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Abstract: In the paper, we characterize local estimates from multiple distributed sensors as posterior
probability densities, which are assumed to belong to a common parametric family. Adopting the
information-geometric viewpoint, we consider such family as a Riemannian manifold endowed
with the Fisher metric, and then formulate the fused density as an informative barycenter through
minimizing the sum of its geodesic distances to all local posterior densities. Under the assumption of
multivariate elliptical distribution (MED), two fusion methods are developed by using the minimal
Manhattan distance instead of the geodesic distance on the manifold of MEDs, which both have the
same mean estimation fusion, but different covariance estimation fusions. One obtains the fused
covariance estimate by a robust fixed point iterative algorithm with theoretical convergence, and the
other provides an explicit expression for the fused covariance estimate. At different heavy-tailed
levels, the fusion results of two local estimates for a static target display that the two methods achieve
a better approximate of the informative barycenter than some existing fusion methods. An application
to distributed estimation fusion for dynamic systems with heavy-tailed process and observation
noises is provided to demonstrate the performance of the two proposed fusion algorithms.

Keywords: distributed estimation fusion; elliptical distribution; information geometry; Manhattan
distance; lie algebra

1. Introduction

Multisensor data fusion has been studied and widely applied to many important areas,
such as image processing [1,2], wireless sensor networks [3,4] and remote sensing [5,6]. The
research mainly centers on two basic architectures, i.e., centralized fusion and distributed
fusion. The latter has less communication burden, higher flexibility and reliability, but
challenges in dealing with the cross-correlation among local estimation errors caused by
common process noises, related measurement noises and past data exchanges [7–9].

Considering the limitations of traditional Bayesian estimation methods such as some
Kalman filtering variants, many estimation fusion methods only utilize the first two mo-
ments (i.e., mean and covariance) of each local posterior density for data fusion. For
instance, the covariance intersection (CI) fusion method [10,11] propagates each local infor-
mation pair consisting of the information matrix (i.e., the inverse covariance matrix) and the
information vector (i.e., the state estimate left multiplied by the information matrix), and
then provides a convex combination of all local information pair with specified normalized
weights to yield a conservative fused estimate. Specifically, the determinant-minimization
CI (DCI) method [12] selects weights by minimizing the trace or the determinant of fused
covariance matrix, which also provided a set-theoretic interpretation [13]. Applying the
set-theoretic criterion, some novel set-theoretic methods such as the relaxed Chebyshev
center CI (RCC-CI) [14] and the analytic center CI (AC-CI) [15] take both the local state
estimate and covariance matrix of estimation error into account to obtain the optimal
weights, but the DCI only considers the latter.

The probability density function (PDF) constitutes a complete probabilistic descrip-
tion of the state estimate (i.e., the point estimate of the quantity of concern) from each
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sensor, which includes a lot of important information, such as support, tail decay and
multimodality, so it is more suitable for fusion than the first two moments. We note that
there are already many fusion methods which combine the local estimates together in the
form of PDFs. As examples, under Gaussian assumptions, ref. [16] minimizes the Shannon
entropy of a log-linear combination of all local PDFs, and provides the fused estimates
with the same form as the DCI, but in general with different weights; the fast CI (FCI)
algorithm [17] finds the “halfway” point between two local PDFs through minimizing
Chernoff information, which has been generalized to the case of multiple sensors; The
Kullback–Leibler averaging (KLA) algorithm [18] seeks an average PDF to minimize the
sum of KL divergences between such average and local posterior densities.

Although many PDF fusion rules have been established and found to be useful in
specific applications, there is no consistent theoretical basis for the principles of these rules
and their possible alternatives. Moreover, ref. [19] illustrates that the space of PDFs is
generally not Euclidean. For these reasons, information geometry regards the parametric
space of PDFs as a statistical manifold with a Riemannian structure, and then studies the
intrinsic properties by the tools of modern differential geometry. The theoretical framework
can be exploited for the PDF fusion by assuming that all local posterior PDFs as points
belong to a common Riemannian manifold. For example, ref. [20] formulates the fusion
result as the Wasserstein barycenter by minimizing the sum of its squared Wasserstein
distances to Gaussian inputs. The Wasserstein distance as a geodesic distance on the
Riemannian manifold equipped with the Wasserstein metric is usually used for optimal
transportation [21,22], while the Fisher metric applies primarily to information science.
Therefore, by endowing such space with a natural Riemannian structure (i.e., the Fisher
metric and Levi–Civita connection), the resulting geodesic distance, also called the Rao
distance, has been taken as an intrinsic measure for the dissimilarity between two PDFs
and then applied in wide fields such as neural networks [23,24], signal processing [25,26],
and statistical inference [27,28].

In addition, due to the intrinsic mechanism of applications, uncertain modeling er-
rors and the existence of outliers, the class of multivariate elliptical distributions (MEDs)
including multivariate Gaussian distribution (MGD), multivariate generalized Gaussian
distribution (MGGD) [29], multivariate t-distribution (MTD) [30], symmetric multivari-
ate Laplace distribution [31], contaminated Gaussian distribution, Gaussian–Student’s t
mixture distribution and so on, has enjoyed a wide range of applications [32–41]. To our
knowledge, the application of information geometry in multisensor estimation fusion has
not been studied in depth except two previous papers [42,43]. The geodesic projection (GP)
method [42] for distributed estimation fusion, minimizing the sum of geodesic projection
distances onto the Gaussian submanifold with a fixed mean vector, formulates the fused
PDF as an informative barycenter of the Gaussian manifold. And the QMMHD fusion
algorithm [43] extends the PDF fusion on the Gaussian manifold to the MED manifold
by minimizing the sum of Manhattan distances (MHDs) between the fused density and
each local posterior density on the Riemannian manifold of MEDs; however, it suffers
from two major drawbacks. One is that the covariance estimate of the fused PDF is not
specially designed, just using the same form as the CI estimate, and the other is that the
convergence of the QMMHD algorithm can not be guaranteed in theory. At present, an
in-depth research on the PDF fusion of non-Gaussian manifolds is quite lacking. Our goal
is to develop efficient distributed estimation fusion algorithms for various scenarios and
applications under a unified MED fusion framework, rather than considering a single
fusion rule or method for a particular MED.

In the work, using the minimal MHD instead of the geodesic distance as the loss
function of geometric fusion criterion, we propose two distributed fusion methods under
the MED assumptions. The main contributions are summarized as follows:

(i) To exploit the non-Euclidean characteristics of probabilistic space and the decouple
feature of Manhattan distance, we formulate a novel information-geometric criterion
for fusion and discuss its inherent advantages.
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(ii) We derive the explicit expression for the MHD-based projection from a point onto
the MED submanifold with a fixed mean, and then develop two fusion methods
MHDP-I and MHDP-E by relaxing the fusion criterion, which both have the same
mean estimation fusion, but differ in the form of the fused covariance. A fixed point
iteration is given to obtain this fused mean.

(iii) The MHDP-I obtains the fused covariance using a robust fixed point iterative algo-
rithm with theoretical convergence, while the MHDP-E provides an explicit expression
for the fused covariance by introducing a Lie algebraic structure. We also provide a
crucial theorem presenting the exponential mapping and logarithmic mapping on the
MED submanifold with a fixed mean.

(iv) Simulations indicate that the two proposed information-geometric methods outper-
form some existing fusion methods under non-Gaussian distributions.

The outline of this paper is organized as follows. In Section 2, the basic facts for infor-
mation geometry and some useful results concerning the MED manifold are introduced.
Section 3 formulates an information-geometric fusion criterion based on the minimal MHD,
and then proposes the MHDP-I and MHDP-E fusion methods in Section 4. Numerical
examples in Section 5 are provided to demonstrate the superiority of the two methods.
Section 6 gives a conclusion. All proofs are given in the Appendics A–F.

Notations

Throughout this paper, we use lightface letters to represent scalars and scalar-valued
mappings, boldface lowercase letters to represent vectors, and boldface capital letters to
represent matrices and matrix-valued mappings. All vectors are column vectors. The
notation Sm

+ is the set of m×m real symmetric positive-definite matrices, R+ is the space of
all positive real numbers, and Rm denotes the set of all m-dimensional real column vectors.
The symbol Im stands for the identity matrix of order m. For a matrix A, AT and tr(A)
denote its transpose and trace, respectively. Moreover, Exp(·), Log(·) and arccosh(·) are
matrix exponential, matrix logarithm and inverse hyperbolic functions, respectively.

2. Preliminaries

In this section, we review basic notions in the fields of information geometry and
present some important results for later use.

2.1. Statistical Manifold and Fisher Metric

Consider a statistical model

S =
{

p(x; θ) : θ = (θ1, . . . , θm) ∈ Θ
}

(1)

of probability densities with the global coordinate system θ = (θ1, . . . , θm), where Θ is an
open set of Rm. Using the Fisher metric g induced by the m×m Fisher information matrix
with the (i, j)-th entry

gij(θ) = Eθ

[
∂

∂θi log p(x; θ)
∂

∂θ j log p(x; θ)

]
, (2)

where Eθ[·] represents the expectation operator with respect to p(x; θ), the statistical mani-
fold S can be endowed with a natural Riemannian differentiable structure [44]. For brevity,
we shall abbreviate the point p(x; θ) of S as its coordinate θ.

Let TθS be the tangent vector space at the point θ in S , and an inner product on TθS
is then defined by the Fisher metric g, written as

〈·, ·〉θ : TθS × TθS → R. (3)
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Thus, the geodesic distance between two points θ0 and θ1 in S , also called the Rao distance
or Fisher information distance, can be obtained through solving the following functional
minimization problem

`F(θ0, θ1) := min
θ∈Γ

∫ 1

0

√
〈θ̇(t), θ̇(t)〉θ(t)dt, (4)

where the dot symbol over a variable signifies its derivative with respect to t ∈ R, and the
set Γ consists of all piecewise smooth curves linking θ0 to θ1.

For any ν ∈ TθS , there exists a unique geodesic segment γ(t; θ0, ν), t ∈ [0, 1], satisfying
γ(0) = θ0 and γ̇(0) = ν, and then the exponential mapping is defined as

expθ0
: Tθ0S → S

ν 7→ expθ0
ν = γ(1; θ0, ν).

(5)

Conversely, the logarithmic mapping logθ0
(θ1) maps θ1 into the tangent vector ν at θ0.

As a generalization, the manifold retraction R(·) is a smooth mapping from the tangent
bundle TS = {TθS : θ ∈ Θ} into S (see, e.g., [45]), and its restriction Rθ(·) on an open ball
B(0, r) with radius r in TθS satisfies Rθ(0) = θ and dRθ|0 = idTθS . Moreover, its inverse
mapping R−1

θ (·), called the lifting mapping, exists in a neighborhood of θ. In particular, the
exponential mapping and logarithmic mapping are the commonly used retraction mapping
and lifting mapping, respectively.

2.2. Information Geometry of Elliptical Distributions

An m-dimensional random vector x has multivariate elliptical distribution ELm
h (µ, Σ),

if its probability density function is of the form

ph(x; µ, Σ) = |Σ|−1/2h
(
(x− µ)TΣ−1(x− µ)

)
(6)

with some generating function h(·), where µ ∈ Rm is mean vector and Σ ∈ Sm
+ is positive-

definite scatter matrix. From [46], x has covariance matrix κhΣ with scale parameter κh.
As two examples, the generating functions of the MGGD with shape parameter β and the
MTD with ν degrees of freedom, respectively, are

h(u) =
βΓ(m/2)

πm/2Γ(m/(2β))2m/(2β)
exp

(
−1

2
uβ

)
(7)

and

h(u) =
Γ((ν + m)/2)
(πν)m/2Γ(ν/2)

(
1 +

u
ν

)−(ν+m)/2
. (8)

Suppose that Ω is the lower-triangle Cholesky factor of Σ, z = Ω−1(x − µ) and
ξ = d log(h(‖z‖2))/d(‖z‖2). Denote

ah =
1
m
E[ξ2‖z‖2], bh =

1
m(m + 2)

E[ξ2‖z‖4]. (9)

It is easy to deduce that

(i) for the MGGD, ah = β2Γ
(
2 + m/(2β)− 1/β

)/ (
21/βmΓ(m/(2β))

)
, bh = (m + 2β)/

(4m + 8);
(ii) and for the MTD, ah = bh = (ν + m)/(4(ν + m + 2)).

Remark 1. For other classical elliptical distributions, such as the Pearson-type VII class of distri-
butions, the multivariate Cauchy distribution and a special subfamily of MEDs, the reference [47]
has derived the analytic forms for ah and bh. However, in practical applications, some special MEDs
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(e.g., the Gaussian mixture distribution and the Gaussian–Student’s t mixture distribution [41])
used to model the non-Gaussian distributions may not have their analytical forms, so we can use (9)
to numerically calculate the two parameters, or approximate these MEDs using some specified
classical elliptical distributions.

By introducing a Riemannian structure associated with the Fisher metric, the MED
manifold

M = {ELm
h (µ, Σ) : µ ∈ Rm, Σ ∈ Sm

+} (10)

with the same fixed function h can be regarded as a Riemannian manifold with coordinate
system (µ, Σ). Note that the dimension ofM is m + m(m + 1)/2. From [47], the squared
line element at a point θ = (µ, Σ) inM is

ds2 = 4ahdµTΣ−1dµ + 2bhtr(Σ−1dΣ)2 +
4bh − 1

4
tr2(Σ−1dΣ), (11)

and the geodesic equations are given by

µ̈− Σ̇Σ−1µ̇ = 0, (12)

Σ̈ + aµ̇µ̇T − bµ̇TΣ−1µ̇Σ− Σ̇Σ−1Σ̇ = 0, (13)

where a = ah/bh and b = ah(4bh − 1)/((8 + 4m)b2
h −mbh).

Next, we derive the explicit expressions of the geodesic distance and geodesic curve
between two given endpoints on the two-dimensional MED manifoldM (i.e., m = 1) with
coordinate system (µ, σ2), which will be used in Section 5.1.

Theorem 1. Consider the two-dimensional MED manifoldM and two points p1 = EL1
h(µ1, σ2

1 )

and p2 = EL1
h(µ2, σ2

2 ) inM. Let ch = 8ah/(12bh − 1) and dh =
√

12bh − 1, then the geodesic
distance between p1 and p2 is

`F = dh · arccosh

(
ch(µ2 − µ1)

2 + 2(σ2
1 + σ2

2 )

4σ1σ2

)
. (14)

Additionally, the geodesic curve between p1 and p2 is given by

(i) If µ1 = µ2, then

µ(s) = µ1 = µ2, (15)

σ2(s) = σ2
1 · exp(2s/dh); (16)

(ii) If µ1 6= µ2, then

µ(s) =
1√
ch
(δ1 + 2δ2 tanh(s/dh + ε)), (17)

σ2(s) = 2δ2
2 cosh−2(s/dh + ε), (18)

where,

δ1 =
2σ2

2 + chµ2
2 − 2σ2

1 − chµ2
1

2
√

ch(µ2 − µ1)
, (19)

δ2 =
1
2

√
2σ2

1 + (
√

chµ1 − δ1)2, (20)

ε = arctanh
(√

chµ1 − δ1

2δ2

)
. (21)
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Proof. See Appendix A.

However, in the general case for m > 1, how to obtain the closed form of Rao distance
on the MED manifoldM remains an unsolved problem, except for some submanifolds
with a constant mean vector or constant scatter matrix (see, e.g., [48]).

2.3. Some Submanifolds of Elliptical Distributions

One of the commonly used submanifolds ofM is

M[µ0,·] = {ELm
h (µ0, Σ) : Σ ∈ Sm

+} (22)

having a fixed mean µ0 and the coordinate system (µ0, Σ) or Σ for short. It is a totally
geodesic submanifold, meaning that each geodesic ofM[µ0,·] is also a geodesic ofM. As
shown in [48], for any two tangent vectors ν1, ν2 ∈ Tθ(M[µ0,·]) at a point θ = (µ0, Σ), the
Fisher inner product is given by

〈ν1, ν2〉θ = 2bhtr(Σ−1ν1Σ−1ν2) +
4bh − 1

4
tr(Σ−1ν1)tr(Σ−1ν2), (23)

and the Rao distance between two points θ0 = (µ0, Σ0) and θ1 = (µ0, Σ1) inM[µ0,·] equals

`Σ(θ0, θ1) =

√
2bhtr

(
Log2(Σ−1

0 Σ1)
)
+

4bh − 1
4

tr2(Log(Σ−1
0 Σ1)). (24)

Another special submanifold is defined as

M[·,αΣ0]
= {ELm

h (µ, αΣ0) : µ ∈ Rm, α ∈ R+} (25)

with a fixed scatter matrix Σ0 ∈ Sm
+ and the coordinate system (µ, αΣ0) or (µ, α) for short.

As [43], an explicit expression for the Rao distance onM[·,αΣ0]
is given as follows.

Lemma 1. Given two points θ0 = (µ0, Σ0) and θα = (µ, αΣ0) inM[·,αΣ0]
, let c = 8ah/(4m(m+

2)bh −m2) and dM = (µ0− µ)TΣ−1
0 (µ0− µ), then onM[·,αΣ0]

, the Rao distance between θ0 and
θα is

`µ(θ0, θα) =

√
2ah

c
arccosh

(
(cdM + 2)2

8α
+

α

2
+

cdM
2

)
. (26)

2.4. Manhattan Distances

At present, there is no explicit expression for the Rao distance on the MED manifold
M. Intuitively motivated from the commonly adopted distance to measure the length of
path along the coordinate curves onM as the `1 distance in Euclidean space, we introduce
an intermediate point θα = (µ1, αΣ0) ∈ M to link θ0 = (µ0, Σ0) and θ1 = (µ1, Σ1) for
α ∈ R+, and then construct a one-parametric class A = {`α(θ0, θ1) : α ∈ R+} of MHDs
from two Rao distances, where each member in A satisfies

`α(θ0, θ1) := `µ(θ0, θα) + `Σ(θα, θ1) ≥ `F(θ0, θ1). (27)

Moreover, for providing tighter upper bounds for the Rao distance `F(θ0, θ1) onM, the
minimal MHD

`α̂(θ0, θ1) = min
α∈R+

`α(θ0, θ1) (28)

as the minimum in the class A can be obtained by optimally seeking the parameter α̂.
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3. Fusion Criterion

Consider a distributed system with n sensors observing a common state x ∈ Rm.
As many practical scenarios for dynamic target tracking in [49,50], the dynamic system
is assumed having the heavy-tailed process and observation noises. We then adopt the
MED assumption to better exploit heavy-tailed features inherent in noises, and denote by
pk = ELm

h (x̂k, Pk) the local posterior density from the k-th sensor. The goal is to fuse all pk
into a single fused density with unavailable correlations among local sensors.

3.1. Information-Geometric Criterion

In practice, the Kullback–Leibler divergence (KLD) and Rao distance are widely
accepted as basic information theoretic quantities that can capture higher-order statistical
information, but the former is not a true distance in mathematics owing to the lack of
triangle inequality and symmetry. Instead, as a natural intrinsic measure, the Rao distance
not only enables us to deal with statistical issues while respecting the nonlinear geometry
structure of MEDs, but is also invariant under coordinate transformations. From the
viewpoint of information geometry, the geometrical illustration develops an intrinsic
understanding of statistical models, and also provides a better avenue for estimation fusion.
Then, taking the sum of geodesic distances `F(pk, p) between p = ELm

h (µ, Σ) and all pk in
the MED manifoldM as the cost function, we formulate a fusion criterion as

(x̂, P) = arg min
µ∈Rm ,Σ∈Sm

+

n

∑
k=1

`F(pk, p) (29)

to fuse all local available information pk into a single posterior density p̂ = ELm
h (x̂, P).

The aforementioned inherent feature of the Rao distance ensures a unique fusion result
in the multisensor fusion network involving different measurement frameworks. However,
due to the absence of the closed form of Rao distance on the manifold of MEDs, the minimal
MHD (28) as its tight upper bound is applied in the fusion criterion (29), that is,

(x̂, P) = arg min
µ∈Rm ,Σ∈Sm

+

n

∑
k=1

min
αk∈R+

`αk (pk, p)

= arg min
µ∈Rm ,Σ∈Sm

+

n

∑
k=1

min
αk∈R+

(`µ(pk, pαk ) + `Σ(pαk , p)), (30)

where the intermediate points pαk = ELm
h (µ, αkPk).

The advantages of determining the minimal MHD to measure the dissimilarity be-
tween two MEDs are obvious:

(i) The minimal MHD (28) is constructed from two Rao distances on two submani-
folds (22) and (25) by inserting an intermediate point, thus having the decouple
feature and inheriting some good properties from the Rao distance.

(ii) As a tight upper bound for the Rao distance on the MED manifold, the minimal
MHD (28) can be efficiently computed numerically. Moreover, its superior approxi-
mation performance has been fully verified by comparison with the Rao distances on
the manifolds of MTDs and MGGDs (see [43] for more details).

3.2. Decoupling Fusion Criterion

Define the MHD-based projection distance (MHDPD) from a point p0 = ELm
h (x̂0, P0)

inM onto the submanifoldM[µ,·] along the geodesic inM[·,αP0]
as

`M

(
p0,M[µ,·]

)
:= min

α∈R+

`µ(p0, pα), (31)

where pα = ELm
h (µ, αP0).
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Before further solving the optimization problem (30), we firstly derive the explicit
expressions of the MHD-based projection (MHDP) from a point onto the submanifold
M[µ,·] and the corresponding MHDPD.

Theorem 2. The MHDPD from p0 = ELm
h (x̂0, P0) inM onto the submanifoldM[µ,·] is given as

`M

(
p0,M[µ,·]

)
=

√
2ah

c
arccosh(cd0 + 1) (32)

with d0 = (x̂0 − µ)TP−1
0 (x̂0 − µ), and the corresponding MHDP is pα̂0 = ELm

h (µ, Σ) with the
scatter matrix

Σ = α̂0P0 (33)

and the optimal scale factor

α̂0 =
c
2

d0 + 1. (34)

Proof. See Appendix B.

As an application to distributed dynamic system, each available local estimate (x̂i, Pi) ∈
Rm×Sm

+ should be limited to a bounded local feasible set Si around the true location (µi, Σi)
with high reliability (see, e.g., [51]). Therefore by the property of continuous function on
compact set, it is straightforward to decompose the optimization (30) into two steps–first
over µ and then over Σ:

min
µ∈Rm

min
Σ∈Sm

+

n

∑
k=1

min
αk∈R+

(`µ(pk, pαk ) + `Σ(pαk , p)). (35)

Denote two functions of the variable µ ∈ Rm as follows:

dk(µ) = (x̂k − µ)TP−1
k (x̂k − µ), (36)

α̂k(µ) =
c
2

dk(µ) + 1. (37)

Similar to the relaxing strategy in [42], we solve the optimization (35) by successively
optimizing Σ and µ. Specifically, exchanging the summation and the minimization over Σ

and simplifying the objective function in the summation, (35) is then reduced to

x̂ = arg min
µ∈Rm

n

∑
k=1

min
αk∈R+

`µ(pk, pαk ), (38)

or equivalently from (31), (32) and (34),

x̂ = arg min
µ∈Rm

n

∑
k=1

`M

(
pk,M[µ,·]

)
= arg min

µ∈Rm

n

∑
k=1

arccosh(cdk(µ) + 1), (39)

where α̂ = (α̂1, . . . , α̂n) with

α̂k = α̂k(x̂) =
c
2

dk(x̂) + 1, k = 1, . . . , n. (40)
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In general, (39) is not equivalent to the original optimization problem (35) owing to its
providing a lower bound for the minimum of the objective function in (35), but it makes
good sense for the mean fusion based on the following insights:

(i) As depicted in Figure 1, we replace the local posterior densities pk with the MHDPs
pα̂k = ELm

h (µ, α̂kPk) onM[µ,·] to measure the dissimilarity between the sought-for
fused posterior density p̂ and pk in the fusion criterion (30).

(ii) The inner minimizations in (39) project each local density pk onto the MED submani-
foldM[µ,·] with some common fixed mean to obtain its substitute pα̂k . An appropriate
candidate x̂ for the specified mean variable µ is selected by the outer optimization,
minimizing the sum of MHDPDs from the local posterior densities pk ontoM[µ,·].

2p
1

p

p
p
k

p
â1

p
â

p̂
p
â

p
âk

ˆ[ , ]X iM

M

2

n

n

Figure 1. The fusion of n local posterior densities based on the MHDPs.

Furthermore, the mean estimation fusion (39) obtains the final MHDPs pα̂k = ELm
h (x̂,

α̂kPk) inM[x̂,·] with the proper scale factors α̂k. Additionally, moving each local estimate
(x̂k, Pk) to its MHDP (x̂, α̂kPk) inevitably leads to an increase in the local estimation error.
It is observed from (40) that α̂k(x̂) will tend to the scalar 1 from the right hand side as the
fused mean x̂ approaches the k-th local mean estimate x̂k, so it is reasonable to replace the
local scatter matrix Pk with α̂kPk. Then, we can fuse all MHDPs pα̂1 , . . . , pα̂n on the totally
geodesic submanifoldM[x̂,·] with the fixed x̂ to seek the fused scatter matrix P, using the
following fusion criterion:

P = arg min
Σ∈Sm

+

n

∑
k=1

`2
Σ(pα̂k , p). (41)

It is worth noting that the squared geodesic distance, used as the cost function in (41),
differs from the original fusion criterion (29). The main reason are as follows:

(i) The covariance fusion (41) is indeed performed on the space Sm
+, since the Rao distance

`Σ ofM[x̂,·] only depends on the coordinate Σ ∈ Sm
+. Moreover, the Riemannian mean

(also called Riemannian center of mass) of data points p1, . . . , pn in Sm
+, which is

the unique global minimizer of ∑n
k=1 `

2(pk, p) with a geodesic distance `(·, ·) on Sm
+

(see [52,53]), has been widely studied on the manifold of covariance matrices [54].
(ii) The criterion ∑n

k=1 `(pk, p) gives a robust alternative for the center of mass, called the
Riemannian median [55,56]. Both the Riemannian mean and the Riemannian median
have been successfully applied to signal detection (e.g., [57,58]) and have shown
their own advantages. However when only two sensors (i.e., n = 2) are considered,
any point lying on the shortest geodesic segment between two points p1 and p2 can
be regarded as the Riemannian median, which seems quite undesirable for fusion.
In addition, the final mean fusion (39) does not contradict this claim owing to its
adopting the MHDPD `M as the cost function.

(iii) Due to the intractable root operation within the geodesic distance `Σ, the squared
geodesic distance is considered for the convenience of solving the optimization prob-
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lem (41). As illustrated in Section 4.2, we develop an efficient iterative strategy for the
fused scatter estimate in the criterion (41) with at least linear convergence.

In summary, the final fused mean estimate x̂ and scatter matrix estimate P can be
obtained by solving (39) and (41), respectively.

4. Two MHDP-Based Fusion Methods

In this section, we first derive a fixed point iteration for the mean fusion (39), and
then provide two different forms of covariance estimation fusion by iteratively solving the
optimization problem (41) and introducing the Lie algebraic structure onM[x̂,·] to obtain
an explicit form of the fused covariance, respectively.

4.1. Mean Estimation Fusion

Define two auxiliary functions

φ(x) = arccosh(x), x ≥ 1, (42)

d̆k(x) = cdk(x) + 1, x ∈ Rm, (43)

and then rewrite (39) as

x̂ = arg min
µ∈Rm

n

∑
k=1

φ
(

d̆k(µ)
)

. (44)

Theorem 3. The solution of the optimization problem (44) can be expressed in the following
implicit form

x̂ =

(
n

∑
k=1

ωk(x̂)P
−1
k

)−1 n

∑
k=1

ωk(x̂)P
−1
k x̂k, (45)

where the normalized weights are given as

ωk(x̂) =
φ̇
(

d̆k(x̂)
)

∑n
k=1 φ̇

(
d̆k(x̂)

) , k = 1, . . . , n. (46)

Proof. See Appendix C.

In Theorem 3, the fused mean estimate x̂ given by (45) has the same form as the tradi-
tional CI estimate, but in general with different weights. To solve the implicit Equation (45)
for x̂, we derive a fixed point iteration for seeking the final x̂ in the following theorem.

Theorem 4. By adopting the fixed point iteration

µt+1 =

( n

∑
k=1

ω̂k(µt)P−1
k

)−1 n

∑
k=1

ω̂k(µt)P−1
k x̂k (47)

with the normalized weights

ω̂k(µt) =

(
d̆2

k(µt)− 1
)− 1

2

∑n
k=1

(
d̆2

k(µt)− 1
)− 1

2
, k = 1, . . . , n, (48)

the resulting sequence {µt, t ∈ N} converges to a solution x̂ of (45) as t tends to infinity.

Proof. See Appendix D.
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As shown in Algorithm 1, the fixed point iteration (47) is adopted to calculate the
optimal estimate of mean x̂ in (44), where the convergence of iteration can be guaranteed
by Theorem 4.

Algorithm 1: MHDP-based mean estimation fusion.
Input :{(x̂k, Pk)}k=1,...,n and tolerance ε
Output : x̂

1 Set t = 0, r = ε;
2 Initiate µ0 using the CI estimate with equal weights;
3 while r ≥ ε do
4 Run the mean iteration using (47);
5 Compute the Frobenius norm r = ‖µt+1 − µt‖;
6 t← t + 1;
7 end
8 return x̂ = µt

Remark 2. Similar to the GP method in [42], the fused scatter matrix estimate seems available to
be set as

P =

(
n

∑
k=1

ωkP−1
k

)−1

, (49)

since the fused mean estimate x̂ has the CI form (45), and then the fused covariance estimate is
naturally given as

Q = κhP =

(
n

∑
k=1

ωkQ−1
k

)−1

(50)

with each local covariance Qk = κhPk. Nevertheless, (50) is reasonable to be replaced by the following
two MHDP-based covariance fusion forms owing to its subjectively adopting the covariance fusion.

4.2. Iterative Solution for Covariance Estimation Fusion

Define an auxiliary function

ψk(Σ) = `2
Σ(pα̂k , p), (51)

and then inserting the Rao distance (24) into (51) yields

ψk(Σ) = 2bhtr(T2
k) +

4bh − 1
4

tr2(Tk), (52)

where,

P̆k = α̂kPk, (53)

Tk = Log
(

P̆−1
k Σ

)
. (54)

In the theorem given below, we derive the Riemannian gradient of ψk(Σ) onM[x̂,·].

Theorem 5. The Riemannian gradient of ψk(Σ) on the submanifoldM[x̂,·] is given as

∇ψk = 2ΣTk. (55)

Proof. See Appendix E.
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Furthermore, denoting the objective function in (41) as

ψ(Σ) =
n

∑
k=1

ψk(Σ), (56)

and differentiating ψ(·) with respect to Σ, we have the Riemannian gradient vector

∇ψ =
n

∑
k=1
∇ψk = 2Σ

n

∑
k=1

Log(P̆−1
k Σ). (57)

As a result, the minimizer P of (41) satisfies ∇ψ = 0, i.e.,

1
n

n

∑
k=1

Log(P̆−1
k Σ) = 0. (58)

Remark 3. The average Σ of n symmetric positive-definite matrices P̆1, . . . , P̆n, satisfying the
barycentric equation (58), is also called the Riemannian barycenter [59].

In general, (58) cannot be solved explicitly due to the noncommutative nature on Sm
+,

but we formulate the fixed point iteration for the scatter estimation fusion as follows:

Σ(t+1) = Σ(t) · Exp

(
1
n

n

∑
k=1

Log
(

P̆−1
k Σ(t)

))
, (59)

which is a very efficient iterative strategy for solving (58) with at least linear convergence
(see [60] for a detailed proof). The fusion method above is called the MHDP-I method (i.e.,
Algorithm 2).

Algorithm 2: MHDP-I fusion algorithm.

Input :{(x̂k, Pk)}k=1,...,n and tolerance ε
Output : x̂, Q

1 Compute x̂ using Algorithm 1;
2 Compute α̂ = (α̂1, . . . , α̂n) using equation (40);
3 Compute ω = (ω1, . . . , ωn) using equation (46);
4 Set t = 0, r1 = r2 = ε and P̆k = α̂kPk, k = 1, . . . , n;
5 Initiate Σ(0) using equation (49);
6 while r ≥ ε do
7 Compute Σ(t+1) using equation (59);
8 Compute the Euclidean norm r = ‖Σ(t+1) − Σ(t)‖;
9 t← t + 1;

10 end
11 return x̂, Q = κhΣ(t)

4.3. Explicit Solution for Covariance Estimation Fusion

The submanifold M[x̂,·] with the fixed mean x̂ can be identified with the symmetric
positive-definite matrix space Sm

+ equipped with the same Riemannian metric induced by (23).
Meanwhile, we can endow Sm

+ with a group structure depending on the following definition:

Definition 1. Sm
+ = (Sm

+,�, i, e) is a commutative group whose group operations are defined
as follows:

(i) Multiplication operation: g1 � g2 := Exp(Log(g1) + Log(g2)), for any g1, g2 ∈ Sm
+ ;

(ii) Inverse operation: i(g) := g−1, for any g ∈ Sm
+ ;

(iii) Identity element: e = Im.
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It is easy to verify that the two operations � and i are compatible with the Riemannian
structure on Sm

+ (see, e.g., [61]), hence Sm
+ is a Lie group.

As is well known, the Lie group is locally equivalent to a linear space, in which the
local neighborhood of any element can be described by its tangent space. The tangent space
TeM[x̂,·] at the identity element e = Im, also called Lie algebra g, is indeed isomorphic to the
space Sm of real symmetric matrices. Theoretically, the retraction mapping R(·) establishes
a vector space isomorphism from (Sm,+) to (M[x̂,·],�). Then, we endowM[x̂,·], namely
Sm
+ , with a “Lie vector space structure”.

It is important to stress that, based on the linear structure of Lie algebra, we can handle
the covariance/scatter estimation fusion with the Euclidean operation, i.e., the arithmetic
averaging in the Log-Euclidean domain, instead of the Riemannian one. It is explained
as follows:

(i) Move the MHDPs P̆1, . . . , P̆n into some neighborhood of the identity element e = Im ∈
M[x̂,·] via using a left translation LP(·) by the sought-for scatter estimate P to obtain
LP(P̆k) = P−1 � P̆k. Then, all LP(P̆k) can be shifted to g by the lifting mapping R−1

e (·)
at e, obtaining the vectors R−1

e (LP(P̆k)) for k = 1, . . . , n.
(ii) The arithmetic average of R−1

e (LP(P̆k)) is the best way to minimize the total dis-
placements from each Pk to the sought-for P on the Lie algebra g owing to the linear
structure of g (see, e.g., [60]), hence 1

n ∑n
k=1 R−1

e (P−1 � P̆k) = 0, or equivalently,

P = P� Re

(
1
n

n

∑
k=1

R−1
e

(
P−1 � P̆k

))
. (60)

Let the retraction mapping Re(·) = expe(·) and the lifting mapping R−1
e (·) = loge(·)

onM[x̂,·], whose analytical expressions are given in the theorem below.

Theorem 6. The following properties hold:

(i) Let H be a non-singular matrix. The metric onM[x̂,·] originated from (23) is invariant under
the congruent transformation: Σ→ HTΣH for any Σ ∈ Sm

+.
(ii) The exponential mapping and logarithmic mapping onM[x̂,·] are, respectively, given by

expΣ1
(ν) = Σ1 Exp

(
Σ−1

1 ν
)

, (61)

logΣ1
(Σ2) = Σ1 Log

(
Σ−1

1 Σ2

)
, (62)

for any Σ1, Σ2 ∈ M[x̂,·] and ν ∈ TΣ1M[x̂,·].

Proof. See Appendix F.

Substituting (61) and (62) into (60) yields

P = P� Exp

(
1
n

n

∑
k=1

Log(P−1 � P̆k)

)
. (63)

Then, by P−1 � P̆k = Exp(Log P̆k − Log P) and the definition of �, we have the fused
scatter matrix estimate

P = Exp

(
1
n

n

∑
k=1

Log
(
P̆k
))

, (64)

and the fused covariance matrix estimate

Q = κh Exp

(
1
n

n

∑
k=1

Log
(
P̆k
))

. (65)
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Remark 4. As shown in [60], the explicit scatter matrix estimate (64) coincides with the arithmetic
mean in the log-domain, i.e., the Log-Euclidean Fréchet mean.

In summary, the fusion method above is called the MHDP-E method (i.e., Algorithm 3).
For comparison, the MHDP-I and MHDP-E fusion algorithms have the same mean fusion
(see Algorithm 1), but the latter possesses an explicit form for the fused covariance matrix
estimate (65). In addition, many existing fusion methods have identical forms as the CI, but
differ from each other in the weights. For example, the KLA has equal weights 1/N, while
many others, including DCI, FCI, GP and QMMHD, have their own weights, depending
on local estimates. Taking two sensors tracking a one-dimensional target for instance, the
fused estimates for the KLA, DCI, FCI, GP and QMMHD theoretically lie on the (straight)
Euclidean line segment between two local estimates from sensors, as shown in Figure 2 of
Section 5.1. However, the MED manifoldM with the Riemannian structure is generally
not flat [47], so the proposed MHDP-I and MHDP-E are more reasonable owing to their
improving covariance estimation fusion based on this geometric structure.

Algorithm 3: MHDP-E fusion algorithm.

Input :{(x̂k, Pk)}k=1,...,n
Output : x̂, Q

1 Compute x̂ using Algorithm 1;
2 Compute α̂ = (α̂1, . . . , α̂n) using Equation (40);
3 Set P̆k = α̂kPk, k = 1, . . . , n ;
4 Compute Q using Equation (65);
5 return x̂, Q
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Figure 2. Six subfigures are depicted for the geodesic distance between the fused density and the
informative barycenter. The various fused results are labeled by the specified marks. Subfigures (a–c)
correspond to MTDs with DOF parameters ν = 3, 5 and 7, respectively. Subfigures (d–f) correspond
to MGGDs with shape parameters β = 0.65, 0.85 and 1, respectively. In each subfigure, the geodesic
distances between the informative barycenter and the fused densities are displayed, and the geodesic
between the two local densities is represented by the solid red curve.

5. Numerical Examples

In this section, we provide two numerical examples to show the performance of
two fusion methods MHDP-I and MHDP-E, including static and dynamic target tracking.
The traditional fusion algorithms DCI [16], FCI [15], and KLA [18], and two information-
geometric methods GP [42] and QMMHD [43] are taken for comparison.

5.1. Static Target Tracking

To intuitively evaluate the performance of these distributed fusion methods, we
consider two local estimates (x̂1, P1) = (2, 5) and (x̂2, P2) = (4, 7) of a static target from
two local sensors, similar to the settings in [42]. Note that the MHDP- I and MHDP-E
methods have the same covariance fusion due to the commutability of two first-order
matrices. In Figure 2, six subfigures are drawn to display the geodesic distance between
the fused density and the informative barycenter under six different MED assumptions,
respectively. Here, the informative barycenter as the optimal solution of (29) is an arbitrary
point on the geodesic segment linking (x̂1, P1) and (x̂2, P2), and we uniquely determine
it by minimizing the sum of its squared distances to the two local estimates. Since the
MHDP-I and MHDP-E are developed based on the relaxation of (29), learning about the
informative barycenter can improve our understanding of their fusion performance as the
heavy-tailed level varies.

(i) The MTD has the degree of freedom (DOF) parameter ν > 2 (the higher ν, the lower
the heavy-tailed level), and is almost equivalent to the Gaussian distribution as ν
tends to infinity. As depicted in subfigures (a), (b) and (c), the MHDP-E is consistently
superior to other methods regardless of the DOF, since the fused density of the
MHDP-E is closest to the informative barycenter.

(ii) The MGGD has the shape parameter β > 0 (the higher β, the lower the heavy-tailed
level) and corresponds to the Gaussian distribution when β = 1 . Similar to the MTD,
subfigures (d), (e) and (f) show the MHDP-E outperforms other fusion methods for
different shape parameters.

Moreover, the aforementioned fusion methods DCI, FCI, KLA, GP and QMMHD have
the same form as (45), but with different weights in general. Thus in Figure 2 their fused
estimates lie on the (straight) Euclidean segment between (x̂1, P1) and (x̂2, P2), while the
MHDP-E puts its estimate fairly close to the (curved) geodesic segment. Therefore, the
MHDP-I and MHDP-E are considered more reasonable because the MED manifoldM is
indeed non-Euclidean.
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5.2. Dynamic Target Tracking

Consider a distributed dynamic system with n sensors and one fusion center for
tracking a two-dimensional moving target:

xk+1 =

[
1 T
0 1

]
xk +

[
T2/2

T

]
wk, (66)

zi
k = hi

kxk + vi
k, i = 1, . . . , n0, (67)

zi
k = Hi

kxk + vi
k, i = n0 + 1, . . . , n, (68)

where there are n0 sensors for one-dimensional measurements and n− n0 sensors for multi-
dimensional measurements, the state vector xk consists of the position and velocity, and the
sampling interval T = 1 s. As [49,50] for more practical scenarios, the outlier contaminated
state and measurement noises are modeled as

wk ∼
{

N(0, Q), w.p. 0.9,
N(0, 200Q), w.p. 0.1,

(69)

vi
k ∼

{
N(0, Ri

k), w.p. 0.9,
N(0, uRi

k), w.p. 0.1,
i = 1, . . . , n0, (70)

vi
k ∼

{
N(0, Ri

k), w.p. 0.9,
N(0, uRi

k), w.p. 0.1,
i = n0 + 1, . . . , n, (71)

where “w.p.” denotes “with probability”.
The local state estimate x̂i(k|k) and scatter matrix Pi(k|k) of estimation error are

computed by using the specified filter, when the i-th sensor obtains its own measurement at
the instant k. The fusion center fuses all local estimates from the sensors to obtain the final
estimate (x̂(k|k), P(k|k)) by applying some specified fusion methods, and then transmits
it back to each local sensor. To demonstrate the performance of various fusion methods,
i.e., the DCI, FCI, KLA, GP, QMMHD, MHDP-I and MHDP-E, we use the Student’s t based
filter (STF) [49] and the Gaussian–Student’s t mixture distribution based Kalman filter
(GSTMDKF) [41] to compare the root mean squared errors (RMSEs) of the fused results in
the following two cases:

(i) Case I (two sensors, i.e., n0 = n = 2): The variances Q = 1 and R1
k = R2

k = 16, the
measurement matrices

h1
k = [1, 0], h2

k = [0, 1], (72)

and the two filters are initialized as

x̂(0|0) =
[

0
5

]
, P(0|0) =

[
10

25

]
. (73)

(ii) Case II (three sensors, i.e., n0 = 2, n = 3): The system parameters Q, R1
k , R2

k , h1
k , h2

k ,
x̂(0|0), P(0|0) have the same settings as Case I, and also

H3
k =

[
1

1

]
, R3

k =

[
16 4
4 6

]
. (74)

It is seen from (69)–(71) that the process and observation noises follow heavy-tailed
distributions. The STF models the initial state vector and the noise distributions with
u = 200 as follows:
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x0 ∼ MTD(x̂(0|0), P(0|0), ν1), (75)

wk ∼ MTD(0, Q, ν2), (76)

vi
k ∼ MTD(0, Ri

k, ν3), i = 1, . . . , n0, (77)

vi
k ∼ MTD(0, Ri

k, ν4), i = n0 + 1, . . . , n. (78)

By (75)–(78), each local posterior density can be represented by the MTD with the DOF
parameter ν = 3, i.e., νi = 3, i = 1, . . . , 4. In the GSTMDKF setup, a Gaussian–Student’s
t mixture distribution (see [41] for more details) with the fixed DOF 3 is used to model
the heavy-tailed noises (69)–(71) with u = 100, the initial state vector follows a Gaussian
distribution, i.e., x0 ∼ N(x̂(0|0), P(0|0)), and other parameters are the same as those in [41].
As explained in [41], the GSTM distribution has the same efficiency as the Student’s t
distribution in the presence of outliers, and thus our proposed MHDP-E and MHDP-I
methods fuse all posterior densities by modeling them as the MTDs with the common DOF
parameter 3. Note that the DCI, FCI, KLA, and GP only utilize the first two moments (i.e.,
x̂(k|k) and κP(k|k) for the i-th local posterior density), and the FCI, KLA and GP fusion
methods are developed under Gaussian assumption so that the posterior density for the
i-th sensor can be modeled as N(x̂i(k|k), κPi(k|k)).

By adopting two different filters STF and GSTMDKF, Figure 3 shows the RMSEs of
the position over 100 time steps and 500 Monte Carlo runs in two different cases using the
aforementioned fusion methods, while the DCI does not appear in Figure 3 owing to it
behaving worst. We can see that the proposed MHDP-I and MHDP-E are consistently better
than other fusion methods when different filtering methods are adopted. Moreover, Table 1
reports the averaged root mean squared errors (ARMSEs) of the various methods in both
cases. It is evident that the performance of all fusion methods in three-sensor example has
a significant improvement over that in the two-sensor case, and also the MHDP-I performs
slightly better than the MHDP-E when using the GSTMDKF. However in contrast to the
MHDP-I, the MHDP-E has lower computational complexity due to the explicit expression
for the fused covariance estimate.

Table 1. The Position ARMSEs of seven fusion methods in both cases by the STF and the GSTMDKF.

Method
STF GSTMDKF

Case I Case II Case I Case II

DCI 28.99 26.76 46.01 35.84
GP 8.54 5.93 10.35 6.47
FCI 8.23 6.15 7.82 5.36

KLA 7.92 5.96 9.47 6.49
QMMHD 7.06 5.45 7.78 5.65
MHDP-E 5.72 3.35 5.91 3.64
MHDP-I 5.72 3.36 5.90 3.63
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Figure 3. The position RMSEs of fused results vs. the instant k from 1 to 100 by (a) the STF in Case I;
(b) the STF in Case II; (c) the GSTMDKF in Case I; and (d) the GSTMDKF in Case II.

6. Conclusions

In this work, we formulate an information-geometric fusion criterion, taking the
geodesic distance as the loss function, and implement the fusion of local posterior densities
on the MED manifold endowed with the Fisher metric. Two distributed estimation fusion
algorithms MHDP-I and MHDP-E are proposed by using the minimal Manhattan distance
instead of the geodesic distance on the manifold of MEDs, which both have the same
mean estimation fusion, but differ in the form of covariance estimation fusion. On the
MED submanifold with a fixed mean, the MHDP-I fuses all MHD-based projections of
local posterior densities by minimizing the squared geodesic distances from a sought-for
fused density. We have developed a robust fixed point iterative algorithm with theoretical
convergence to compute the covariance estimate of such fused density. By introducing
a specified Lie algebraic structure on the aforementioned submanifold and deriving its
exponential and logarithmic mappings, the MHDP-E has provided an explicit expression
for the fused covariance estimate. Numerical examples have shown better performance of
the two proposed information-geometric methods than five other fusion methods.
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Appendix A. Proof of Theorem 1

Let ch = 8ah/(12bh − 1) and the variable transformation

µ̆ =
√

chµ. (A1)

By using (13), the geodesic equations on the MED manifold with the coordinate system
(µ, Σ) can be rewritten as

¨̆µ− Σ̇Σ−1 ˙̆µ = 0, (A2)

Σ̈ + ˙̆µ2 − Σ−1Σ̇2 = 0. (A3)
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Then, the squared line element along the geodesic becomes

ds̆2 = (dµ̆)2Σ−1 +
1
2
(Σ−1dΣ)2

=
2

12bh − 1

(
4ah(dµ)2Σ−1 + (3bh − 1/4)(Σ−1dΣ)2

)
. (A4)

Compared with (11), we obtain s̆ =
√

2/(12bh − 1)s, where s is the arc length parameter
before the transformation (A1). Therefore, by Theorem 6.5 in [62], the geodesic distance
between p1 and p2 is given as

`F = dh · arccosh

(
ch(µ2 − µ1)

2 + 2(σ2
1 + σ2

2 )

4σ1σ2

)
(A5)

with dh =
√

12bh − 1. To that end, using Theorem 6.2 in [62], we obtain the geodesic curve
on the MED manifold as

µ(s) = (δ1 + 2δ2 tanh(s/dh + ε))/
√

ch, (A6)

σ2(s) = 2δ2
2 cosh−2(s/dh + ε), (A7)

where δ1, δ2 and ε can be calculated by boundary conditions. Note that for the case of
µ1 = µ2, the geodesic given by (15) and (16) are easily obtained by Equation (6.4) in [62].

Appendix B. Proof of Theorem 2

Define an auxiliary function

f (α) =
(cdM + 2)2

8α
+

α

2
+

cdM
2

, α ∈ R+. (A8)

It is easy to see from (26) and (A8) that the minimization for (31) is equivalent to minimizing
f (α) with respect to α ∈ R+. We have thus `M

(
p0,M[µ,·]

)
= minα∈R+

`µ(p0, pα), the
optimal scale factor

α̂0 := arg min
α∈R+

`µ(p0, pα)

= arg min
α∈R+

(
(cd0 + 2)2

8α
+

α

2
+

cd0

2

)
=

cd0

2
+ 1 (A9)

with d0 = (x̂0 − µ)TP−1
0 (x̂0 − µ) and the unique MHDP pα̂0 = ELm

h (µ, α̂0P0). Therefore,
substituting (A9) into (26) yields the MHDPD (32).

Appendix C. Proof of Theorem 3

By the Lagrange multiplier method, the minimizer x̂ of (44) must satisfy the following
equality:

n

∑
k=1

φ̇
(

d̆k(µ)
)

P−1
k (µ− x̂k) = 0. (A10)

Taking further derivation, we immediately have (45) and (46). Additionally, it is obvious
that φ̇(x) ≥ 0 for x ≥ 1, and thus each ωk ∈ [0, 1].
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Appendix D. Proof of Theorem 4

Define an auxiliary function

ϕ(x) =
x1 + x√

x2
1 − 1 +

√
x2 − 1

, x ∈ (1,+∞) (A11)

with x1 > 1. It is easy to know ϕ̇(x) ≤ 0, and thus we have the inequality

x1 + x2√
x2

1 − 1 +
√

x2
2 − 1

≤ x1√
x2

1 − 1
(A12)

for x2 ≥ x1 > 1.
Furthermore, define two functions of µ ∈ Rm as follows:

φ̆(µ) =
n

∑
k=1

φ
(

d̆k(µ)
)
=

n

∑
k=1

arccosh
(

d̆k(µ)
)

, (A13)

φ̆µt(µ) = φ̆(µt) +
n

∑
k=1

d̆k(µ)− d̆k(µt)√
d̆2

k(µt)− 1
. (A14)

Utilizing two inequalities log(x) ≤ x− 1 and (A12), we obtain

arccosh
(

d̆k(µ)
)
− arccosh

(
d̆k(µt)

)
≤

d̆k(µ) +
√

d̆2
k(µ)− 1

d̆k(µt) +
√

d̆2
k(µt)− 1

− 1

= (d̆k(µ)− d̆k(µt))

1 + d̆k(µ)+d̆k(µt)√
d̆2

k(µ)−1+
√

d̆2
k(µt)−1

d̆k(µt) +
√

d̆2
k(µt)− 1

≤ d̆k(µ)− d̆k(µt)√
d̆2

k(µt)− 1
. (A15)

By (A13), (A14) and (A15), it follows that φ̆(µ) ≤ φ̆µt(µ) and φ̆(µt) = φ̆µt(µt), and thus φ̆(µ)
is majorized by φ̆µt(µ) at point µt under the majorization–minimization framework [63].

Consequently, setting the gradient of φ̆µt(µ) with respect to µ as zero, we conclude that

n

∑
k=1

P−1
k (µ− x̂k)√
d̆2

k(µt)− 1
= 0, (A16)

and then the fixed point iteration (47) for the mean estimate x̂ follows from (A16).

Appendix E. Proof of Theorem 5

Lemma A1 (See [52]). If X(t) is an invertible real matrix-valued function of real variable t and its
eigenvalues lie on the positive real line, then

d
dt

tr(Log2X(t)) = 2tr
(

Log X(t) X−1(t)
d
dt

X(t)
)

. (A17)
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Let γ(t; θ, ν) denote the geodesic emanating from the point θ = Σ at t = 0 in an
arbitrary direction ν ∈ TθM[x̂,·]. Inspired by the method in the proof of Lemma A1 in [52],
we can easily know

d
dt

tr(Log γ(t)) = tr
(∫ 1

0
((γ(t)− I)s + I)−2ds · dγ(t)

dt

)
= tr

(
γ−1(t)

d
dt

γ(t)
)

. (A18)

Applying (A17) and (A18), and differentiating ψk(γ(t)) with respect to t, we have

d
dt

ψk(γ(t)) =4bhtr
(

Tk(t)γ−1(t)
dγ(t)

dt

)
+

(
2bh −

1
2

)
tr(Tk(t))tr

(
γ−1(t)

dγ(t)
dt

)
, (A19)

where Tk(t) := Log(P̆−1
k γ(t)). As a result,

d
dt

ψk(γ(t)) |t=0=2bhtr(2TkΣ−1ν) +
4bh − 1

4
tr(2Tk)tr(Σ

−1ν). (A20)

According to the arbitrariness of vector ν and the Riemannian inner product (23), we obtain
the Riemannian gradient

5ψk = 2ΣTk. (A21)

Appendix F. Proof of Theorem 6

(i) From the inner product (23), we have the squared line element

ds2 = 2bhtr(Σ−1dΣ)2 +
4bh − 1

4
tr2(Σ−1dΣ). (A22)

By taking the congruent transformation Σ→ HTΣH, it is not difficult to see that the squared
infinitesimal distance (A22) is invariant.

(ii) Suppose

rk = log λk, k = 1, . . . , m, (A23)

where λk are the eigenvalues of Σ−1
1 Σ2. There exists a nonsingular matrix H such that

HTΣ1H = Im, HTΣ2H = Λ, (A24)

where Λ = diag([λ1, . . . , λm]). According to the geodesic from Im to Λ onM[x̂,·]

rk(t) = akt + bk, k = 1, . . . , m (A25)

with initial conditions rk(0) = 0 and rk(1) = rk (see [48]), we have ak = log λk, bk = 0 and
then the geodesic direction

Λ̇(0) = Log(Λ). (A26)

Let γ(t), t ∈ [0, 1] be the shortest geodesic curve connecting two points Σ1 and Σ2 on
M[x̂,·]. Due to the invariance of geodesic distance under the congruent transformation,
we have

Λ̇(0) = HTγ̇(0)H, (A27)
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and thus substituting (A26) into (A27) yields

γ̇(0) = (HT)−1 Log(Λ)H−1. (A28)

Moreover, by the first equality in (A24) it follows that Σ1 = (HT)−1H−1, and inserting
it into (A28), we obtain

γ̇(0) = (HT)−1 · Log(HTΣ2H) ·H−1

= (HT)−1 · Log(H−1Σ−1
1 Σ2H) ·H−1

= (HHT)−1 · Log(Σ−1
1 Σ2)

= Σ1 · Log(Σ−1
1 Σ2), (A29)

i.e., the logarithmic mapping

logΣ1
(Σ2) = Σ1 Log(Σ−1

1 Σ2). (A30)

As a result, replacing the left hand side of (A30) with ν ∈ TΣ1M[x̂,·], we obtain the expo-
nential mapping

expΣ1
(ν) = Σ1 Exp(Σ−1

1 ν). (A31)
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