biosystems to the intensity of the
inner reaction processes.

Another proposal by Volkenstein [13], “ . . . a sort of ‘entropy pump’ is needed to
pump entropy out of the open system” is realized by a kinetic model with a negative
entropy (or H-function) pump, or the H-function flux into an open system. In other words,
the entropy flux for this stationary system increases from input to output according to the
H-theorem, and for this nonequilibrium open steady system the energy flux is constant.

We consider a simple model of metabolism with transformation of states of substance
on the basis of kinetic theory and the entropy corresponding to it. This investigation
(study) can be considered initially on the basis of one-dimensional problems solved by
the kinetic methods. The so-called nonuniform relaxation problems (NRP) [10,11,63] have
been studied as a simple model for simulation of the biological systems. We begin with the
kinetic relaxation model equation (the so-called BGK equation or t-model):

ξ
∂ f
∂x

=
1
τ
( fM − f ). (5)

Here, f = f (x, ξ) is the distribution function, x is a physical coordinate, ξ is velocity, τ
is a specific relaxation time, fM is the Maxwellian (equilibrium distribution). Equation (5)
is an equation of the so-called BGK type (see ref. [64]); moreover one can imply that a
constant characteristic relaxation time appears in Equation (5). Such an equation is really



Entropy 2022, 24, 172 11 of 17

connected to the Boltzmann transport equation, but it is simpler and can potentially reflect
relaxation processes in more complex than gaseous media.

The formulation of the boundary NRP problem is described, e.g., in ref. [11]; the left
boundary condition is the following nonequilibrium function. Namely,

f (0, ξ) = 0 (0 < ξ < 1.5),
f (0, ξ) = 1 (1.5 < ξ < 2.5),
f (0, ξ) = 0 (2.5 < ξ < 3.5),
f (0, ξ) = 1 (3.5 < ξ < 4.5),
f (0, ξ) = 0 (4.5 < ξ).

The distribution function f has the usual meaning, namely the number of particles
with given velocities for certain quantities of space and time (only translational degrees of
freedom are considered here, and to generalize the motion of biological molecules, other
degrees of freedom must also be taken into account). The boundary conditions are of a
model nature and describe the strong nonequilibrium of the substance entering the body
during metabolism.

This upstream nonequilibrium distribution at the point x = 0 then changes for larger
x and then tends to equilibrium downstream. Here we consider a steady spatial nonuni-
form problem as analogous of the known uniform relaxation problem where f tends to
equilibrium in time. In our steady system we consider the evolution of f in space from
the nonequilibrium state inflow to the equilibrium state outflow. The term downstream is
traditional; it denotes the points that are down in the flow.

This implies that the kinetic energy of the mean longitudinal velocity of the blood is
sufficiently greater than the chaotic energy of particles in blood. Therefore, the back flow,
i.e., the part of the distribution function with the negative velocities, can be negligible (it
denotes that the elements of the blood move in one direction).

Therefore, there is a small parameter α = (ξ − u0)/u0, where u0 is the mean boundary
velocity for x = 0. For the distribution function we construct the analytical solution using
a method of expansion in this parameter. For the first order approximation in a small
parameter (of the ratio of internal energy to kinetic energy) we obtain

f (x, ξ) = f (0, ξ) exp(−a(ξ)x/u0τ) + (1− exp(−a(ξ)x/u0τ)) fM0(ξ), (6)

fM0(x, ξ) = n0

(
m

2πT0

)3/2
exp

(
− (ξ − u0)

2

2T0

)
.

Here, a(ξ) = 1− (ξ − u0)/u0, macroscopic parameters for the equilibrium distribution
downstream fM0, are computed through the macroscopic parameters of the nonequilibrium
distribution upstream. The main term in the exponent that determines the spatial relaxation
is the same order as in the zeroth approximation. Thus, l = u0τ, where l is the characteristic
spatial value of decay of the nonequilibrium state, τ is the average time of interactions
(collisions). One can generalize the result if considering τinn, i.e., the characteristic mean
time of the biochemical reactions, fMinn = fM(x, e) is the equilibrium function with the
temperature Tinn of the biosystem (the body temperature). Here the temperature appears
in the standard expression for the equilibrium distribution (Maxwellian) fMinn.

The traditional statistical Boltzmann entropy, used to describe spatial nonequilibrium
states, is the following moment:

S = −
∫

f ln f dξ. (7)

Equation (7) can represent the entropy for the strong nonequilibrium distribution,
which in fact is described in this chapter and given by the formulas before Equation (6).
Really, the kinetic theory by Boltzmann deals with the distributions removed far from
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equilibrium. Equation (6) shows such distributions on velocity for different physical
coordinates of the problem under consideration.

The entropy flux is written according to the ordinary definition adopted in the kinetic
theory. The x-component of the entropy flux is as follows

Sx = −
∫

ξx f ln f dξ. (8)

Here ξx is the x-component of molecular velocity. The entropy flux enters through the
left boundary and exits (with a larger value of the entropy flux) through the right boundary
of the considered one-dimensional system.

First, we consider the change of entropy flux in space from “nonequilibrium input”
to “equilibrium output”. For the steady-state case under consideration, the entropy efflux
and the entropy created in the system as a result of interactions are balanced out. From
Equation (5), the H-theorem for this one-dimensional stationary case implies an increase in
the entropy flux, namely (Sx)downstream > (Sx)upstream.

Figure 6 shows the profile of the increasing entropy flux Sx(x) calculated from Equation (8).
That is consistent with Schrödinger’s ideas that life is powered by negative entropy (negen-
tropy). Indeed, the H-function (H = −S), i.e., negentropy decreases. This flux is the entropy
pump mentioned above. Therefore, the difference of output and input entropy fluxes reads

∆Sx = Sx(L)− Sx(0). (9)

It can be denoted as the magnitude of negentropy that feeds on the biological system.
Here, L is the effective spatial region (associated with the size of the biosystem).
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The profiles of the equilibrium and nonequilibrium local entropies are shown in
Figure 7. The term nonequilibrium entropy means that when calculating the entropy ac-
cording to Equation (7), the nonequilibrium distribution function is used in the integral, and
after substituting the equilibrium function (Maxwellian) into the integral in Equation (7),
we obtain, respectively, the equilibrium entropy. The difference between the nonequi-
librium (green bottom line, a “life line”) and the equilibrium (blue upper line, a “death
line”) entropies with the same density, velocity and temperature is calculated at any local
spatial point.
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The local nonequilibrium entropy is less than the local equilibrium entropy since this
difference is associated with the process of the spatial uniform relaxation. This problem
is adequate in the case when the system is instantly closed, e.g., by stopping the flow of
blood, then the relaxation process proceeds in the usual way and the distribution tends to
equilibrium. Negentropy is understood as the H-function (entropy S =−H), so this quantity
is actually the Boltzmann entropy, and it can be calculated for any nonequilibrium state.

It is seen that the local nonequilibrium entropy is less than the local equilibrium
entropy. The difference between equilibrium and nonequilibrium total states, taking into
account the local nonequilibrium entropy, is calculated as follows (this is the shaded part in
Figure 7).

∆S =

L∫
0

(
Seq(x)− Sneq(x)

)
dx. (10)

where Seq(x) and Sneq(x) are the values of statistical entropy at equilibrium and nonequi-
librium states, respectively. This difference, ∆S, from Equation (10) can give a possible
estimate of the complexity of living objects. This formula actually characterizes the “integral
distance” (“metric”) between the “living line” and the “unliving line” in Figure 7, i.e., the
complexity of a living organism is a measure of its remoteness from the equilibrium state,
which is the simplest basic description of the distribution in terms of velocities or energies.

This value can be called the “life” budget (“life reserve”). Note that the model kinetic
equations for mixtures with chemical reactions also demonstrated similar results for one-
dimensional NRP, and calculations for two-dimensional NRP confirm this conclusion.

We consider a living system as a structure with entropy less than that in a non-living
system of the same mass. Volkenstein’s words [13], “In the case of a living organism,
entropy attains its maximum in the equilibrium state—otherwise known as death”, are
confirmed by comparison of local nonequilibrium and equilibrium entropies. We can
assume that in the closed system the value of Equation (10) is zero. Once the open system is
closed, the local equilibrium state will be approached for the time on the order of relaxation
time τ, i.e., the characteristic time of the basic biochemical reaction. For example, this can
be done by stopping the blood flow. Formally, this can be modeled by considering a system
with opaque walls at points x = 0 and x = L.

In this case, the right-hand side in Equation (5) is not equal to zero, but the velocities
are equal to zero, so it is necessary to introduce the time derivative into the left-hand size,
i.e., we have the equation in the form

∂ f
∂t

=
1
τ
( fM − f ). (11)
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For this uniform relaxation problem, the initial condition is the distribution function from
Equation (8), and the analytical solution analogous to Equation (6) has the following form

f (t, ξ) = f (x, ξ) exp(−t/τ) + (1− exp(−t/τ)) fM(x, ξ), (12)

where the local Maxwellian fM depends on the density n(x), mean velocity u(x), and temperature
T(x) calculated using the distribution f (x, ξ) from Equation (8). The relaxation process ends at
any point with equilibrium, and the entropy in Figure 7 approaches the upper curve. This line
will be unchanged even if the mean velocity is zero. Indeed, we can obtain that the entropy for
equilibrium with the same density and temperature and with different mean velocities is the
same. For the equilibrium entropy from Equation (7) we have

S( fM) = −
∫

fM ln fMdξ = −
∫

fM

(
ln n +

3
2

ln m− 3
2

ln(2πkT)− m(ξ − u)2

2kT

)
dξ.

A value
∫

fM
m(ξ−u)2

2kT dξ = p, where p is pressure that does not depend on the mean velocity.
Thus, after stopping the motion the equilibrium entropy will be the same and appeal to
the top line. This means, for example, with the cessation of the movement of blood in the
cardiovascular structures after the cessation of the work of the heart, this only leads to
interactions and spatial uniform relaxation, i.e., tend to “death”. Therefore, relaxation leads
to a local equilibrium at each spatial point after several relaxation times and the transition
from a “living line” Sneq to a “non-living line” Seq.

Here we assume that the relaxation time is much shorter than the time of advection
between the parts of the spatially nonuniform system with local equilibrium. This process
is the next problem. The closeness of the system maintained supported by fast advection
processes, such as blood transport, leads to isolation of different parts of the system. Rapid
relaxation is realized in each of them. Of course, these parts are not isolated from each other.
But these processes of advection such as diffusion will be relatively slow and between parts
in local equilibrium. Nonequilibrium thermodynamics does not extract specific properties
of living systems, since unlike kinetic theory it is conditioned by equilibrium local states.
Then, when the distribution tends to the global equilibrium the process will be relatively
slow under the corresponding condition of local equilibrium at any point. Transfer in this
non-living system will be due to gradients of different values and will be a diffusion type
process. For this case, nonequilibrium thermodynamics will be a correct theory because
there is a local thermodynamic equilibrium. Thus, these processes will proceed until a
spatial uniform distribution of relaxation in the system is achieved.

6. Discussion and Conclusions

In this paper we have considered the possibilities of the concept of entropy as applied
to a biological system at different levels. The aim was to study the entropy apparatus
for the system as a whole and some of its parts up to the molecular level and to obtain
general statements and, possibly, correlations. As a general conclusion for the meanings
of our work we can cite the following common words of Volkenstein from ref. [13]: “ . . .
entropy has turned from a mere shadow of an omnipotent sovereign to a powerful entity
determining the very existence of life on Earth”.

We have tried to discuss the influence on entropy of correlations between the actions
of different parts of the whole organism, intercellular interactions and control, as well as
cooperativity on the microscopic level.

For a multicellular organism as a whole, Boltzmann’s approach was used to calculate
the thermodynamic weight and statistical entropy. In contrast to the opinion of some
biophysicists, entropy for a multicellular organism is much less than the entropy for the
same mass of “non-living matter” or even a colony of unicellular organisms. Indeed, if each
cell in a given organism plays a unique functional role in the system, the cells cannot swap
places, and therefore the thermodynamic weight is unity and entropy has a minimum value,
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that is, zero. For a colony of cells, we can swap any pair of elements of this system, and we
will get the maximum value of statistical entropy. In the intermediate case of dividing a
system into different organs, we cannot swap these organs without destroying the whole
organism, but we can swap the cells of each organ among themselves. Thus, we get an
intermediate value of entropy here.

For the “microscopic level” we can conclude that cooperativity always reduces the
entropy of the system; a simple example of ligand binding to a macromolecule carrying
two reaction centers shows how entropy agrees with the ambiguity of the result in the
Bernoulli test scheme.

A similar binding scheme is realized in the case when a macromolecule with two
binding centers is DNA on which the repressor protein is adsorbed. In this case, the
entropy of binding leads to noise in gene expression, which can be measured (see, for
example, ref. [65]). In this case, a change in ligand-repressor concentration leads to a
change in cell color, i.e., phenotype. A thermodynamic model that takes into account the
cooperativity of ligand binding allows us to establish a connection between the molecular
and cellular levels [49]. A similar model is developed in this work; and it allows simulating
different modes of cooperative ligand-receptor binding and, consequently, the possibility
of switching cellular metabolism.

The simple kinetic model of metabolism proposed earlier allows us to implement
Schrödinger’s idea that a living system is powered by negative entropy (negentropy) rather
than positive energy; the model is a quantitative expression of this assumption of feeding a
biological organism with negentropy (see Figure 6).

For this one-dimensional open nonequilibrium system obeying the relaxation model
equation, the energy flux through the boundaries of this system is constant. But the entropy
flux increases from input to output. In other words, the negative entropy (negentropy) flux
is negative. Here, negentropy is the H-function, where H = −S, and S is the nonequilibrium
statistical entropy. It is important that this kinetic simplest metabolic model deals with a
local nonequilibrium state (unlike, for example, irreversible thermodynamics), and from
our point of view, the local nonequilibrium state is a specific property of the living system.
This kinetics model allows us to calculate the nonequilibrium local entropy and compare
it with the local equilibrium entropy inherent in non-living matter. Integral characteristic
of difference between equilibrium and nonequilibrium local entropy can be considered as
“life reserve”.

It is also proposed to bring together the macroscopic and microscopic levels of organ-
ismal complexity closer together, using, in particular, new definitions of entropy.

Metabolism means the replacement of molecules on the time scale of a biochemical
reaction. But the position of body parts changes slowly. Therefore, it is useful to present an
appropriate distribution. The entropy of structural distributions in aging biosystems has
been determined. Cellular metabolism is required to reduce it. This can lead to a decrease
in position entropy. Real cellular metabolism in some living organisms can be an example
of resistance to the increase in the entropy of aging. We plan to generalize these models
and study the issue in the near future. The so-called Kullback–Leibler relative entropy
(Kullback–Leibler divergence) can be useful for this purpose.
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