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Abstract: The generalized likelihood ratio test (GLRT) for composite hypothesis testing problems
is studied from a geometric perspective. An information-geometrical interpretation of the GLRT
is proposed based on the geometry of curved exponential families. Two geometric pictures of the
GLRT are presented for the cases where unknown parameters are and are not the same under
the null and alternative hypotheses, respectively. A demonstration of one-dimensional curved
Gaussian distribution is introduced to elucidate the geometric realization of the GLRT. The asymptotic
performance of the GLRT is discussed based on the proposed geometric representation of the GLRT.
The study provides an alternative perspective for understanding the problems of statistical inference
in the theoretical sense.
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1. Introduction

The problem of hypothesis testing under statistical uncertainty arises naturally in many
practical contexts. In these cases, the probability density functions (PDFs) under either or
both hypotheses need not be completely specified, resulting in the inclusion of unknown
parameters in the PDFs to express the statistical uncertainty in the model. The class of
hypothesis testing problems with unknown parameters in the PDFs is commonly referred
to as composite hypothesis testing [1]. The generalized likelihood ratio test (GLRT) is one of
the most widely used approaches in composite hypothesis testing [2]. It involves estimating
the unknown parameters via the maximum likelihood estimation (MLE) to implement a
likelihood ratio test. In practice, the GLRT appears to be asymptotically optimal in the
sense of the Neyman–Pearson criterion and usually gives satisfactory results [3]. As the
GLRT combines both estimation and detection to deal with the composite hypothesis testing
problem, its performance, in general, will depend on the statistical inference performance of
these two aspects. However, in the literature, there is no general analytical result associated
with the performance of the GLRT [1].

In recent years, the development of new theories in statistical inference has been char-
acterized by the emerging trend of geometric approaches and their powerful capabilities,
which allows one to analyze statistical problems in a unified perspective. It is important to
link the GLRT to the geometrical nature of estimation and detection, which provides a new
viewpoint on the GLRT. The general problem of composite hypothesis testing involves a
decision between two hypotheses where the PDFs are themselves functions of unknown
parameters. One approach to the understanding of performance limitations of statistical
inference is via the theory of information geometry. In this context, the family of probability
distributions with a natural geometrical structure is defined as a statistical manifold [4].
Information geometry studies the intrinsic properties of statistical manifolds which are
endowed with a Riemannian metric and a family of affine connections derived from the
log-likelihood functions of probability distributions [5]. It provides a way of analyzing the
geometrical properties of statistical models by regarding them as geometric objects.
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The geometric theory of statistics was firstly introduced in the 1940s by Rao [6], where
the Fisher information matrix was regarded as a Riemannian metric on the manifold of
probability distributions. Then, in 1972, a one-parameter family of affine connections was
introduced by Chentsov in [7]. Meanwhile, Efron [8] defined the concept of statistical
curvature and discussed its basic role in the high-order asymptotic theory of statistical
inference. In 1982, Amari [5,9] developed a duality structure theory that unified all of these
theories in a differential-geometric framework, leading to a large number of applications.

In the area of hypothesis testing, the geometric perspectives have acquired relevance in
the analysis and development of new approaches to various testing and detection contexts.
For example, Kass and Vos [10] provided a detailed introduction to the geometrical foun-
dations of asymptotic inference of curved exponential families. Garderen [11] presented
a global analysis of the effects of curvature on hypothesis testing. Dabak [12] induced a
geometric structure on the manifold of probability distributions and enforced a detection
theoretic specific geometry on it, while Westover [13] discussed the asymptotic limit in
the problems of multiple hypothesis testing from the geometrical perspective. For the
development of new approaches to hypothesis testing, Hoeffding [14] proposed an asymp-
totically optimal test for multinomial distributions in which the testing can be denoted in
terms of the Kullback–Leibler divergence (KLD) between the empirical distribution of the
measurements and the null hypothesis, where the alternate distribution is unrestricted. In
the aspect of signal detection, Barbaresco et al. [15–17] studied the geometry of Bruhat–Tits
complete metric space and upper-half Siegel space and introduced a matrix constant false
alarm rate (CFAR) detector which improves the detection performance of the classical
CFAR detection.

As more and more new analyses and new approaches have benefited from the geo-
metric and information-theoretic perspectives of statistics, it appears to be important to
clarify the geometry of existing problems that is promising to gain new ways to deal with
the statistical problems. In this paper, a geometric interpretation of the GLRT is sought
from the perspective of information geometry. Two pictures of the GLRT are presented
for the cases where unknown parameters are and are not the same under each hypothesis,
respectively. Under such an interpretation, both detection and estimation associated with
the GLRT are regarded as geometric operations on the statistical manifold. As a general
consideration, curved exponential families [9], which include a large number of the most
common used distributions, are taken into account as the statistical model of hypothesis
testing problems. A demonstration of one-dimensional curved Gaussian distribution is
introduced to elucidate the geometric realization of the GLRT. The geometric structure
of the curved exponential families developed by Efron [8] in 1975 and Amari [9] in 1982
provides a theoretical foundation for the analysis. The geometric formulation of the GLRT
presented in this paper makes it possible for several advanced notions and conclusions in
the information geometry theory to be transferred and applied to the performance analysis
of the GLRT.

The main contributions of this paper are summarized as follows:

• A geometric interpretation of the GLRT is proposed based on the differential geometry
of curved exponential families and duality structure theory developed by Amari [9].
Two geometric pictures of the GLRT are presented in the theoretical sense, which pro-
vides an alternative perspective for understanding the problems of statistical inference.

• The asymptotic performance of the GLRT is discussed based on the proposed geomet-
ric representation of the GLRT. The information loss when performingthe MLE using
a finite number of samples is related to the flatness of the submanifolds determined
by the GLRT model.

In the next section, alternative viewpoints on the likelihood ratio test and the maximum
likelihood estimation are introduced from the perspective of information theory. The
equivalences between the Kullback–Leibler divergence, likelihood ratio test, and the MLE
are highlighted. The principles of information geometry are briefly introduced in Section 3.
In Section 4, the geometric interpretation of the GLRT is presented in consideration of
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the geometry of curved exponential families. We present an example of the GLRT where
a curved Gaussian distribution with one unknown parameter is involved, and a further
discussion on the geometry of the GLRT. Finally, conclusions are obtained in Section 5.

2. Information-Theoretic Viewpoints on Likelihood Ratio Test and Maximum
Likelihood Estimation

In statistics, the likelihood ratio test and maximum likelihood estimation are two
fundamental concepts related to the GLRT. The likelihood ratio test is a very general form
of testing model assumptions, while the maximum likelihood estimation is one of the
most common approaches to parameter estimation. Both of them are associated with
the Kullback–Leibler divergence [18], which is equivalent to the relative entropy [19] in
information theory.

For a sequence of observations x = (x1, x2, . . . , xN)
T ∈ RN which is independently

and identically distributed (i.i.d.), the binary hypothesis testing problem is used to decide
whether this sequence x originates from the null hypothesisH0 or the alternative hypothesis
H1 with probability distributions p0(x) and p1(x), respectively. The likelihood ratio is
given by

L =
p1(x)
p0(x)

=
N

∏
i=1

p1(xi)

p0(xi)
(1)

Assume q(x) is the empirical distribution (frequency histogram acquired via Monte
Carlo tests) of observed data. For large N, in accordance with the strong law of large

numbers [20], the log likelihood ratio test in the Neyman–Pearson formulation ln L
H1
≷
H0

γ is

equivalent to

D(q‖p0)− D(q‖p1)
H1
≷
H0

1
N

γ , γ′ (2)

where
H1
≷
H0

denotes that the test is to decideH1 if “>” is satisfied, or to decideH0, and vice

versa. The quantity

D(q‖p) =
∫
RN

q(x) ln
q(x)
p(x)

dx (3)

is the KLD from q(x) to p(x). Note that x is dropped from the notion D for simplifying the
KLD expression without confusion.

Equation (2) indicates that the likelihood ratio test is equivalent to choosing the
hypothesis that is “closer” to the empirical distribution in the sense of the KLD. The test can
be referred to as a generalized minimum dissimilarity detector in a geometric viewpoint.

Now, consider another, slightly different problem where the observations x are from
a statistical model represented by p(x|θ) with unknown parameters θ. The problem is to
estimate the unknown parameters θ based on observations x. The likelihood function for
the underlying estimation problem is

p(x|θ) =
N

∏
i=1

p(xi|θ) (4)

In a similar way, for large N, maximizing the likelihood (4) to find the maximum
likelihood estimate of θ is equivalent to finding θ, which minimizes the KLD D(q‖pθ), i.e.,

θ̂ = arg min
θ

D(q‖pθ) (5)

where pθ is used as a surrogate for p(x|θ).
The above results provide an information-theoretic view to the problem of hypothesis

testing and maximum likelihood estimation in statistics. From the perspective of informa-



Entropy 2022, 24, 1785 4 of 13

tion difference, these results have profound geometric meanings and can be geometrically
analyzed and viewed in the framework of information geometry theory, from which ad-
ditional insights into the analysis of these statistical problems, as well as their geometric
interpretations, are obtained.

3. Principles of Information Geometry
3.1. Statistical Manifold

Information geometry studies the natural geometric structure of the parameterized
family of probability distributions S = { p(x|θ )} specifying by a parameter vector θ :=
[θ1, . . . , θn], in which x is the samples of a random variable X. When the probability
measure on the sample space is continuous and differentiable and the mapping θ 7→ p(x|θ )
is injective [5], the family S is considered as a statistical manifold with θ as its coordinate
system [4].

Figure 1 demonstrates the diagram of a statistical manifold. For a given parameter
vector θ ∈ Θ ⊂ Rn, the measurement x in the sample space X is an instantiation of a
probability distribution p(x|θ ). Each p(x|θ ) in the family of distributions is specified by a
point s(θ) on the manifold S. The n-dimensional statistical manifold is composed of the
parameterized family of probability distributions S = { p(x|θ )} with θ as a coordinate
system of S.

sample space                  family of distributions                 statistical  manifold 

X
x

θ

( | )p x θ

( )s θ

( | )p x θ

( )s θ

Figure 1. Diagram of a statistical manifold. θ and s(θ′) denote parameters of the family of distribu-
tions from different samples X. The connection on the statistical manifold S represents a geodesic (the
shortest line) between points s(θ) and s(θ′). The length of the geodesic serves as a distance measure
between two points on the manifold. The arrow on the geodesic starting from the point s(θ) denotes
the tangent vector, which gives the direction of the geodesic.

Various families of probability distributions correspond to specific structures of the
statistical manifold. Information geometry takes the statistical properties of samples as the
geometric structure of a statistical manifold, and utilizes differential geometry methods to
measure the variation of information contained in the samples.

3.2. Fisher Information Metric and Affine Connections

The metric and connections associated with a manifold are two important concepts
in information geometry. For a statistical manifold consisting of a parameterized family
of probability distributions, the Fisher information matrix (FIM) is usually adopted as
a Riemannian metric tensor of the manifold [6], which is defined by the inner product
between tangent vectors at a point on the manifold. It is denoted by G(θ) = [gij(θ)], where

gij(θ) = E

{
∂ log p(x|θ)

∂θi
· ∂ log p(x|θ)

∂θj

}
(6)

where {∂ log(·)/∂θi} is considered as a basis for the vector space of random variable X.
The tangent space of S at θ, denoted as T θ (S), is identified as the vector space. Based on
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the above definition, the FIM metric determines how the information distance is measured
on the statistical manifold.

When considering the relationships between two tangent spaces T θ and T θ+dθ at
two neighboring points θ and θ+ dθ (d is the differential operator), an affine connection
is defined by which the two tangent spaces become feasible for comparison. When the
connection coefficients are all identically 0, then S is flat manifold that “locally looks like” a
Euclidean space with zero curvatures everywhere. The most commonly used connection is
called α-connections [9],

α
Γjim (θ) = Eθ

{
∂j∂i l(x, θ) ∂ml(x, θ)

}
+

1− α

2
Eθ

{
∂jl(x, θ) ∂il(x, θ) ∂ml(x, θ)

}
(7)

where
α
Γjim denotes the connection coefficients with i, j, m = 1, . . . , n, and

∂i =
∂

∂θi
and l(θ, x) = log p(x|θ). (8)

In (7), α = 0 corresponds to the Levi–Civita connection, while α = 1 defines the
e-connection and α = −1 defines the m-connection. Under the e-connection and m-
connection, an exponential family with natural parameter θ coordinate and a mixture
family with expectation parameter η coordinate are both flat manifolds [9]. Statistical infer-
ence with respect to the exponential family greatly benefits from the geometric properties of
the flat manifold. By using the methods of differential geometry, many additional insights
into the intrinsic structure of probability distributions can be obtained, which opens a
new perspective on the analysis of statistical problems. In the next section, a geometric
interpretation of the GLRT and further discussions are sought based on the principles of
information geometry.

4. Geometry of the Generalized Likelihood Ratio Test

As a general treatment, the curved exponential families, which encapsulate many
important distributions for real-world problems, are considered as the statistical model for
the hypothesis testing problems discussed in this paper. In this section, the MLE solution
to parameter estimation for curved exponential families is derived. We then present two
pictures of the GLRT, which are sketched based on the geometric structure of the curved
exponential families developed by Efron [8] in 1975 and Amari [9] in 1982, to illustrate
the information geometry of the GLRT. An example of the GLRT for a curved Gaussian
distribution with a single unknown parameter is given, which is followed by a further
discussion on the geometric formulation of the GLRT.

4.1. The MLE Solution to Statistical Estimation for Curved Exponential Families

Exponential families contain lots of the most commonly used distributions, including
the normal, exponential, Gamma, Beta, Poisson, Bernoulli, and so on [21]. The curved
exponential families are the distributions whose natural parameters are nonlinear functions
of “local” parameters. The canonical form of a curved exponential family [9] is expressed as

p(x|u) = exp
{

C(x) + θT(u)F(x)− ϕ
(
θ(u)

)}
= p

(
x|θ(u)

)
(9)

where x ∈ X is a vector of samples, θ := [θ1, . . . , θn] are the natural parameters, u ∈
Rm(m < n) are local parameters standing for the parameters of interest to be estimated,
which is specified by (9), while F(x) := [F1(x), · · · , Fn(x)]T denote sufficient statistics with
respect to θ = (θ1, · · · , θn), which take values from the sample space X. ϕ is the potential
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function of the curved exponential family and it is found from the normalization condition∫
X p(x|θ)dx = 1, i.e.,

ϕ(θ) = log
∫

X
exp

{
C(x) +

n

∑
i

(
θiFi(x)

)}
dx (10)

The term “curved” is due to the fact that the curved exponential family in (9) is a
submanifold of the canonical exponential family p(x|θ) by the embedding u −→ θ(u).

Let l(θ, x) = log p(x|θ) be the log-likelihood and ∇uθ be the Jacobian matrix of the
natural parameter θ. According to (9),

∇l(θ, x) = ∇
{

θT(u)F(x)− ϕ(θ(u))
}

= ∇θT(u)[F(x)− η(u)] (11)

where η(u) is the expectation of the sufficient statistics F(x), i.e.,

η(u) := Ep(·,u){F(x)} (12)

and is called the expectation parameter, which defines a distribution of mixture family [4].
The natural parameter θ(u) and expectation parameter η(u) are connected by the Legendre
transformation [9], as

η = ∇θϕ(θ), θ = ∇ηφ(η) (13)

where φ(η) is defined by
φ(η) = max

θ
{ηTθ− ϕ(θ)} (14)

Therefore,
∇u ϕ(u) = ∇uθT(u)∇θϕ(θ) = ∇uθT(u)η(u) (15)

Thus, the maximum likelihood estimator û of the local parameter in (9) can be obtained
by the following likelihood equation:

∇ul(û) = ∇u log p(x|u) = ∇uθT(û)[F(x)− η(û)] = 0 (16)

Equation (16) indicates that the solution to the MLE can be found by mapping the data
F(x) onto FB := {η(u) : u ∈ Rm} orthogonally to the tangent of FA := {θ(u) : u ∈ Rm}.
As θ(u) and η(u) live in two different spaces FA and FB , the inner product between dual
spaces is defined as 〈θ(u), η(u)〉Γ := θ(u)T · Γ · η(u) with a metric Γ. For the flat manifold,
the identity matrix serves as the metric Γ. By analogy with the MLE for the universal
distribution given by (5), Hoeffding [14] presented another interpretation for the MLE of
the curved exponential family. In the interpretation, η(û) represents a point in FB which is
located closest to the data point in the sense of the Kullback–Leibler divergence, i.e.,

û = arg min
η(u)∈FB

D
[
F(x)‖ηu

]
(17)

where D
[
F(x)‖ηu

]
denotes the Kullback–Leibler divergence from the multivariate joint

distributions of F(x) to ηu.
Based on the above analysis, there are two important spaces related to a curved

exponential family. One is called the natural parameter space, denoted by {θ} ⊂ An, which
denotes the enveloping space including all the distributions of exponential families, and the
other is called the expectation parameter space, denoted by {η} ⊂ Bn, denoting the dual
space ofAn. The two spaces are “dual” with each other and flat under the e-connection and
m-connection, respectively. The curved exponential family (9) is regarded as submanifolds
embedded in the two spaces, and the data can also be immersed in these spaces in the form
of sufficient statistics F(x). Consequently, the estimators, such as the MLE given by (16),
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associated with the curved exponential families can be geometrically performed in the
two spaces.

4.2. Geometric Demonstration of the Generalized Likelihood Ratio Test

As mentioned earlier, the GLRT is one of the most widely used approaches in compos-
ite hypothesis testing problems with unknown parameters in the PDFs. The data x have
the PDF p(x|u0;H0) under hypothesisH0 and p(x|u1;H1) under hypothesisH1, where u0
and u1 are unknown parameters under each hypothesis. The GLRT enables a decision by
means of replacement of the unknown parameters by their maximum likelihood estimates
(MLEs) to implement a likelihood ratio test. The GLRT decidesH1 if

LG(x) =
p(x|û1;H1)

p(x|û0;H0)
> γ (18)

where ûi is the MLE of ui (by maximizing p(x|ui;Hi)).
From the perspective of information geometry, the probability distribution p(x|ui;Hi)

is an element of the parameterized family of PDFs S = {p(x|u), u ∈ Ω}, where Ω ⊂ Rm is
the parameter set. For the curved exponential family S = { p(x|u )}, it can be regarded as a
submanifold embedding in the natural parameter space {θ} ⊂ An, which includes all the
distributions of exponential families. The curved exponential family S can be represented
by a curve (or surface) {θ = θ(u)} embedded in the enveloping space An by the nonlinear
mapping u −→ θ(u). The expectation parameter space {η} ⊂ Bn of S is a dual flat space to
the natural parameter space {θ}, while the “realizations” of sufficient statistics F(x) of the
distribution p(x|θ) can be immersed in this space. Consequently, the MLE is performed in
the space Bn by mapping the samples F(x) onto the submanifold specified by {η = η(u)}
under the m-projection.

As the parameters u0 and u1, as well as their dimensionalities, may or may not be the
same under the null and alternative hypotheses, two pictures of the GLRT are presented for
the two cases: one is with the same unknown parameters under each hypotheses and the
other is with different parameters or different dimensionalities. The picture for the first case
is illustrated in Figure 2a. In this case, distributions under two hypotheses share the same
form and the same unknown parameter u. However, the parameter takes different value
sets under different hypotheses. The family of S = { p(x|u )} can be smoothly embedded
as a surface FB specified by {η(u) : u ∈ Rm} in the space Bn. The hypotheses p(x|ui;Hi)
with unknown ui define two “uncertainty volumes” Ω0 and Ω1 on the submanifold FB .
These volumes are the collections of probability distributions specified by the value sets
of the unknown parameter ui. The measurements x are immersed in Bn in the form of
sufficient statistics F(x). Consequently, the MLE can be found by “mapping” the samples
F(x) onto the uncertainty volumes Ω0 and Ω1 on FB . The points p0 and p1 in Figure 2
are the corresponding projections, i.e., the MLEs of the unknown parameter under two
hypotheses. As indicated in (17), the MLEs can also be obtained by finding the points on
Ω0 and Ω1 which are located closest to the data point in the sense of KLD, i.e.,

û0 = arg inf
η(u)∈Ω0

D
[
F(x)‖ηu

]
, û1 = arg inf

η(u)∈Ω1

D
[
F(x)‖ηu

]
(19)

and the corresponding minimum KLDs can be represented by

D0 = D
[
F(x)‖p0

]
, D1 = D

[
F(x)‖p1

]
, (20)

respectively.
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(a) (b)

Figure 2. Geometry of the GLRT. (a) The case for the same unknown parameters under two hy-
potheses. (b) The case for different unknown parameters and different dimensionalities under
two hypotheses.

It should be emphasized that the above “mapping” is a general concept. When the
parameters to be estimated are not restricted by a given “value set”, the MLE is simply
obtained by maximizing the likelihood and the projections will fall onto the submanifold
FB . However, if the parameters to be estimated are restricted in a given “value set”, the
MLE should be operated by maximizing the likelihood with respect to the given parameter
space. In the case where the projections fall outside the “uncertainty volumes”, the MLE
solutions are given by those points which are closest to the data point described by (19).

LetR(η0, ρ) be a divergence sphere centered at η0 with radius ρ; that is, the submanifold
of the enveloping space Bn consisting of points η for which the KLD D(η0‖η) is equal to ρ.
Denote this divergence sphere by

R(η0, ρ) = {η ∈ Bn |D(η0‖η) = ρ} (21)

Then, the closest point in (19) may be more easily found via the divergence sphere
with center F(x) and radius Di tangent to Ωi at pi, as illustrated in Figure 3. Consequently,
according to (2), the GLRT can be geometrically performed by comparing the difference
between the minimum KLDs D0 and D1 with a threshold γ′, i.e.,

D
[
F(x)‖p0

]
− D

[
F(x)‖p1

] H1
≷
H0

γ′ (22)

In practice, the Neyman–Pearson criterion is commonly employed to determine the
threshold γ′ in (22) and the detector is of maximum probability of detection PD under a
given probability of false alarm PF. As a commonly used performance index, the miss-
ingprobability PM usually decays exponentially as the sample size increases. The rate of
exponential decay can be represented by [22], as

K , lim
n→∞

− 1
N

log PM (23)
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B

1p

0p

0Ω

1Ω

 ( )0( ),DF xR
( )F x

( )1( ),DF xR

Figure 3. Illustration of the mapping via divergence spheres.

Based on Stein’s lemma, for a constant false-alarm constraint, the best error exponent
is related to the Kullback–Leibler divergence D(p0‖p1) from p0 to p1 [23], i.e.,

K = D(p0‖p1) (24)

and
PM

.
= 2−NK (25)

where .
= denotes the first-order equivalence in the exponent. For example,

an
.
= bn means lim

n→∞

1
n

log
an

bn
= 0. (26)

In the above sense, the KLD from p0 to p1 is equivalent to the signal-to-noise ratio
(SNR) of the underlying detection problem. Therefore, information geometry offers an in-
sightful geometrical explanation for the detection performance of a Neyman–Pearson detector.

In the second case, the dimensionality of the unknown parameters u0 and u1 is dif-
ferent, while the dimensionality of the enveloping spaces is common for both hypotheses
due to the same measurements x. However, the hypotheses may correspond to two sepa-
rated submanifolds, Ω0 and Ω1, embedded in Bn caused by the different dimensionality
between the unknown parameters. As illustrated in Figure 2b, a surface and a curve
are used to denote the submanifolds Ω0 and Ω1, corresponding to the two hypotheses,
respectively. Similar to the first case, the GLRT with different unknown parameters may
also be geometrically interpreted.

4.3. A Demonstration of One-Dimensional Curved Gaussian Distribution

Consider the following detection problem:{
H0 : u < 0
H1 : u > 0

(27)

The measurement originates from a curved Gaussian distribution

x ∼ N (u, u2a2) (28)

where a is a positive constant and u is an unknown parameter.
The probability density function of the measurement is

p(x|u) = 1√
2πa|u|

exp
[
− (x− u)2

2a2u2

]
(29)
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By reparameterization, the probability density function can be represented in the
general form of a curved exponential family as

p(x|u) = exp
{

1
a2u

x− 1
2a2u2 x2 − 1

2a2 − ln(a|u|)− 1
2

ln(2π)

}
= exp

{
ln a + θ1x + θ2x2 −

[
−

θ2
1

4θ2
− 1

2
ln(−θ2) +

1
2

ln π

]}
= exp{C(x) + F1(x)θ1 + F2(x)θ2 − ϕ(θ1, θ2)} (30)

where C(x) = ln a and the potential function ϕ is

ϕ(θ1, θ2) = −
θ2

1
4θ2
− 1

2
ln(−θ2) +

1
2

ln π (31)

The above distributions with local parameter u correspond to a one-dimensional
curved exponential family embedded in the natural parameter space A. The natural
coordinates are

θ1 =
1

a2u
, θ2 = − 1

2a2u2 (32)

which defines a parabola (denoted by FA)

θ2 = − a2

2
θ2

1 (33)

in A. The underlying distribution (28) can also be represented in the expectation parameter
space B with expectation coordinates

η1 =
∂ϕ

∂θ1
= u, η2 =

∂ϕ

∂θ2
= (a2 + 1)u2 (34)

which also defines a parabola (denoted by FB)

η2 = (a2 + 1)η2
1 (35)

in B.
The sufficient statistics F(x) obtained from samples x can be represented by

F(x) = [x, x2]T (36)

Figure 4 shows the expectation parameter space and illustrates geometric interpreta-
tion of the underlying GLRT, where the blue parabola in the figure denotes embedding of
the curved Gaussian distribution with parameter u. The submanifolds associated with two
hypotheses can be geometrically represented by the blue parabolas (specified by η1 < 0
and η1 > 0, respectively). Without loss of generality, assume that a = 1, u = 2. The blue
dots signify N = 100 observations (measurements) in the expectation parameter space with
the coordinates (x, x2). The statistical mean of the measurements are used to calculate the
sufficient statistics F(x) which are denoted by a red asterisk. The MLEs of parameter u
under two hypotheses are obtained by finding the points on the two submanifolds which
are closest to the data point in the sense of KLD. According to (22), the GLRT can be
geometrically performed by comparing the difference between the minimum KLDs D0 and
D1 with a threshold γ′.



Entropy 2022, 24, 1785 11 of 13

-8 -6 -4 -2 0 2 4 6 8 10 12
0

25

50

75

100

125

150

η1

η 2

expectation parameter space

Curved exponential family 
η=η(u) 

observed data 

sufficient 
statistics F(x) 

m-projection 

p1 

p0 
D0 D1

Figure 4. The geometric interpretation of the GLRT for one-dimensional curved Gaussian distribution.

4.4. Discussions

The geometric formulation of the GLRT presented above provides additional insights
into the GLRT. To the best of our knowledge, there is no general analytical result associated
with the performance of the GLRT in the literature [1]. The asymptotic analysis is only valid
under the conditions that (1) the data sample size is large; and (2) the MLE asymptotically
attains the Cramér-Rao lower bound (CRLB) of the underlying estimation problems.

It is known that the MLE with natural parameters is a sufficient statistic for an ex-
ponential family, and achieves the CRLB if a suitable measurement function is chosen
for the estimation [8]. For the curved exponential families the MLE is not, in general, an
efficient estimator, which means that the variance of MLE may not achieve CRLB with
a finite number of samples. This indicates that when using a finite number of samples
there will be a deterioration in performance for both MLE and GLRT when the underlying
statistical model is a curved exponential family. There will be an inherent information loss
(compared with the Fisher information) when implementingan estimation process if the
statistical model is of nonlinearity. Roughly speaking, if the embedded submanifold FB
in Figure 2a and Ω0, Ω1 in Figure 2b are curved, the MLEs will not achieve the CRLB due
to the inherent information loss caused by the non-flatness of the statistical model. The
information loss may be quantitatively calculated using the e-curvature of the statistical
model [9].

Consequently, if the statistical model associated with a GLRT is not flat, i.e., the sub-
manifolds shown in Figure 2 are curved, there will be a deterioration in performance for the
GLRT using a finite number of samples. As sample size N increases, the sufficient statistics
F(x) will be better matched to the statistical model and thus closer to the submanifolds
(see Figure 2), and the divergence from data to the submanifold associated with the true
hypothesisHi will be shorter. Asymptotically, as N → ∞, the sufficient statistics will fall
onto the submanifold associated with the true hypothesis Hi, so that the corresponding
divergence Di reduces to zero. By then, the GLRT achieves a perfect performance.

5. Conclusions

In this paper, the generalized likelihood ratio test is addressed from a geometric
viewpoint. Two pictures of the GLRT are presented in the philosophy of the information
geometry theory. Both the detection and estimation associated with a GLRT are regarded
as geometric operations on the manifolds of a parameterized family of probability distri-
butions. As demonstrated in this work, the geometric interpretation of GLRT provides
additional insights in the analysis of GLRT.
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Potentially, more constructive analysis can be generalized based on the information
geometry of GLRT. For example, the error exponent defined by (24) and (25) provides
a useful performance index for the detection process associated with GLRT. When p0
and p1 in (24) are the estimates of an MLE (rather than the true values) of unknown
parameters under each hypothesis, there may be a deterioration in performance in the
estimation process. Determining how to incorporate such an “estimation loss” into the
error exponent is an issue. Another open issue is the GLRT with PDFs of different forms for
each hypothesis, which leads to a different distribution embedding associated with each
hypothesis.
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