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Abstract: The aim of explainable recommendation is not only to provide recommended items to users,
but also to make users aware of why these items are recommended. Traditional recommendation
methods infer user preferences for items using user–item rating information. However, the expressive
power of latent representations of users and items is relatively limited due to the sparseness of the
user–item rating matrix. Heterogeneous information networks (HIN) provide contextual information
for improving recommendation performance and interpreting the interactions between users and
items. However, due to the heterogeneity and complexity of context information in HIN, it is
still a challenge to integrate this contextual information into explainable recommendation systems
effectively. In this paper, we propose a novel framework—the dual-attention networks for explainable
recommendation (DANER) in HINs. We first used multiple meta-paths to capture high-order semantic
relations between users and items in HIN for generating similarity matrices, and then utilized matrix
decomposition on similarity matrices to obtain low-dimensional sparse representations of users and
items. Secondly, we introduced two-level attention networks, namely a local attention network and a
global attention network, to integrate the representations of users and items from different meta-paths
for obtaining high-quality representations. Finally, we use a standard multi-layer perceptron to model
the interactions between users and items, which predict users’ ratings of items. Furthermore, the
dual-attention mechanism also contributes to identifying critical meta-paths to generate relevant
explanations for users. Comprehensive experiments on two real-world datasets demonstrate the
effectiveness of DANER on recommendation performance as compared with the state-of-the-art
methods. A case study illustrates the interpretability of DANER.

Keywords: heterogeneous information networks; dual attention mechanism; rating prediction;
meta-path

1. Introduction

Recommendation systems have been widely used in various online services, such as
search engines, e-commerce, online news, and social media sites, and have become one
of the most powerful ways to solve the problem of information overload [1,2]. However,
a large number of recommendation methods are still black-boxes that do not provide
explanations for users. In recent years, explainable recommendation has attracted increas-
ing attention in the academic and industrial communities. Explainable recommendation
systems not only unveil the recommendation process, but also help to improve the effec-
tiveness, persuasiveness and satisfaction of the recommendations.

Traditional recommendation methods, e.g., matrix factorization, mainly infer the
preferences of users for items by using implicit or explicit user–item interaction data [3].
The key to generating accurate recommendation results is to obtain the representations of
users and items with rich expressive power, while these traditional methods suffer from
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the sparseness of interaction data [4,5]. A common idea which can solve the problem
of data sparseness is to introduce some auxiliary information into the recommendation
system. Auxiliary information can make up for the sparseness or lack of interaction
data, enrich preferences of users and features of items and enhance the performance of
the recommendation system effectively [6]. What is more, traditional recommendation
methods only provide some simple explanations, such as “Customers Who Bought This Item
Also Bought. . . ”, with which users are not satisfied in general.

Fortunately, various kinds of auxiliary information have become increasingly avail-
able in online services. This auxiliary information can be easily organized into heteroge-
neous information networks. Heterogeneous information networks contain rich attribute
information and semantic associations, so can provide potential relations between users
and items for recommender systems [7]. By connecting different kinds of relations in
heterogeneous information networks, latent higher-order interaction information be-
tween users and items can be discovered. The emerging success of mining heterogeneous
information networks may shed some light on solving these issues of data sparseness
and simple explanation in the recommendation system. Many existing models [8] regard
reviews, an item’s aspects and meta-paths as contextual information about the user–item
interaction and leverage them to improve the recommendation performances and gen-
erate recommendation explanations. Explainable recommendation has also attracted
remarkable attention in recent years [9,10].

Although the above methods have achieved a better performance, there are two
challenges in applying heterogeneous information networks to recommender systems:
(1) how to extract effective information that can be used in recommendation systems from
heterogeneous information networks; (2) how to effectively integrate high-order interaction
information for better recommendation results and explanations. In order to solve the first
challenge, we intend to design multiple different types of meta-paths for heterogeneous
information network architectures to produce corresponding similarity matrices [11]. As for
auxiliary information, it can tackle the issue of the sparseness of the original user–item
interaction matrix. Then, the latent representations of users and items are obtained through
matrix decomposition methods [12]. Aiming at the second issue, we present a dual-attention
network to distinguish the contribution of each representation from different meta-paths
to the final representations of users and items. Then, the dual-attention networks will
aggregate the representations from multiple meta-paths through the attention coefficients
to generate the final representations of users and items.

In this paper, we propose a framework of explainable recommendation by exploiting
dual-attention networks in heterogeneous information networks (DANER), to capture the
latent representations of user preferences and item features, and to learn the joint represen-
tation of user–item interactions using the dual-attention networks for the recommendation
predictions and explanations. The contributions of this paper are summarized as follows:

• In order to alleviate the problem of data sparseness, we extracted multiple kinds of
meta-paths between users and items from the heterogeneous information networks
and generated multiple similarity matrices, which were used as complements of the
rating matrix. Then, we decomposed the similarity matrices by matrix decomposition
to obtain the multiple representations of users and items corresponding to different
meta-paths;

• We propose a novel dual-attention network for explainable recommendation in
heterogeneous information networks (DANER). It leverages a local attention layer
to learn the representations of users and items, and a global attention layer to
learn the joint representations of user–item interactions, both of which integrate
multiple groups of different meta-path information. An attention mechanism helps
to improve the explainability of the recommendation;

• We demonstrate better rating prediction accuracy than the state-of-the-art methods
by performing comprehensive experiments on two benchmark datasets. In addition,
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by providing a critical meta-path based on attention coefficient, we show a case study
on the explainability of DANER.

The rest of this paper is organized as follows: Section 2 highlights the related work
of typical recommendation methods; HIN in recommendation and attention mechanisms,
respectively. Section 3 introduces the definition and problem formulation. Section 4 presents
the details of our proposed DANER model. Section 5 shows the experimental results. Finally,
Section 6 concludes this paper.

2. Related Works
2.1. Recommendation

At present, there are two main streams of recommendation system models, one is
based on collaborative filtering and the other is based on content [13]. The core idea of
collaborative filtering model is to recommend items for users according to the preferences
of a group of users with similar interests and common experiences [14]. Collaborative
filtering recommendation algorithms can be divided into two categories: user-based col-
laborative filtering and item-based collaborative filtering. Matrix factorization (MF) [15]
is one of the most widely used methods, which factorizes a high-dimensional original
matrix into two low-dimensional matrices and uses the two new matrices to calculate
the prediction rating. There are many extended works based on matrix factorization,
including Probability Matrix Factorization [16], BPRMF [17]. The Probabilistic Matrix
Factorization (PMF) model scales linearly with the number of observations and performs
well on the large, sparse, and very imbalanced Netflix datasets, including an adaptive
prior on model parameters, which shows how the model’s capacity can be controlled au-
tomatically. BPRMF presents a generic optimization criterion BPR-Opt for personalized
ranking that is the maximum posterior estimator derived from a Bayesian analysis of
the problem, which also provides a generic learning algorithm for optimizing models
with respect to BPR-Opt. Factorization Machines (FMs) [18] introduce a new model class
that combines the advantages of Support Vector Machines with factorization models.
It is a general predictor working with any real valued feature vector, which model all
interactions between variables using factorized parameters. SVD++ [19] introduces a
new neighborhood model with an improved prediction accuracy, which models neigh-
borhood relations by minimizing a global cost function.The new neighborhood model
adds a global average rating, item rating bias, user rating bias, and interest preference
between user and item. Content-based recommendation mainly generates recommenda-
tions based on item characteristics and user profiles. The factorization machine is the
typical representative among them, mainly to solve the problem of feature combination
under the condition of sparse data.

2.2. HIN in Recommendation

Heterogeneous information networks have been proposed as a general represen-
tation of a graph or network in many real world scenarios [20,21]. Because of their
remarkable ability to represent heterogeneous data, they have been used in a large
number of tasks of data mining, such as clustering, classification, link prediction, repre-
sentation learning and similarity measurement [22,23]. Recently, some recommendation
systems have used heterogeneous information networks as auxiliary information, which
has achieved great success [24]. In heterogeneous information networks, a sequence
composed of different types of nodes is defined as a meta-path, which is capable of
extracting the relation information [25,26]. HeteMF [27] is a matrix factorization based
model which takes advantage of both rating data and the related information network,
and uses meta-path-based similarity as a regularization term to enhance the effect of the
recommendation model. HeteRec [28] proposes to combine heterogeneous relationship
information for each user differently and introduces meta-path-based latent features
to represent the connectivity between users and items along different types of paths.
SemRec [29] is the first to propose weighted HIN and weighted meta-path concepts to
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subtly depict the path semantics through distinguishing different link attribute values.
SemRec not only flexibly integrates heterogeneous information but also obtains priori-
tized and personalized weights representing user preferences on paths. FMG [30] first
introduces the concept of the meta-graph to HIN-based recommendation and then solves
the information fusion problem with a “matrix factorization (MF) + factorization machine
(FM)” approach.

2.3. Attention Mechanism

When human beings observe a scene, they always focus on some objects in the scene
according to the guidance of the information they want to obtain. Inspired by this, re-
searchers introduced an attention mechanism into machine learning and achieved remark-
able results [31]. The core purpose of the attention mechanism is to select the most critical
information for the current task from a large amount of information [32,33]. Nowadays, the
attention mechanism has been widely used in various fields of deep learning, such as image
processing, speech recognition, natural language processing, and recommendation [34–36].
ACF [37] introduced a novel attention mechanism in CF to address the challenging item-
level and component-level implicit feedback in the recommendation. The model consists of
two attention modules—the component-level attention module to select informative com-
ponents of multimedia items and the item-level attention module to score item preferences.
Graph attention networks (GATs) [38] present a novel neural network architecture that
operates on graph-structured data, leveraging masked self-attentional layers to address
the shortcomings of prior methods based on graph convolutions or their approximations.
KGAT [39] proposes a new method named Knowledge Graph Attention Network that ex-
plicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively
propagates the embeddings from the node’s neighbours to refine the node’s embedding,
and employs an attention mechanism to discriminate the importance of the neighbours.
HGAT [40] first proposed a novel heterogeneous graph neural network based on hierarchi-
cal attention, including node-level and semantic-level attentions, in which the contribution
of node and meta-path can be fully considered.

3. Problem Statement
3.1. Definitions

There are several definitions of heterogeneous information networks. In this paper,
we introduce the definitions of HIN, the network schema and the meta-path. Next, we will
illustrate these three definitions in detail.

Definition 1 (Heterogeneous Information Networks). HIN is defined as a graph G=(V,E) with
an object type mapping function ϕ : V → A and a relation type mapping function ψ : E → R,
where each object v ∈ V belongs to a specific object type ϕ(v) ∈ A, and each relation e ∈ E
corresponds to a specific relation type ψ(e) ∈ R, where the number of object types A > 1 or relation
types R > 1.

An example of the heterogeneous information networks is shown in Figure 1. There
are four object types and three relation types in the heterogeneous information networks.
The four object types are group, user, business and category. The relation between group
and user indicates that a user belongs to a group. The relation between user and business
indicates that a user prefers a business. The relation between business and category
indicates that a business belongs to a category.

Definition 2 (Network Schema). The network schema is a meta template of heterogeneous
networks G=(V,E) including object mapping function ϕ : V → A and relation type mapping
function ψ : E→ R. Network schema is defined as a directed graph composed of object types A and
relation types R, denoted as TG = (A, R).
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Figure 2 illustrates the network schema corresponding to the Yelp dataset. The Yelp
dataset has five object types and five relation types. There may be more than one meta-path
between two objects in an HIN. For example, user and business can be connected via
U → B ← U → B or U → B → Cate ← B. These paths are called meta-paths, defined in
Definition 3.

Figure 1. A toy example of HIN.

Figure 2. Network schema of Yelp dataset.

Definition 3 (Meta-path). A meta-path is a path defined in the network schema with a starting
node and a target node, such as A1

r1−→ A2
r2−→ . . . An−1

rn−1−−→ An, where Ai ∈ A is the type of
different object and ri ∈ R is the relation between the two objects. Apparently, the complex relation
between node A1 and node An can be represented in meta-path, denoted as R = r1 ◦ r2 . . . ◦ rn,
where the number of relation Ri is the length of the meta-path.

3.2. Problem Statement

For inputs to our framework, we have the user set U = {u1, u2, . . . , uU}, the business
set B = {b1, b2, . . . , bB}, and the relation set R = {r1, r2, . . . , rR}, where ri is the relation
between two objects which can be user, business, category, city and so on. When the ri
represents the relation of user and business, the weight between them indicates the rating
of user on business. We design multiple meta-paths MPi, and obtain multiple similarity



Entropy 2022, 24, 1718 6 of 19

matrices Mi through the meta-paths. For the output of our framework, we provide the
predicted rating r̂ui of user on business and a meta-path-level explanation.

Accordingly, the two main tasks of DANER can be summarized as: (1) obtaining
more expressive presentations of user preferences and item features through auxiliary
information in heterogeneous information networks; (2) using the attention mechanism to
aggregate these representations to get better recommendation results and providing some
explanations based on the attention coefficient simultaneously.

4. Framework

In this section, we mainly introduce the use of auxiliary information in HIN and the
establishment of recommendation model based on double attention mechanism. The overall
structure of DANER is shown in Figure 3. DANER mainly includes three parts: the
Similarity Matrices Generation, the Matrix Decomposition and the Recommendation model
based on Attention Mechanism.

Figure 3. The overall structure of DANER.

4.1. Similarity Matrix Based on Meta-Path

For a recommendation system, the starting node of the meta-path is user u, and the
target node is item i. The meta-path MPui represents the high-order relation between

user u and item i. For example, the meta-path u1
Buy−−→ i1

BelongTo−−−−−→ Cate1
BelongTo←−−−−− i2 in

Amazon dataset indicates that user u1 has purchased item i1, and item i1 and item i2
belonging to the same category. The similarity matrix based on the meta-path is defined
as MMP = MA1 A2 ⊗MA2 A3 . . .⊗MAn−1 An , where MAn−1 An represents the relation matrix
between the object type An−1 and An, ⊗ is a matrix multiplication operation between the
two relation matrices.

L user–item similarity matrices can be obtained by L pre-designed meta-paths. The meta-
paths of different datasets used in the experiment are shown in Table 1. For example, the meta-
path used in the dataset Amazon U → B← U → B indicates that users will buy other items
that have been purchased by users with the same preferences, which can be regarded as a
user-based collaborative filtering. Thus, the similarity matrix corresponding to this meta-path
can be obtained by the following formula MUBUB = MUB ⊗ MBU ⊗ MUB. Besides, Cate
refers to the categories to which the item belongs, Brand refers to the brand to which the item
belongs, View refers to which other items have been viewed by users who have rated the item,
Com refers to the number of compliments a user receives from other users, and City refers to
the city in which the restaurant is located. The calculation of the relevant meta-path is similar
to the procedure mentioned above.



Entropy 2022, 24, 1718 7 of 19

Table 1. Meta-paths defined in different datasets.

Dataset Meta-Path

U → B
U → B← U → B
U → B→ Cate← B

Amazon U → B→ Brand← B
U → B→ View← B
U → B→ Cate← B← U → B
U → B→ Brand← B← U → B
U → B→ View← B← U → B

U → B
U → U → B
U → B← U → B

Yelp U → Com← U → B
U → B→ Cate← B
U → B→ City← B
U → B→ Cate← B← U → B
U → B→ City← B← U → B

4.2. Latent Representation by Matrix Decomposition

The recommendation learning process can be regarded as a representation learning
process [41]. After obtaining user–item similarity matrices corresponding to L meta-paths,
we adopted matrix decomposition to obtain the latent representations of users and items.
By using low-dimensional vector of the latent representation, we can reduce noise and
alleviate the data sparseness problem of the original rating matrix [42]. Based on the theory
of matrix decomposition, the similarity matrix M can be decomposed into two low rank
matrices IU and IB, where IU represents the latent features of users’ preferences and IB
represents the latent features of items. Then we can use M̂ = IU × IB to generate the
prediction similarity matrix M̂. By reducing the difference between M and M̂, we can
obtain the latent representation matrices IU and IB, which can represent the latent features
of users and items better. To be specific, low-dimensional representations of users and
items can be obtained by solving the following optimization problem:

min
U,B

(M̂−M)2 + λ1‖IU‖2
F + λ2‖IB‖2

F, (1)

where λ1 and λ2 are dynamic parameters, which are used to control the influence of
Frobenius norm regularization to avoid overfitting. The goal of optimization is to make IU
and IB restore the similarity matrix M as complete as possible.

For L similarity matrices based on meta-paths, we can obtain L groups of feature
representations of users and items I(1)U , I(1)B , I(2)U , I(2)B . . . I(L)

U , I(L)
B by performing a matrix

decomposition operation.

4.3. Recommendation Model Based on Attention Mechanism

After obtaining L groups of representations of users and items, we also need
to fuse them to obtain more expressive representations of users and items. Thus,
at first, we designed a model including two attention networks to integrate these
representations. The local attention network was oriented to each user (item), which
was used to distinguish the importance of each user (item) representation corresponding
to different meta-paths. According to the weighted combination of attention coefficients,
the representations of users and items integrating L groups of meta-path information
can be obtained respectively. The global attention network is oriented to each meta-path,
which is capable of discriminating the importance of each user–item joint representation
corresponding to different meta-paths. Besides, the attention coefficients can be used to
select the meta-path that has the most influence on the final prediction results. By way
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of the global attention network, we can obtain the user–item joint representations
integrating L groups of meta-path information. Then, the representations obtained
from the two attention networks are concatenated as the input of next part. Finally,
we can utilize a multi-layer perceptron to generate the prediction ratings. The specific
recommendation model is shown in Figure 4, mainly including three parts, which will
be introduced separately below.

Figure 4. Recommendation model based on attention mechanism.

4.3.1. Local Attention Network

The goal of local attention network is to learn the representations of users and items,
which integrate L groups of representations corresponding to different meta-paths. The in-
put of local attention network is L groups of representations of user and item obtained by
matrix decomposition. Each group of representations contains user representation I(i)U and

item representation I(i)B . For L groups of user representations I(i)U (i = 1, . . . , L), we feed
them into the user-oriented attention neural network to obtain the attention coefficient αi

corresponding to I(i)U :

DNNui = Relu(W(n)
U × · · · × Relu(W(1)

U × I(i)U + B(1)
U ) + · · ·+ B(n)

U ), (2)

αi =
eDNNui

∑i∈L eDNNui
, (i = 1, . . . , L), (3)

where DNNu is a user-oriented attention neural network. To be specific, the input of
DNNu is user representations from different meta-paths, and its output is attention scores.
W(i)

U and B(i)
U are parameter matrix and bias term of the fully connected neural network

of layer i, and we use Relu as the activation function of each layer. Then, to compute the
attention coefficient αi, the So f tmax function is introduced to normalize L output values of
the neural network.

By adopting the same operation for item, the attention coefficient βi corresponding to
the item I(i)B (i = 1, . . . , L) from different meta-paths can be obtained as follows:

DNNbi = Relu(W(n)
B × · · · × Relu(W(1)

B × I(i)B + B(1)
B ) + · · ·+ B(n)

B ) (4)

βi =
eDNNbi

∑i∈L eDNNbi
, (i = 1, . . . , L). (5)



Entropy 2022, 24, 1718 9 of 19

Then, according to the obtained attention coefficients αi and βi, we can combine L
groups of representations of user (item) from different meta-paths to produce UL (BL).
The adopted combination method is to multiply the user (item) representation with the
corresponding attention coefficient αi(βi), and then directly concatenate the L groups of
αi × I(i)U (βi × I(i)B ):

UL = Concate(α1 × I(1)U , α2 × I(2)U . . . , αL × I(L)
U ) (6)

BL = Concate(β1 × I(1)B , β2 × I(2)B . . . , βL × I(L)
B ). (7)

The local attention network layer can generate user representation UL and item rep-
resentation BL, which contain different meta-path information and focus on the critical
meta-path information. The degree of reservation of meta-path information depends on
the value of attention coefficient, the larger the attention coefficient is, the more meta-path
information will be retained.

Finally, we can concatenate the user representation UL and item representation BL to
obtain the local user–item joint representation Plocal , which is a part of the input vector of
multi-layer perceptron in the interaction model, as shown below:

Plocal = Concate(UL, BL)

= (α1 × I(1)U α2 × I(2)U . . . αL × I(L)
U

β1 × I(1)B β2 × I(2)B . . . βL × I(L)
B ).

(8)

4.3.2. Global Attention Network

The global attention network focuses on distinguishing the contributions of user–
item joint representations corresponding to different meta-paths. Firstly, we concatenate
the representations I(i)U and I(i)B to obtain the user–item joint representation p(i)joint, where

p(i)joint = I(i)U I(i)B (i = 1, . . . , L). Then, we feed the L groups of p(i)joint into the path-oriented
neural network DNNp to compute the corresponding attention coefficient θi:

DNNpi = Relu(W(n)
P × · · · × Relu(W(1)

P × p(i)joint + B(1)
P ) + · · ·+ B(n)

P ) (9)

θi =
eDNNpi

∑i∈L eDNNpi
, (i = 1, . . . , L), (10)

where W(i)
P and B(i)

P are parameter matrix and bias terms of the fully connected neural
network of layer i, the input of DNNp is L groups of user–item joint representations pjoint,
the output is attention scores. Besides, Relu is used as the layer activation function in the
neural network. After that, to obtain the attention coefficients θ, we introduce the So f tmax
function to normalize the L output values of the neural network.

Finally, according to the obtained attention coefficients θ, we combine the user–item
joint representations pjoint from L groups of meta-paths to obtain the global user–item
joint representation Pglobal . Here, we propose to multiply the L groups of user–item joint
representations pjoint with the corresponding attention coefficients θ. Then, we concatenate

L groups of θi × p(i)joint to obtain Pglobal directly:

Pglobal = Concate(θ1 × p(1)joint, θ2 × p(2)joint . . . , θL × p(L)
joint). (11)

Based on the attention coefficients of global attention network, we can explain the rec-
ommendation results more sufficiently, that is, the meta-path with large attention coefficient
contributes more to the recommendation result.
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4.3.3. Interaction Model

After obtaining the local user–item joint representation Plocal by way of the local
attention network and the global user–item joint representation Pglobal by global attention
network, respectively, we need to integrate them together as the input of the subsequent
interaction model [43,44]. Here are two kinds of combination methods:

P1
total = γ1 × Plocal + γ2 × Pglobal (12)

P2
total = Concate(γ1 × Plocal , γ2 × Pglobal), (13)

where γ1 ∈ (0, 1) and γ2 ∈ (0, 1) are weighted parameters of Plocal and Pglobal . The first
method is to add the local user–item joint representation Plocal and the global user–item
joint representations Pglobal weighted by γ1 and γ2, and the second method is to use
concatenation instead of addition in the first method. Based on these two methods,
we design two variants of the model in the experiment section. Both add and con-
cat are common operations used to aggregate feature information in neural networks.
The concate operation overlays the dimensions of the feature vector. The information
contained in each dimension of the vector does not change, but the dimension of the
vector is doubled. The add operation adds the corresponding values of the feature
vectors. The dimensions of the vectors do not change, but the information contained
in each dimension is increased. Add enriches the representation information for each
feature, while concat increases the number of features. After obtaining the combined
user–item joint representation Ptotal , we need an interaction model to fuse the feature in-
formation of representation for generating the rating prediction. The traditional methods
mostly use Factorization Machine, which has the advantages of simple operation and
low calculation cost. But it can only fuse the first-order and second-order features. So it is
difficult to fuse the high-order features. Therefore, in this paper, multi-layer perceptron
is adopted as the interaction model, due to its powerful capability of automatically
combining high-order features. What is more, the input of multi-layer perceptron model
is combined with user–item joint representation Ptotal , the output is the prediction rating,
defined as follows:

ypred = Relu(W(n) × · · · (Relu(W(1) × Ptotal + B(1)) + · · ·B(n)). (14)

4.4. Model Optimization

The task of this paper is rating prediction based on explicit data. Here, the square loss
function is used as the optimization goal [17]:

Loss = (ypred − yreal)
2 + ε× ‖Para‖2, (15)

where ypred is the prediction rating obtained by the proposed framework, yreal is the real
rating of user on item, Para are the trainable parameters in the neural network. The first
term indicates the difference between ypred and yreal , and the second term is L2 norm
regularization, in which the coefficient ε is devised to control the regularization intensity to
prevent overfitting.

5. Experiments
5.1. Datasets

To verify the effectiveness of DANER, we performed experiments on two real datasets
with rich heterogeneous information. The first dataset was Amazon (https://nijianmo.
github.io/amazon/index.html#files accessed on 14 November 2022), which contains re-
views (ratings, text, votes), item data (item description, item type, price, brand and image
characteristics) and purchase relations from the Amazon e-commerce site. The second
dataset is Yelp (https://www.yelp.com/dataset accessed on 14 November 2022), which con-

https://nijianmo.github.io/amazon/index.html#files
https://nijianmo.github.io/amazon/index.html#files
https://www.yelp.com/dataset
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tains reviews, city information, item attributes, and user characteristics from the American
review site Yelp.

The detailed statistics of the datasets used in this paper are shown in Table 2. The Ama-
zon dataset contains 195,791 rating data for 6170 users and 2753 items, and the Yelp dataset
contains 19,397 rating data for 16,239 users and 14,284 items. The value of rating ranges
from 1 to 5. The higher the value of the rating is, the more attention the user pays to the item.
While the lower the rating is, the less interest the user has in the item. All relations used to
construct meta-paths have been extracted from the formatted strings in the two original
datasets. We use data density to measure data sparseness—the data density calculated
as follows:

Density =
num(ratings)

num(users)× num(items)
. (16)

Table 2. Statistics of Amazon and Yelp datasets.

Amazon Yelp

Entity Number Entity Number

User 6170 User 16,239

Item 2753 Business 14,284

View 3857 Compliment 11

Category 22 Category 511

Brand 334 City 47

Relation Number Relation Number

user–item 195,791 User-Business 198,397

Item-View 5694 User-User 158,590

Item-Categoty 5508 User-Compliment 76,875

Item-Brand 2753 Business-City 14,267

Business-Category 40,009

Density = 1.15% Density = 0.086%

5.2. Evaluation Metrics

In order to accurately evaluate the performances of DANER and baseline methods,
we adopted two widely used metrics—Mean Absolute Error (MAE) and Rooted Mean
Square Error (RMSE)—as the evaluation metrics of our experiment. MAE is the average of
absolute error between the prediction value and the real value, which can accurately reflect
the actual prediction error. RMSE is the square root of the ratio of the deviation between
the prediction value and the real value over the number of samples. RMSE indicates the
dispersion of data, which is commonly used as a standard metric for prediction tassk in the
machine learning model. MAE and RMSE are defined as follows:

MAE =
1
|Rtest| ∑

(i,j)∈Rtest

|R̂i,j − Ri,j|. (17)

RMSE =

√
∑(i,j)∈Rtest

(R̂i,j − Ri,j)
2

|Rtest|
, (18)

where Rtest is a test set of user–item interaction records, Rtest is the number of user–item
interaction records in Rtest, R̂i,j is the prediction rating obtained by DANER, and Ri,j is the
real rating of user on item. The smaller the values of MAE and RMSE are, the better the
recommendation performance is.
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5.3. Baselines

In order to verify the performance of the proposed framework, the following baseline
methods were chosen for comparison.

RegSVD [15]: RegSVD belongs to collaborative filtering method based on users,
of which the input is a single user–item rating matrix. It adds L2 norm regularization term
to constrain the representation vectors of users and items based on matrix decomposi-
tion method.

SVD++[19]: The SVD++ model adds a global average rating, user rating deviation,
item rating deviation and user history rating information into the optimization objective
function, which achieves a significant improvement on overcoming the problem that the
original SVD method does not explicitly consider the impact of a user’s historical behavior
on user rating prediction. At present, it has become one of the most typical methods in the
field of recommender systems.

NeuCF [45]: NeuCF creatively introduces deep learning into recommendation system
and overcomes the shortcomings of inner product operation by using deep neural network
as the interaction model between users and items. In addition, NeuCF combines linear
and non-linear interaction models to recommend items based on implicit data. In order to
apply NeuCF to the rating prediction task of explicit data, the pairwise loss function of the
model is replaced by the square error loss function on the basis of the original paper code.
Also, the activation function of the neural network is changed to the Relu function.

FMG [30]: FMG introduces heterogeneous information networks as auxiliary informa-
tion for a recommendation task. In particular, it uses meta-graph to mine the information
of heterogeneous networks and adopts matrix decomposition to obtain representations
of users and items. Besides, Factorization Machine with group lasso regularization is
employed to generate recommendation results. Because the difference of the values in
the generated similarity matrices is too large, we add a standardized operation before the
matrix decomposition to keep the similarity values in the range of 1 to 5.

5.4. Experimental Performance
5.4.1. Experimental Settings

In the experiments, we used Python and TensorFlow deep learning framework to im-
plement the proposed DANER model. In the comparison experiments of model variations
and baseline methods, to obtain the optimal experimental performance, the dimension of
representation vectors is fixed to 32 for all models. The learning rates and regularization
coefficients are tuned in 0.001, 0.005, 0.01, 0.05, 0.1 according to different models. Besides,
the drop out ratio is set to 0.5, and the batch size is set to 256.

The parameters of the model were initialized by the uniform distribution initializer.
We optimized the model with the Adaptive Moment Estimation optimizer [46]. We also
designed an early stopping mechanism to control the training time. When the evaluation
metrics or train data loss does not decrease for 20 successive epochs, the training process
can be terminated. In order to compare the performances of the models with different
training sets, we utilize (80%, 70%, 60%) of Amazon and Yelp datasets for training and the
remaining (20%, 30%, 40%) for testing.

5.4.2. Model Variations Comparison Experiments

There are many optional model variations in the modelling process. Therefore, a vari-
ety of model variations comparison experiments were designed to find out the best model
variation as the final model for the subsequent comparison experiments of baseline methods.
Furthermore, through the model variations comparison experiments, we can verify whether
the attention mechanism is helpful for improving the performance of recommendation,
and can even figure out how the attention mechanism finds the critical meta-path.

In the experiments, five variations of the model with different combination operations
on fusing the local and the global user–item joint representations are designed, including
the no-attention model (DANER-no), the local-attention model (DANER-local), the global-
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attention model (DANER-global), the adding-attention model (DANER-add) and the
concatenating-attention model (DANER-concate), respectively. The DANER-no does not
contain any attention mechanism, and the representations of users and items obtained
by matrix decomposition are fed into the interaction model directly. The DANER-local
only uses the local attention network after matrix decomposition to obtain the local user–
item joint representations as the input of the interaction model. Similar to DANER-local,
the DANER-global only uses global attention network between matrix decomposition
and interaction model. The DANER-add adopts adding operation when combining the
user–item joint representations Plocal and Pglobal . The DANER-concate adopts concatenating
operation instead of adding operation in DANER-add. The results of the model variations
comparison experiments are shown in Tables 3 and 4.

Table 3. Experimental results MAE of model variations comparison experiments. The best results are
highlighted in boldface.

Dataset/Ratio DANER-No DANER-Local DANER-Global DANER-Add DANER-Concate

Amazon/20% 0.819 0.691 0.69 0.687 0.672
Amazon/30% 0.823 0.697 0.696 0.693 0.689
Amazon/40% 0.849 0.70 0.701 0.698 0.695

Yelp/20% 0.837 0.793 0.792 0.799 0.784
Yelp/30% 0.858 0.795 0.805 0.85 0.795
Yelp/40% 0.86 0.799 0.809 0.809 0.798

Table 4. Experimental results RMSE of model variations comparison experiments. The best results
are highlighted in boldface.

Dataset/Ratio DANER-No DANER-Local DANER-Global DANER-Add DANER-Concate

Amazon/20% 1.066 0.941 0.937 0.935 0.934

Amazon/30% 1.071 0.947 0.945 0.945 0.944
Amazon/40% 1.075 0.949 0.948 0.95 0.946

Yelp/20% 1.065 1.017 1.015 1.016 1.009
Yelp/30% 1.073 1.024 1.03 1.025 1.019
Yelp/40% 1.08 1.029 1.031 1.028 1.022

According to the experimental results, it is apparent that the performance of DANER-
no is the worst over all the variations, which shows that the attention mechanism is helpful
to improve the recommendation results. There is no significant gap between the four kinds
of models with attention mechanism. However, the performances of DANER-add and
DANER-concate are better than those of DANER-local and DANER-global. This may be
due to the fact that the latter can mine more feature information of users and items. We
can also observe that the DANER-concate outperforms the DANER-add, which shows
that the DANER-concate is the best among the five variations. The reason may be that
concatenating operation can preserve the feature information of users and items more
effectively. Therefore, we use the DANER-concate as the final method of our proposed
framework and compare it with the baseline methods. After taking the whole experimental
results into account, we can come to the conclusion that the introduction of attention
mechanism does improve the accuracy of rating prediction, both of the RMSE and MAE
metrics decreasing by more than 5%.

5.4.3. Baseline Methods Comparison Experiments

In this section, we will compare our DANER-concate model with the baseline methods.
The results are shown in Tables 5 and 6.



Entropy 2022, 24, 1718 14 of 19

Table 5. Experimental results MAE of baseline methods comparison experiments. The best results
are highlighted in boldface.

Dataset/Ratio RegSVD SVD++ NeuCF FMG DANER

Amazon/20% 0.728 0.715 0.702 0.711 0.672
Amazon/30% 0.731 0.726 0.722 0.717 0.689
Amazon/40% 0.749 0.781 0.739 0.722 0.695
Yelp/20% 0.833 0.818 0.808 0.796 0.784
Yelp/30% 0.835 0.819 0.814 0.81 0.795
Yelp/40% 0.841 0.825 0.828 0.819 0.798

Table 6. Experimental results RMSE of baseline methods comparison experiments. The best results
are highlighted in boldface.

Dataset/Ratio RegSVD SVD++ NeuCF FMG DANER

Amazon/20% 0.957 0.949 0.954 0.947 0.934
Amazon/30% 0.961 0.954 0.957 0.949 0.944
Amazon/40% 0.986 0.966 0.963 0.954 0.946
Yelp/20% 1.066 1.051 1.027 1.025 1.008
Yelp/30% 1.068 1.054 1.032 1.032 1.019
Yelp/40% 1.075 1.060 1.037 1.034 1.022

By observing the experimental results on Amazon and Yelp datasets, it can be found
that the larger the proportion of training set is, the smaller the MAE and RMSE metrics
of the experiments are, which indicates that the prediction rating is more accurate. This is
because the performance of the recommendation task is greatly affected by the sparseness
of the rating matrix. As shown in Table 2, the density of the original datasets are very small,
and the rating matrices are very sparse. When the proportion of training data increases,
the rating matrix of the training set becomes denser. So more rating information can be
obtained, which leads to a better performance.

As we can see in Tables 5 and 6, RegSVD and SVD++ have the worst performance
under six experimental conditions of two datasets. They are traditional machine
learning methods, which neither use neural networks nor contain auxiliary information
of heterogeneous information networks. In addition, SVD++ performs better compared
to RegSVD, which may be credited with the fact that SVD++ contains more user history
information. In most of the experimental results, NeuCF obviously outperforms the
former two methods, except the RMSE metric on the Amazon dataset. It is a deep
learning model, which uses neural network as the interaction model to overcome
the shortcomings of the previous inner product operation. But because the model is
designed for the top-N recommendation task of implicit data, it may not be able to
play its effect on the rating prediction task of explicit data completely. FMG yields
better performance than the previous three methods (RegSVD, SVD++ and NeuCF)
which only use the rating information of users and items. Moreover, FMG utilizes meta-
graph to extract the information of heterogeneous information networks as auxiliary
information, which can help to solve the problem of sparse original rating matrix to a
certain extent and get better recommendation performance. In general, the proposed
framework DANER surpasses the baseline methods consistently over all conditions
in the experiments. The improvement of MAE metric is more remarkable than that of
RMSE metric. Specifically, MAE metric of DANER increases by 3.7–4.3% on Amazon
dataset and 1.5–2.6% on Yelp dataset. RMSE metric of DANER increases by 0.4–0.8%
on Amazon dataset and 1.2–1.7% on Yelp dataset. The reasons for the progress of our
framework are as follows: (i). we introduce heterogeneous information networks as
auxiliary information to alleviate the data sparseness problem of single rating matrix;
(ii). we utilized an attention mechanism to make the generated representations more
abundant and effective.
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5.4.4. Parameter Comparison Experiments

In this section, we designed a series of comparison experiments to study the influ-
ence of K on the experimental results, where K is the dimension of representation vector
in matrix decomposition. The value of the dimension K affects the amount of information
contained in the representation vector. To be specific, the larger the K value is, the better
the expressive power of the representation vector is. However, larger K value will lead
to more space consumption and increase the calculation cost of matrix decomposition
at the same time. Therefore, in order to get the appropriate K value which can balance
the performance of the model and the computational cost, we conducted parameter
comparison experiments on Amazon and Yelp datasets, where the K value waas set to
8, 16, 32 and 64 respectively. The results of the parameter comparison experiments are
shown in Figures 5 and 6.

Figure 5. The performances of the DANER model with different K on Amazon dataset.

Figure 6. The performances of the DANER model with different K on Yelp dataset.

In Figures 5 and 6, we can observe that the experimental performance becomes better
with the increase of the K value. However, when the K value reaches 32, the improvement
speed of experimental performance tends to be slow, while the growth speed of the compu-
tational cost is more intense. Therefore, considering both the experimental performances
and the computational cost of the model, we plan to set the K value to 32. At the same time,
we can also observe that the MAE and RMSE values for the Amazon dataset are better than
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for the Yelp dataset. This can be attributed to the fact that the Yelp dataset is more sparse
than the Amazon dataset.

5.4.5. Interpretability of Recommendation Results

The interpretative recommendation results are more reasonable, more persuasive,
and more capable of gaining the trust of users. In the process of the experiment, we can
obtain the attention coefficients of the global attention network, which provide a basis
for further studying the attention mechanism and distinguishing the critical meta-path.
Moreover, we can provide an explanation based on the critical meta-path for recommenda-
tion results. Specifically, we randomly selected seven groups of user rating records and
visualized their global attention coefficients, which are shown in Figures 7 and 8.

Figure 7. Attention coefficients corresponding to the seven meta-paths of seven records.

Figure 8. Attention coefficients corresponding to the seven meta-paths in record 5.

The abscissas in Figure 7 are seven predefined meta-paths, which are named A, B, C,
D, E, F and G respectively. The ordinates are seven pairs of user and item rating records
selected randomly. Each block in the figure corresponds to the attention coefficient of the
corresponding meta-path in the record, and its numerical value corresponds to the color
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depth. Figure 8 shows more detailed information about record 5, including the user ID,
item ID, meta-path type, and the size of the attention coefficient.

As shown in Figure 8, for the record 5, the user ID is 2840, the item ID is 8480, and the
predicted rating of the user for the item is 5, which indicates that user 2840 has a strong
desire to buy item 8480. At the same time, the meta-path with the maximum attention
coefficient in this record is C (U → B → Cate ← B). Therefore, we can provide an
explanation based on the meta-path U → B → Cate ← B, that is, the reason why we
recommend item 8480 to user 2840 is that the user 2840 has purchased items with the same
category as item 8480.

Based on this situation, several explanations can be specified in advance according
to the meta-path. For each result of the recommendation, the explanation corresponding
to the meta-path with the largest attention coefficient will be selected as the reason
for recommendation.

6. Conclusions

In this paper, we proposed a rating prediction framework based on heterogeneous
information networks and attention mechanisms. We exploited meta-paths to mine the
high-level relationship between users and items in heterogeneous information networks.
Then, we adopted a matrix decomposition to generate the latent representations of users
and items. After that, we designed local and global attention neural networks to obtain
the user–item joint representations integrating multiple meta-path information. By the
interaction model, we can obtain the predicted ratings of users on items. The results of
several experiments demonstrate that the DANER model is superior to most existing
rating prediction models on achieving higher recommendation accuracy. Moreover, we
visualized the attention coefficients to explain the recommendation results, which are
more trustworthy.
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