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Abstract: The quantum transport properties of ZnO devices with five different bulk configurations
are investigated with numerical methods. The calculation results reveal that the transport property
at a higher energy range can be tuned by changing the length of central scattering. By substituting
some Zn atoms with Cu atoms, it is found that the doped Cu atoms have an obvious effect on the
quantum properties at the entire energy range investigated, and could result in different transmission.
The properties of ZnO devices are also influenced by the doping positions of Cu atoms. The tuning
mechanism relies on the shifting of carrier distributions in the scattering center of the device.

Keywords: quantum calculation; molecular device; density of state; electronic transmission

1. Introduction

Molecular-level quantum devices have great potential in the future. The investigation
and fabrication of molecular-level devices have been performed for decades [1–8]. An inter-
esting type of molecular level quantum devices consists of two terminals and the extended
scattering in the middle [9–16]. Since more and more new materials can be synthesized
with the development of material technology, the design of new molecular-level devices
is under rapid progress by finding new materials as the central scattering of the device.
The tuning technique has become a powerful tool in material and device design. By con-
trolling film thickness and electron doping, the superconductivity in alkali fulleride films
can be well tuned [17]. Atomic layer superconductivity can be tuned by Rashba/Zeeman-
type coupling [18]. Molecular-level devices were usually considered to function as below
1 nm classical computation units and they also have potential applications in quantum
information science. Molecular-level devices are possible substitutes for qubits [19,20],
which are the basic units of a quantum computer. The intermediate controller switching the
interaction between qubits and environment can also be made by molecular devices due
to their electrical properties [21]. Moreover, molecular-level devices can assist in realizing
non-demolition measurements [22]. Tuning the quantum properties of molecular-level
quantum devices is vital to materializing these applications.

Our study focuses on ZnO-based molecular-level devices. It is well known that
ZnO crystal has several typical structures, such as NaCl structure, zinc-blende structure,
etc. [23,24]. Furthermore, ZnO also shows advantages over other oxides in many physical
characteristics, such as stability, optoelectronic properties and etc. [24,25]. It has been
demonstrated experimentally that the electronic properties of ZnO can be obviously tuned
by doping Cu atoms [26], increasing the adjustability of ZnO-based devices. Thus, they
have plenty of applications, including optoelectronic devices, field effect transistors and
etc. [27,28]. Among the most exciting progress is molecular-level quantum devices using
ZnO as an electron-transporting layer for its excellent electron mobility [29]. Quantum
dot systems containing a ZnO layer can both serve as light-emitting diodes [30] and
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photodetectors [31]. Various fabrication techniques [32,33] have been developed for ZnO-
based molecular devices toward the applications to quantum information processing.
In this paper, we investigated the quantum properties of one layer ZnO devices and found
its electronic properties can be changed by modulating the length of the central scattering
and doping Cu atoms.

To study the electronic property and tuning effect of the ZnO device, we focused on
the NaCl structure, and consider single layer crystal. Gold electrodes (Au (111) direction)
were chosen as two terminals, as depicted in Figure 1.

Figure 1. A ZnO device consists of two parts, an extended scattering and the terminals. The extended
scattering is made up of the ZnO central scattering and bridge S atoms. Terminals of the device are
gold electrodes made by Au (111) atoms. Only the first layer of each electrode with three Au atoms
is drawn.

Every terminal consists of three layers, and three, seven, and three Au atoms at each
layer respectively. Au (111) films are the commonly used electrodes in molecular level
devices [34], and such choice is also consistent with experiments. Other orientations of
Au will result in different Fermi energy. The ZnO layer is connected with the first layer of
Au atoms. The chemical bond between S and Au atoms ensures stable contact with the
electrodes. The electronic properties and tuning effects are characterized by the density of
state (DOS) and transmission properties of devices. Our study was carried out by using
Green’s function and tight-binding methods [24,34,35].

2. Materials and Methods

To study the tuning effect of size and doping on the transmission coefficient (TE)
of ZnO quantum devices, ZnO five different configurations of extended scattering were
considered sequentially, as shown in Figure 2. The geometry parameters of ZnO devices
were set as: the bond length of Zn-O was 1.895 Angstrom, and Au-Au was 2.885 Angstrom
in Au electrodes; the distances between the bridge S atom and the two side atoms Zn and
Au were 1.97, 2.53 Angstrom, respectively. Figure 2a corresponds to 21 atoms in the ZnO
layer, and Figure 2b corresponds to 15 atoms. The length of the central scattering along
the direction of electrodes is approximately 0.7 to 1.2 nm. The bulk size of the devices is
characterized by the number of atoms in their central scattering. Figure 2c has the same
geometry parameters as Figure 2a, except that two Zn atoms bounded with S atoms are
substituted by two Cu atoms. Similar relations lies between Figure 2a,b. Figure 2e shows
the same geometry parameters as Figure 2c, except that the positions of the doped Cu atoms
are shifted to the middle of the central scattering. The geometry of these five quantum
devices is then optimized using G09, DFT-B3LYP/6-311G basis.
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Figure 2. Extended scattering configurations of different ZnO quantum devices. (a,b) show undoped
ZnO central scattering with different lengths. The red ball represents the bridge atom S at left and
right end contacting with the gold electrodes. In the central scattering material, blue ball is the O
atom, while light grey ball is the Zn atom, and in the doped cases (c–e), the Cu atom is represented
by the bronze ball.

The tight-binding method is widely used in the study of electronic properties of
molecular level devices [36,37]. This method shows advantages in direct physical insight
with economic computation routine [38]. However, due to its approximation nature,
the tight-binding method lacks accuracy in case of charge transfer, relaxation of coordinates
and overlap between distant atomic orbitals. Compared with other methods that are more
accurate, the tight-binding method is still proven successful in the prediction of electronic
properties of molecular systems [38–40]. In our study, the geometry parameters of the ZnO
devices are optimized to improve the accuracy of the numerical results of tight-binding
methods. By the Green’s function and tight-binding method [24,34,35], the transmission
coefficient can be obtained from the retarded Green’s function matrix G, as

T = Tr(Γ1GΓ2G†), (1)

where the trace is over all the orbitals of the central scattering, and Γ1, and Γ2 are the
imaginary part of the self-energy of two electrodes, respectively, which describe the cou-
pling between the bulk and the electrodes due to the energy level broadening. For the five
different ZnO quantum devices with the optimized structures, we numerically calculate
their density of states and the electronic transmission [34].

The numerical calculation is carried out by running the Huckel-IV program [35], where
the structure parameters of a ZnO quantum device are input to obtain the Huckel matrix
and the overlap matrix of the neutral molecule. These results are then used to calculate
the overlap matrix and coupling matrix between the device and the gold electrodes giving
the coupling factor equal to 1. Finally, with the extended Hückel theory, these matrices
together with the surface Green’s function obtained for the tight-binding Hamiltonian
are sufficient to compute the density of state and electronic transmission of the molecular
device. The total energy range is from −14 to −6 eV.
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3. Results
3.1. The DOS of Au-S-ZnO-S-Au Device

Figure 3a,b give the density of state of the two ZnO devices corresponding to structures
of Figure 2a,b, respectively. The Fermi energy EF of Au (111) in the simulation is selected
to be −9.5 eV [34,35], since Hückel energy levels are 4 to 5 eV lower than the work function
of gold. The same value of EF is also taken in later results.
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Figure 3. Density of state of ZnO quantum devices with different size as the energy ranges from −14
to −6 eV: (a) DOS of ZnO with 21 atoms, and (b) DOS of ZnO with 15 atoms.

The DOS in both cases is small when energy is from −10.5 eV to −7.5 eV. As the size of
the central scattering decreases, the DOS distribution is almost the same, except that some
peaks of the DOS above −7.5 eV decrease as the size decreases. The gap between peaks
on either side of the Fermi energy is almost equal in these two cases. Therefore, the length
of the central scattering has little influence on the electron transport properties near the
Fermi energy.

3.2. The DOS of Au-S-ZnO-S-Au Devices with Doped Cu

Three ZnO devices with doped Cu atoms are shown in Figure 2c–e, their geometry
parameters of atom bonds are the same as the ZnO devices without doping, then optimized
using G09, DFT-B3LYP/6-311G basis. The DOS of these devices with doped Cu are shown
in Figure 4a–c.

The gap between peaks on either side of the Fermi energy is smaller in the doped
devices compared with undoped cases in Figure 3, indicating that the DOS of ZnO devices
with doped Cu atoms has more activity properties. This is the consequence of the increase of
carrier concentration through doping. It is also worth noting that there are more oscillating
peaks of the DOS within the lower energy region. In Figure 3a, the intensity of DOS is
relatively small between −12.0 eV to −10.0 eV, but in Figure 4a, the intensity increases
obviously, even a peak appeared near −10.2 eV. Thus, the doping of Cu atoms improves
the electron transport properties of ZnO devices.

By comparing Figure 4a,b, it is found that the tuning effect of size on the DOS of
ZnO devices with doped Cu atoms is similar to the undoped cases. The DOS of Cu-doped
ZnO devices with different sizes varied only at higher energy levels. The tuning effect of
the doping position on the DOS of ZnO devices is investigated by comparing Figure 4a,c.
The peaks between −13 eV to −10 eV split to narrower peaks in Figure 4c, and they are
compressed to lower energy region, leaving a larger gap near the Fermi energy. It can be
seen that the position of the doped Cu atoms is also of significance in the tuning effect on
electron transport properties of ZnO devices.
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Figure 4. Density of state of ZnO quantum devices with doped Cu atoms as the energy ranges from
−14 to −6 eV. In (a), two Cu atoms substitute two Zn atoms which connect to the bridge S atom,
and there are 21 atoms in the central scattering. In (b), the doping position is the same as (a), but the
central scattering reduces to 15 atoms. (c) has the same size as (a), but the doping position is in the
middle of the central scattering.

3.3. The Transmission Properties of ZnO Devices

Figure 5a–e show the TE of the five ZnO devices corresponding to configurations in
Figure 2a–e, respectively. The carrier distribution in the central scattering plays a vital
part in determining the TE of the ZnO devices. Comparing Figure 5a with Figure 5b and
Figure 5c with Figure 5d, it is found that the size of the ZnO devices can affect on TE in
higher energy levels. As the length of the central scattering decreases, the number of peaks
above −7.5 eV is slightly reduced. Yet the change of carrier distribution due to doped Cu
atoms can affect the entire energy range. It is shown through the comparison between
Figure 5a,c that the increase in electrons in the central scattering obviously increases the
transmission coefficient near the Fermi energy. The TE of the ZnO devices doped with Cu
atoms at different positions is quite different. By comparing Figure 5c,e, when the positions
of doped Cu atoms are shifted from the edge to the middle of the bulk, transmission near
the Fermi energy reduces and the gap between peaks on either side of the Fermi energy is
increased, though the transmission properties are still better than the undoped devices.
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Figure 5. Transmission of ZnO quantum devices with different configurations as the energy ranges
from −14 eV to −6 eV. The transmission is plotted on a logarithmic scale. (a–e) correspond to
structures shown in Figure 2a–e, respectively.

4. Discussion and Conclusions

We have numerically computed the DOS and TE with energy range from −14 eV
to −6 eV of five different ZnO quantum devices by tight-binding methods. The electron
transmission properties can be controlled by tuning the size of the ZnO central scattering or
substituting some Zn atoms with Cu atoms. As the length of the central scattering decreases,
DOS in the energy range −7.5 eV to −6 eV also decreases, and thus transmission in the
higher energy region can be tuned by the size of the ZnO quantum device. The doping of
Cu atoms affects the DOS and TE of the entire energy range. Firstly, the doped Cu atoms
significantly increase the DOS in the energy range −14 eV to −13.5 eV, though slightly
decrease the DOS in the higher energy range. Transmission near the Fermi energy is also
improved by doping. Thus the transmission of the ZnO quantum device can be tuned by
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doping Cu atoms. Secondly, different positions of the doped Cu atoms will result in different
transmission properties. The mechanism of these tuning effects is to change the distribution
of carriers. The density of the state almost resembles the distribution of the transmission
coefficient if it is noted that the latter is plotted on a logarithmic scale. However, the peaks
do not match exactly the density of the state and the transmission coefficient due to the
characteristics of the wave function, which are not explicitly considered in our study.
In summary, the ZnO quantum device requiring different transmission and density of
states distributions can be tuned by the length of bulk and doping of Cu atoms. Further
study will focus on the dynamical properties of ZnO-based devices such as quantum
conductance, quantum efficiency and quantum current, as well as the tuning effect of
size and doping in other molecular quantum devices, and their application as the links in
quantum computing devices and sensors.
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