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Abstract: This note is devoted to the problem of signaling (marginal inconsistency) in the Bell-type
experiments with physical and cognitive systems. It seems that in quantum physics, this problem is
still not taken seriously. Only recently have experimenters started to check the signaling hypothesis
for their data. For cognitive systems, signaling was statistically significant in all experiments (typically
for decision making) performed up to today. Here, one cannot simply ignore this problem. Since
signaling contradicts the quantum theory of measurement for compatible observables, its statisti-
cal significance in experiments with humans can be considered as an objection for quantum-like
modeling—applications of quantum theory to cognition, decision making, psychology, economics
and finance, social and political science. In this paper, we point to two possible sources of signaling
generation that are consistent with quantum measurement theory. Thus, the signaling objection
for quantum-like modeling is not catastrophic. One of these sources is the direct physical signal-
ing about selection of experimental settings, questions or tasks in quantum-like studies. Another
possible source is a state modification dependent on experimental settings. The latter was a rather
common source of signaling in quantum physics. Since the physical size of the brain is very small
comparing with the light velocity, it seems to be impossible to prevent the direct physical signaling
(with electromagnetic waves) between the brain’s areas processing two questions a and b. However,
if, for these questions, not the electromagnetic waves, but electrochemical communication plays
the crucial role, the experimenter may hope to make signaling weaker by answering the questions
faster. The problem of question-dependent mental state modification seems to be solvable via smarter
experimental design. This paper can be useful both for physicists interested in quantum foundations
and for researchers working in quantum-like studies, e.g., applying the quantum theory to model
decision making or psychological effects. This paper is solely about quantum theory. Thus, we do not
consider general contextual probabilistic models.

Keywords: Bell inequality; signaling; marginal inconsistency; nonlocality; contextuality; incompatibility;
quantum-like modeling; decision making; cognition; quantum measurement theory; Born rule; subjective
probability; QBism

1. Introduction

The Bell inequalities [1–4] are the basic tools to compare the probabilistic structures of
classical and quantum physics, both theoretically and experimentally. It is impossible to
create a representative sample from the colossal ensemble of publications in this area. The
author points only to publications that he has read or himself contributed to their writing
(see [5–57]). See Section 6 for the discussion on the interpretations for the violation of the
Bell inequalities.

The aim of this paper is to discuss the problem of signaling (marginal inconsistency),
which is often ignored in theoretical and experimental research on the Bell inequalities.
(See Section 2 for the mathematical definitions.) Moreover, we plan to concentrate on
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quantum observables and quantum formalism, i.e., we are not interested in studies based
on generalized probabilistic theories. Our final aim is to consider the problem of signaling
in quantum-like modeling (see below).

Consider observables a, b, c. The marginal inconsistency for an observable a is the
inconsistency of the probability distributions for pairs of observables (a, b) and (a, c).
Their marginal probability distributions with regard to b and c are not equal. Typically, a
physicist imagines that this mismatching of marginals is a consequence of the presence of
real physical signaling between the measurement apparatuses for a and b. This is the origin
of the rather ambiguous term “signaling”, which is commonly used in physics.

In this paper, the notion of observable is used in three senses:

• (a) An “experimental observable”; in physics, it is based on some measurement
apparatus, in quantum-like applications, it is a question, task, or a problem for deci-
sion making;

• (b) A random variable representing an “experimental observable” in the classical
(Kolmogorov) probability model;

• (c) A Hermitian operator (or more generally POVM) representing an “experimental
observable” in the quantum probability model.

In the (a)-case, probability is the “experimental probability”, i.e., the frequency of
the registration of the concrete outcome of measurements; in the (b)-case, probability is
defined as a probability measure; in the (c)-case it is given by the Born rule. The experi-
mental probabilities can be considered as the approximations of classical and quantum
probabilities. For groups of compatible “experimental observables”, i.e., jointly measurable,
classical and quantum probabilistic descriptions are equivalent. Therefore, we would
not specify what kind of probability is considered. We hope that this framework would
not disturb the reader too much. Otherwise, we should use say the symbols a, ξa, â for
physical observable, the corresponding random variable and Hermitian operator as well as
the symbols Pexp, Pclass, Pquant for experimental probability-frequency, the corresponding
classical probability measure and quantum probability given by Born’s rule.

As was emphasized in the review [58], signaling patters can be found in practically
all statistical datasets collected in the Bell experiments. This is natural. Signaling can be
generated by noise and some technicalities in experimental setting. However, signaling for
joint measurements is forbidden by quantum theory (see Section 3.1). We are sure that by
making experiments cleaner, experimenters can make the signaling degree essentially lower.
So, even statistically significant signaling in data as, for example, in experiments [12–15,19]
is not considered as a sign that the laws of quantum mechanics are violated. In the loophole
free experiments [20,21] signaling is statistically insignificant. At the same type, the first
experiment claiming that all basic loopholes were closed [19] suffered from statistically
significant signaling [22].

It should be pointed out that initially the problem of signaling in the Bell experiments
was practically ignored. The interest to this topic was stimulated by the works of Adenier
and author [22,59–62]. The important role was played by involvement of Weihs into debate
on signaling in experimental data sets. First, he sent to us the rough (click by click) data
from his experiment, which closed the locality loophole [13] (see also [14]). Then, he
then openly recognized the presence of signaling and proposed some explanation of its
generation [63]. This explanation will be discussed in the present paper and coupled to
quantum-like modeling (Section 3.3).

Recently, the methodology and the formalism of quantum theory started to be widely
used outside of physics, in cognition, psychology, decision making, economics and finance,
AI, social and political science (see the monographs [64–72] and the recent reviews [73,74]).
This area of science is known as quantum-like modeling. In particular, following to quantum
theory researchers explored the Bell tests, which were interpreted as the tests of non-
classicality and contextuality [75–83].

Since all interpretational problems of quantum physics are automatically projected on
quantum-like theory, the violation of the Bell inequalities for experiments with humans
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is also characterized by the diversity of interpretations (Section 6). The author advertizes
the incompatibility interpretation [46–53] (see also [83]). The latter means that generally
outcomes of mental observables, say questions asked to people, cannot be treated as
predetermined. They are created in the process of, e.g., answering to questions. The mental
observables are not (self-)measurements of the objective properties of the brain, which is
understood as an information processor. Hence, the Bohr complementarity principle is also
the fundamental principle of quantum-like modeling. We remark that Bohr emphasized
that the domain of applicability of this principle is not restricted to physics, but it also
includes biology [84]. We also recall that Bohr borrowed the complementarity principle
from psychology—from James [85] (see also [72] for a discussion). Thus, we can say that
exploring of the complementarity principle in cognitive studies, decision making, and
psychology is its comeback powered by the mathematical formalism of quantum theory.

Surprisingly, all experimental statistical data collected in quantum-like studies demon-
strated statistically significant signaling (this was pointed out in [78]). In principle, one
could guess that signaling in such data is not irreducible and its disappearance is only the
matter of more careful experimenting. The data presented in article [79] may support such
expectation on elimination of signaling from data in experiments with humans. However,
the samples collected in this article were relatively small, and the absence of signaling for
some experimental contexts might be a consequence of insufficiency of the sample size.

Generally, the degree of the belief in applicability of quantum theory in aforementioned
areas of research is essentially lower than in physics. (We remark that even in physics,
the applicability of quantum theory is only the matter of belief based on its successful use
up to today. In contrast to, e.g., relativity theory, quantum theory is not based on some
heuristically clear principles, as say constancy of the light velocity. See, e.g., Zeilinger’s
paper [86] for the corresponding discussion.) One may speculate that strong signaling in data
collected in decision making experiments with humans is a sign of inapplicability of quantum theory.

We remark that another objection to quantum-like modeling was presented in article [87]
by proving that some combinations of psychological effects cannot be described by the von
Neumann measurement theory. The latter is based on the projection type state update. This
problem was resolved by considering more general quantum observables within theory of
quantum instruments [88,89].

The doubts in applicability of quantum theory to mental phenomena were strengthen
by article [82]. In the experiments presented in this paper the CHSH -correlations essentially
exceeded the Tsirelson bound. If it would be possible to eliminate signaling completely, the
CHSH-correlations would approach the value four.

In this note, we show that such a situation does not contradict quantum theory: both
signaling and overcoming of the the Tsirelson bound can be described by the quantum
formalism. Thus, one can continue to use quantum-like models, e.g., in decision making.
We point to two possible sources of signaling compatible with quantum theory.

One of them is going back to Weihs’ paper [63], where he related the appearance of
the signaling pattern in his statistical data with state variability. In fact, the latter also led to
signaling in another breakthrough experiment [15] in which the detection loophole was
closed (see Section 3.3). It seems that such a source of signaling can be eliminated even
in the decision making experiments. So, this paper can stimulate researchers who plan to
test the Bell inequalities with experiments with humans. They can try to find the ways to
exclude the sources of the mental state variablity.

Another source is the direct signaling in the form of communication on experimental
settings—in cognitive studies, these are questions asked to a person. This may be physical
signaling, e.g., via electromagnetic waves. They propagate between the areas of the brain
processing two questions, a and b, which were asked to a person. Since the brain size is
very small compared to the light velocity, such signaling cannot be eliminated (so it seems
that cognitive experiments similar to Weih’s experiment [14,63] are impossible). For readers
who are far from quantum-like modeling, say physicists, or biologists, or sociologists, the
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scheme of quantum-like formalization of the process of decision making is presented in
Section 8.

2. Signaling—Marginal Inconsistency

Consider observables a, b, c of any sort. Suppose that the joint pairwise measurements
of (a, b) and (a, c) are possible, i.e., the joint probability distributions P(a = α, b = β) and
P(a = α, c = γ) are well defined. For simplicity, we suppose that the ranges of values of
these observables are discrete sets, Xa = (αj), Xb = (β j), Xc = (γj). It is natural to assume
that the probability distributions for measurements of each of these observables are well
defined: P(a = α), P(b = β), P(c = γ).

If these observables can be described by classical probability theory, then the condition
of marginal consistency holds, e.g.,

P(a = α) = ∑
β∈Xb

P(a = α, b = β), P(a = α) = ∑
γ

P(a = α, c = γ), (1)

and, hence,
∑

β∈Xb

P(a = α, b = β) = ∑
γ∈Xc

P(a = α, c = γ), (2)

the latter is called the condition of no-signaling: selection of a co-measurable observable
does not change the probability distribution for a measured alone. The same conditions
can be considered for other observables.

If observables are not described by classical probability theory, then in principle
condition (2) can be violated, this is the situation of marginal inconsistency. In physical
literature, this situation is known as signaling. May be the latter terminology is ambiguous,
but it is commonly used in physical papers.

3. Sources of Signaling Compatible with Quantum Formalism

As is predicted by quantum theory, in the joint measurements of compatible quantum
observables marginals (giving the probabilities of the outcomes for each observable) are
consistent with JPDs obtained in the pairwise measurements. This simple fact can be easily
proven. We repeat once again that we are interested in applicability of quantum theory, in
applicability of the complex Hilbert space formalism. So, we do not discuss generalized
probabilistic theories.

3.1. Marginal Consistency (No Signaling) for Compatible Quantum Observables

Consider a state given by density operator ρ and three quantum observables a, b, c repre-
sented by the Hermitian operators A, B, C (acting in a complex Hilbert spaceH). For simplicity,
we assume that these operators have the purely discrete spectra Xa = (αj), Xb = (β j), Xc =

(γj). Denote their spectral spectral families of projectors by Ea(x), Eb(x), Ec(x), i.e.,

A = ∑
α∈Xa

αEa(α), B = ∑
β∈Xb

βEb(β), C = ∑
γ∈Xc

γEc(γ).

It is assumed that in each pair (a, b) and (a, c) the observables are compatible, mathemati-
cally this means that

[A, B] = 0, [A, C] = 0.

Generally observables b and c can be incompatible, in such a case [B, C] 6= 0.
Consider a quantum state given by density operator ρ. By the Born rule, the probabili-

ties for measurements of observables and the joint measurements for pairs (a, b) and (b, c)
can be represented as follows:

P(a = α|ρ) = TrρEa(α), (3)

P(b = β|ρ) = TrρEb(β), (4)
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P(c = γ|ρ) = TrρEc(γ), (5)

and
P(a = α, b = β|ρ) = TrρEa(α)Eb(β), (6)

P(a = α, c = γ|ρ) = TrρEa(α)Ec(γ). (7)

Hence
∑

β∈Xb

P(a = α, b = β|ρ) = TrρEa(α) ∑
fi∈Xb

Eb(β) = TrρEa(α) (8)

and
∑

γ∈Xc

P(a = α, c = γ|ρ) = TrρEa(α) ∑
fl∈Xc

Ec(γ) = .TrρEa(α). (9)

3.2. Signaling on Selection of Experimental Settings

Consider the scheme of the Bell experiment: a source generating the pairs of systems
S = (S1, S2) and two measurement devices, in Alice’s and Bob’s labs, with dichotomous
“yes-no” outputs. Denote settings of measurement devices as θ and φ, respectively. In
quantum optics, these are angles of orientations of polarization beam splitters. However,
we consider more general situation with an attitude to clarify signaling in experiments
with cognitive systems in the process of decision making.

Suppose now that the quantum observables representing measurements on S1 and S2
depend on both orientations,

a = a(θ, φ), b = b(θ, φ). (10)

They are represented by operators

A = A(θ, φ), B = B(θ, φ). (11)

Thus, selection of setting φ for PBS in Bob’s lab changes the observable (measurement
procedure) in Alice’s lab and vice versa.

Such nonlocal dependence can be generated by signaling between Bob’s lab and
Alice’s lab carrying information about experimental setting selections.

This situation can also be referred to as the absence of free will of experimenters with
regard to selection of experimental settings. However, we would not follow this line of
thought, which is so natural for the philosophy of superdeterminism.

We are mainly interested in quantum-like applications where the parameters θ and φ
have the meaning of the questions, which are jointly asked to some person participating,
e.g., in a social opinion pool. In this framework, both “labs” are located in the same
brain, and Alice-lab and Bob-lab can be in principle associated with different brain’s areas.
However, communication between these areas includes the the electromagnetic waves
signaling. Therefore, both brain’s areas are connected at the information level and by
answering the θ-question, one takes into account the φ-question and vice versa.

In such a situation,

P(a(θ, φ) = α, b(θ, φ) = β) = TrρEa(θ,φ)(α)Eb(θ,φ)(β) (12)

and hence

∑
β

P(a(θ, φ) = α, b(θ, φ) = β|ρ) = TrρEa(θ,φ)(α)∑
β

Eb(θ,φ)(β) (13)

= TrρEa(θ,φ)(α),

∑
β

P(a(θ, φ) = α, b(θ, φ′) = β|ρ) = TrρEa(θ,φ′)(α)∑
β

Ea(θ,φ′)(β) (14)
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= TrρEa(θ,φ′)(α).

Generally,
TrρEa(θ,φ)(α) 6= TrρEa(θ,φ′)(α). (15)

or, in the probabilistic terms,

P(a(θ, φ) = α|ρ) 6= P(a(θ, φ′) = α|ρ). (16)

This mutual dependence may also lead to violation of the Bell inequalities. Moreover,
the Tsirelson bound can be violated.

We remark that decomposition of S into subsystems S1 and S2 and association of
observables a and b with these subsystems did not play any role in quantum calculations.
Such decomposition and coupling it with spatial locality is important only in the physics as
the sufficient condition to prevent signaling on selection of experimental settings.

In cognitive experiments, observables are typically questions asked to a system S
(e.g., a human). As we have seen, the dependence of questions a and b on the same set of
parameters can generate signaling. This dependence is not surprising. Even if questions a
and b are processed by different regions of the brain, the physical signaling between these
regions cannot be neglected. If θ and φ are the contents of the a- and b-questions, then after
a few milliseconds, the area of the brain processing a = a(θ) would get to “know” about
the content of the b-question, and thus a-processing would depend on both parameters:
a = a(θ, φ). We remark that an essential part of information processing in the brain is
performed via an electromagnetic field; such signals propagate with the light velocity, and
the brain is very small as a physical body.

On the other hand, some kind of mental localization must be taken into account;
mental functions performing different tasks use their own information resources (may
be partially overlapping). Without such mental localization, the brain would not be able
to discriminate different mental tasks and their outputs. At least for some mental tasks
(e.g., questions), dependence of a on the parameter φ (see (10)) can be weak. For such
observables, signaling can be minimized. (The real situation is more complex; not only the
brain, but the whole nervous system is involved in mental processing.)

3.3. Signaling from State Dependence on Experimental Settings

Let us turn to quantum physics. Here, “signaling” often has the form of real physical
signaling and it can reflect the real experimental situation. We now discuss the first Bell-
experiment in which the detection loophole was closed [15]. It was performed in Vienna by
Zelinger’s group, and it was characterized by statistically significant signaling. By being in
Vienna directly after this experiment, the author of this paper spoke with people who did it.

They told the following story about the origin of signaling—marginal inconsistency.
The photon source was based on the laser generating emission of the pairs of entangled
photons from the crystal. It happened (and it was recognized only afterwards) that the
polarization beam splitters (PBSs) reflected some photons backward, and by approaching
the laser, they changed its functioning and backward flow of photons depended on the
orientations of PBSs. In this situation, “signaling” was not from b-PBS to a-PBS, but both
PBSs sent signals to the source. Selection of the concrete pair of PBSs changed functioning
of the source; in the quantum terms, this means modification of the state preparation
procedure. In this case, selection of a pair of orientations leads to the generation of a
quantum state depending on this pair, ρab. This state modification contributed to the
signaling pattern in the data.

The above physical experimental illustration pointed to the state’s dependence on the
experimental context as a possible source of signaling. It is clear that, for ρ = ρa,b, generally

TrρabEa(x) 6= TrρacEa(x). (17)
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This dependence also may lead to violation of the Bell inequalities. Moreover, the Tsirelson
bound can be violated.

We remark that it seems that the state variability depending on experimental settings
was the source of signaling in Weihs’ experiment [13], which closed the nonlocality loophole.
At least in this way, we interpreted his reply [63] to our (me and Guillaume Adenier)
paper [60]. Since Weihs [13] was able to separate two “labs” to a long distance, the signals
from one lab could not approach another during the process of measurement.

In quantum physics, experimenters were able to block all possible sources of the state’s
dependence on the experimental settings. Thus, it is claimed that one can be sure that ρ
does not depend on a and b. By using the orientations of PBSs θ, φ, i.e., ρ = ρ(θ, φ), the
latter condition can be written as

∂ρ(θ, φ)

∂θ
= 0,

∂ρ(θ, φ)

∂φ
= 0. (18)

The stability of state preparation is the delicate issue. As we have seen, the source
by itself can be stable and generate approximately the same state ρ, but the presence of
measurement devices can modify its functioning. Moreover, even if any feedback to the
source from measuring devices is excluded, the laser’s functioning can be disturbed by
fluctuations. Typically, violation of state stability cannot be observed directly and the
appearance of a signaling pattern can be considered as a sign on the state’s variation.
In physics, the signaling can be rigidly associated with fluctuations in state preparation.
Spatial separation leads to local parameter dependence of observables, i.e., a = a(θ) and
b = b(φ).

4. Projection Valued Measures

We considered the model in which quantum observable a is represented by Hermitian
operator A. For the purely discrete spectrum, its spectral decomposition has the form:

A = ∑
x∈Xa

x Ea(x), (19)

where Ea(x) is the orthogonal projector onto the subspace of H corresponding to the
eigenvalue x, i.e.,HA

x = Ea(x)H. We recall that the spectral family of orthogonal projectors
satisfies the normalization condition

∑
x

Ea(x) = I. (20)

where I is the unit operator, and the mutual orthogonality condition

Ea(x) ⊥ Ea(y), x 6= y. (21)

Probability for the outcome x is given by the Born rule P(a = x|ρ) = TrρEa(x).
In physics, the values of observables are real numbers, the eigenvalues of Hermitian

operators. We point out that the right hand side of the Born rule contains only orthogonal
projectors and the association of them with real numbers is not crucial, x is just an index
labeling projectors. This label can belong to any set Xa and then the probability distribution
given by the Born rule is defined on the set Xa. For example, X can be the set of all possible
words in the Russian or Chinese language, or the set of possible conscious experiences,
decisions, questions, and emotions. This possibility to operate with an arbitrary set of
symbols Xa is very important for applications outside of physics. For simplicity, we consider
a finite set of outcomes:

Xa = {x1, ..., xm}. (22)

Now, let us represent an observable a (physical or mental) with the range of values Xa
by the family of orthogonal projectors, E = (Ea(x))x∈Xa satisfying two constraints (20), (21).



Entropy 2022, 24, 1592 8 of 18

They guarantee that, for any state ρ, the quantity determined by the Born rule can be
interpreted as probability, i.e., it is normalized by one

∑
x∈Xa

P(a = x|ρ) = 1. (23)

Such a family of projectors (Ea(x))x∈X determines a projector-valued measure (PVM),

µa(G) = ∑
x∈G

Ea(x), (24)

where G is a subset of Xa.
We can use PVMs for mathematical representation of observables. This is a very natural

generalization of operator-representation. It is clear that considerations of Section 3.1
are still valid for observables given by PVMs µa, µb, µc. Observables (a, b) and (a, c) are
compatible if the corresponding PVMs commute.

5. Generalized Observables: Positive Operator Valued Measures

Generalized quantum observables are given by POVMs. We restrict considerations to
POVMs with a discrete domain of definition X = {x1, ..., xm}. POVM is a map x → Π(x).

Here, for each x ∈ X, Π(x) is a positive contractive self-adjoint operator (i.e., 0 ≤
Π(x) ≤ I) (called an effect), and the normalization condition

∑
x

Π(x) = I (25)

holds, where I is the unit operator. This map defines an operator valued measure on
algebra F of all subsets of set X. For O ⊂ X,

Π(O) = ∑
x∈O

Π(x).

The condition (25) is the operator-measure counterpart of the condition normalization by 1
for usual probability measures.

We stress that the PVMs form a special class of POVM.
POVM Π represents statistics of measurements for an observable a with the following

generalization of the Born rule:

P(a = x|ρ) = Tr[ρΠ(x)].

We remark that equality (25) implies that ∑x P(a = x|ρ) = 1.
POVMs are generalized quantum observables. This is the natural extension of the class

the von Neumann observables given by PVMs.
Consider now two generalized observables a and b given by POVMs Πa(x), x ∈ Xa, and

Πb(y), y ∈ Xb. If the observables are compatible, then there exists POVM Πa,b(x, y), (x, y) ∈
Xb × Xa, such that

Πa(x) = ∑
y∈Xb

Πa,b(x, y), Πb(y) = ∑
x∈Xa

Πa,b(x, y). (26)

In fact, these equalities may be treated as the operator version of the marginal consistency
condition (1).

Now, if the observables in each pair (a, b) and (a, c) are compatible, then there ex-
ist two POVMs Πa,b(x, y), (x, y) ∈ Xb × Xa, and Πa,c(x, z), (x, z) ∈ Xa × Xc, and (26) is
completed by

Πa(x) = ∑
z∈Xc

Πa,c(x, z), Πc(y) = ∑
x∈Xa

Πa,c(x, z). (27)
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Born’s rule for generalized compatible observables has the form:

P(a = x, b = y|ρ) = Tr[ρΠa,b(x, y)],

P(a = x, c = z|ρ) = Tr[ρΠa,c(x, z)].

Hence,
∑

y∈Xb

P(a = x, b = y|ρ) = Tr[ρ ∑
y∈Xb

Πa,b(x, y)] = Tr[ρΠa(x)],

∑
z∈Xc

P(a = x, c = z|ρ) = Tr[ρ ∑
z∈Xc

Πa,b(x, y)] = Tr[ρΠa(x)],

and thus
∑

y∈Xb

P(a = x, b = y|ρ) = ∑
z∈Xc

P(a = x, c = z|ρ) = P(a = x|ρ).

Even generalized quantum observables satisfy the condition of marginal consistency.

6. Interpretations for the Violation of the Bell Inequalities

Although mathematically the Bell project is well justified, interpretations of the violation
of the Bell inequalities are characterized by diversity and the intensive debates still continue.
We are not able to mention all possible viewpoints. And this paper is not directed to such
foundational issues. We mention just the nonlocal interpretation [1–4,9] (and one must differ
Einsteinian and Bell nonlocalities [90–93]), the contextual interpretation [2,8,11,94–114], and the
observables incompatibility interpretation [46–53,115,116].

We can also mention the “probabilistic opposition”; the members of this group claim that
quantum nonlocality is apparent. It is a consequence of the misuse of probability theory. The
probabilistic argumentation is diverse, as examples see, e.g., [23–27,29–38,42,54–57,91,93].
In fact, the probabilistic opposition, at least the majority of its members point out to the
dependence of probabilities on the selection of experimental contexts. It is interesting that
this dependence can be modeled even within the classical probability theory by treating the
quantum probabilities as classical conditional probabilities [54–57] (see also Koopman [117]
and Ballentine [118–121]).

From the purely mathematical side, the probability opposition is supported by the
works of Boole [122,123] who considered the problem of the existence of the joint probabil-
ity distribution for data collected in a few experiments. Later, Vorob’ev [124] resolved this
problem in the most general setting and derived all possible inequalities, which nowadays
are known as the Bell inequalities. Unfortunately, the works of Vorob’jev were ignored by
the probability community, which was rigidly structured within the classical probability
theory based on the Kolmogorov axiomatics (1933) [125]. Quantum physics played the
crucial stimulating role in destruction of this classical probabilistic monolith, and Bell’s con-
tribution has to be highly estimated, in spite of his addiction to the nonlocal interpretation.
By proving his famous theorem [10], Fine turned the studies on the violation of the Bell
inequalities to the Boole–Vorobj’ev pathway. We should also remember the contribution
of Pitowsky, who “rediscovered” Boole’s works [126,127]. The works of Vorobj’ev were
“rediscovered” by Philipp [128], who advertised them during the Växjö conference series
on quantum foundations.

This is a good place to remark that experimenters typically use the nonlocal interpre-
tation and interpret the nonlocality as Einsteinian nonlocality—the existence of spooky
action at a distance. This is the output of my conversations with top experimenters dealing
with the Bell inequalities. The exception from this rule are experimenters dealing with
contextuality tests [17,18]. We also remark that Bell by himself pointed to the contextual
interpretation in one of the first papers [2], see also Gudder [6,7] (and Shimony [8]). At the
beginning, the term contextuality was not in use. It was invented in the paper of Beltrametti
and Cassinelli [129].
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Over many years, the author was one of the active members of the probabilistic
opposition. He wrote numerous works explaining the violation of the Bell inequalities
by contextuality of probabilities (see, e.g., monographs [130–132]. However, recently, the
author became more concentrated on finding the quantum mechanical (QM) explanation of
the origin of contextuality and, as was shown in articles [46–53] (see also Jaeger [115,116]),
the seed of contextuality is in the existence of incompatible observables. From this viewpoint,
the violation of the Bell inequalities can be explained by the Bohr complementarity principle—
one of the fundamental principles of QM.

7. Concluding Remarks

We hope that this paper will stimulate interest for the problem of signaling (marginal
inconsistency) in data collected in the Bell-type experiments. This paper can be useful both
for quantum and quantum-like studies. In quantum physics, the signaling problem is still
not highlighted so much. Experimental studies often miss checking whether signaling
in data is statistically insignificant or not. In quantum-like studies, the signaling prob-
lem cannot be ignored, and the problem of the explanation of signaling within quantum
theory arose.

The straightforward application of the quantum formalism for joint measurements of
compatible observables (in fact, the Born rule) implies no signaling. Hence, applicability
of this formalism to the mathematical description of the results of the Bell-type tests with
humans can be questioned.

We remark that signaling can be easily modeled within generalized probability
theories (such as the Växjö contextual probability model [130–132] or Contextuality by
Default [110–114]). However, we are interested not in the general problem of mathemat-
ical modeling of, say, cognition and decision making, but in the possibility to use the
formalism of quantum theory: representation of mental states by density operators and
questions (tasks) by Hermitian operators and the use of the Born rule for calculation of out-
comes’ probabilities. Therefore, we searched for possibilities to describe signaling within
quantum theory.

It was shown that, in principle, it is possible. We also discussed whether such signaling
can be eliminated in experiments with humans. Maybe this paper would be of some use
for researchers planning new Bell-type experiments with humans.

For physicists, we remark that it seems that in experiments on quantum contextuality,
i.e., measurement of compatible observables on a single system, say a neutron, the signaling
hypothesis has never been checked. We cannot exclude that statistical datasets from such
experiments contain statistically significant signaling patters. If signaling would be found
in such data, it might help to understand signaling in decision making experiments with
humans. Such experiments testing contextuality in quantum and quantum-like studies are
similar in the sense that these are single system experiments, one neutron (or atom) and
one human.

And finally we remark that the foundational studies in quantum physics suffer from
the impossibility to work with rough (click-by-click) data from the Bell-type (and other
foundationally important) experiments. It would be natural to put such data on the web-
page created for each experiment or create a single database for at least most experiments.
The author and Adenier were able to receive data only from three experiments [12,13,19].
All these data-sets demonstrated statistically significant signaling. The author even wrote
a kind of pamphlet “Unuploaded experiments have no result” [133]. The discussion on
the necessity of such a database has been going during the last ten years, but without any
result. It also often happened that data appeared after an experiment, but then after a few
months it disappeared from the Internet.

8. Appendix: Quantum-like Modeling of Decision Making

Here, we briefly present the general quantum-like scheme for decision making (see,
e.g., [64–74] for details and variations).
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8.1. Quantum-like Representation of Belief (Mental) State

The belief (mental) state of a decision maker, say Alice, is represented as a quantum
state, typically by a pure state ψ belonging to a complex Hilbert spaceH (space of belief
states). Generally, a belief state is a mixed state represented by a density operator ρ. (A
density operator ρ is determined by conditions: ρ = ρ?, ρ ≥ 0, Trρ = 1.) In this Appendix,
for simplicity, we typically restrict considerations to pure states (besides Section 8.2.2).

The problem of the belief state’s interpretation is the cognitive counterpart of the
problem of the quantum state interpretation—the “wave function interpretation problem”.
The latter is one the main foundational problems of QM, and it is characterized by the
diversity of the viewpoints. Some experts consider this interpretational diversity as a
sign of the deep crises in quantum foundations. Other experts think that such diversity is
not a problem—“one can use an interpretation which he likes!” However, the majority of
quantum physicists do not even think about the state interpretation problem. They formally
operate within the quantum formalism. They are disappointed by the question: “ What
state’s interpretation do you use?” Often, one automatically replies: “I use the Copenhagen
interpretation of QM!” However, an attempt to clarify the meaning of this statement
may lead even to more disappointment. In fact, the latter is not surprising, because
the Copenhagen interpretation is also characterized by the diversity of interpretations.
Plotnitsky even suggested to speak about the interpretations in the spirit of Copenhagen,
e.g., [134,135]. This interpretational ambiguity is projected to quantum-like modeling.
However, the majority of researchers working with applications of the quantum formalism
outside of physics proceed formally, without even trying to think about the interpretation
problem for the quantum-like belief-state. We shall discuss the belief state’s interpretation
in Section 9.

In quantum-like modeling of decision making, one typically considers only finite
dimensional state spaces, as typically one also does in quantum information theory. We
remark that real physics is based on infinite dimensional Hilbert spaces, such as the space
L2 of square integrable functions.

By choosing in H some orthonormal basis, H can be represented as the space of
vectors with complex coordinates, ψ = (z1, z2, ..., zn), zj ∈ C, where C is the set of complex
numbers. The scalar product is defined as

〈u|v〉 = ∑
i

ūivi, u = (u1, ..., un), v = (v1, ..., vn), (28)

where, for a complex number z = x + iy, x, y ∈ R, its conjugate is denoted by z̄, here
z̄ = x− iy. The absolute value of z is given by |z|2 = zz̄ = x2 + y2.

A pure quantum state is given as normalized vector ψ, i.e., ‖ψ‖ = 1, where vector’s
norm is defined as

‖ψ‖2 = 〈ψ, ψ〉.

8.2. Decisions as Quantum Observables

A decision problem is a question a, which is asked to Alice or a task which she must
perform (to select some output). In the quantum-like framework, a is mathematically
described by a quantum observable.

8.2.1. Representation of Questions and Tasks as Quantum Observables—By Hermitian
Operators, PVMs, or POVMs

In the von Neumann theory of quantum measurements, an observable a is mathemati-
cally represented by a Hermitian operator A (thus, A = A?). Its eigenvalues encode the
possible outcomes, α1, ..., αk. In decision making, these are answers to a question, a task, or
possible solutions of a problem.
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By choosing an orthonormal basis the space of belief statesH can be represented as
H = Cn and an observable as a Hermitian matrix, i.e., A = (aij), where

aij = āji.

Matrix’s eigenvalues encode the outputs of observations. The majority of problems of
quantum-like modeling are coupled to dichotomous observables, i.e., αj = 0, 1 (or αj = ±1).
Thus, the quantum measurement model is mathematically formalized as the linear algebraic
calculus for eigenvalues and matrices.

As was noted, in decision making and generally in quantum like modeling, it is not
natural to solely use the Hermitian operator representation of the mental observables.
This representation induces coupling of labels encoding possible answers or tasks with
operator’s spectrum—a subset of R. It is more natural to operate with PVMs or POVMs.

8.2.2. Quantum Dynamical Decision Making

In monograph [68] (see also [136]), we considered another quantum-like framework,
which is know as quantum dynamical decision making. Here, the decision states are steady
states of the open quantum system dynamics describing the belief (mental) state’s evolution
in the process of decision making. Such modeling of generation of the decision states found
many applications, from genetics and molecular biology to psychology and cognition,
ecology and sociology.

In this approach, the belief state is mathematically described by a density operator
or ‘mixed quantum state” and its evolution in the process of decision making, t → ρ(t),
by the open quantum system dynamics. We emphasize that in this model, it is impossible
to proceed solely with the pure states, the open quantum system dynamics immediately
transfers a pure state given by a vector ψ into mixture of such states given by a density
operator ρ. This is the result of interaction of the decision maker with the surrounding
psycho-physical environment. A decision state is given by a steady state:

ρdecision = lim
t→∞

ρ(t) (29)

(if this limit exists). Of course, this limit procedure is just the mathematical idealization, it
encodes damping of the state’s fluctuations, and damping is due to the interaction with the
system’s environment. Hence,

ρdecision ≈ ρ(τ), (30)

for sufficiently large τ (w.r.t. decision maker’s temporal scale).

8.3. Probability of Decision

Consider the simplest mathematical representation of decisions, by Herminian opera-
tors. For Alice in the state ψ, the probability of decision αj is given by the Born rule.

8.4. Transformation of Belief State Resulting from Decision Making

In the modeling of decision making, we are interested not only in the probabilities of
various decisions, but also in transformation of belief states resulting from decision making.
In the simplest model (due to von Neumann and Lüders), the decision with the outcome
a = αj induces projection of the belief state ψ (pure one) onto the αj-eigenspace of the
Hermitian operator A describing, say, some question a.

However, this simple operation has only the restricted domain of applications. In
contrast to physics, where one can proceed rather far with Hermitian operators and the state
update of the projection type, in psychology and cognition, even the simplest psychological
effects cannot be modeled in this way, and more general belief state updates have to be
used, updates described by quantum instruments [88,89].

In open quantum system modeling of the process of decision making, the belief state
is updated through approaching a steady state.
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9. Interpretations of Belief State and Probability

The probability in the Born rule can be interpreted either statistically or subjectively.
However, in QM, the interpretation problem is more complicated than in theories based on
classical probability, say thermodynamics, because QM operates not solely with probabili-
ties, but also with quantum states. Hence, not only probabilities, but also states have to be
interpreted and the state-probability interpretation should be consistent.

9.1. Statistical Interpretation of State and Probability

By the statistical interpretation of probability, for a large ensemble of decision makers
(N persons), the frequency of observation of the output a = α approaches (for N → ∞) the
probability calculated theoretically with the Born rule:

νN(α) = nN(α)/N ≈ ‖E(α)ψ‖2, (31)

where nN(α) is the number of decision makers who answered a = α. This interpretation is
the most useful to couple theory and experiment. In cognitive, psychological, social, and
financial experiments statistical data is collected for an ensemble of humans (or animals).

In quantum physics, this interpretation of probability is coupled to the statistical
interpretation of the wave function by which it represents not the state of an individual
quantum system, but of an ensemble of systems prepared by the same preparation proce-
dure. This interpretation is typically associated with Einstein, and later it was highlighted
by Margenau and Ballentine. In decision theory, by the statistical interpretation, the belief
state is associated with a large ensemble of decision makers, which is selected under special
conditions—a decision making preparation procedure.

9.2. Individual Interpretation of State and Statistical Interpretation of Probability

Bohr and von Neumann assigned the wave function to an individual quantum sys-
tem. However, for probability, they used the statistical interpretation. This interplay of
individual (for state) and statistical (for probability associated with this state by the Born
rule) interpretations made the statistical structure of QM really mystical. This mystery
would be resolved only via the solution of the quantum measurement problem: creation
of a mathematical model for generation of the concrete outputs of the observable A on
the basis of the initial state ψ. This is the complicated problem and maybe it could not be
solved at all within quantum theory. Nevertheless, the individual interpretation of the
quantum state combined with the statistical interpretation probability is widely used in
QM. It is reasonable to use this framework even in cognition, decision making, and other
applications outside of physics.

By this interpretation, the belief (mental) state ψ is assigned to the individual decision
maker, but it determines the statistical probability for an ensemble of decision makers
who have the same state ψ. Why does ψ generate the statistical probability, which is
experimentally verifiable (see (31)) with the frequency of observations νN(αj)? This question
would be replied if, within quantum-like modeling, one would solve the measurement
problem:

How does the brain generate the concrete output a = xj starting with the mental state ψ?

9.3. Subjective Interpretation of Probability and QBism

By the subjective interpretation of probability, Alice (whose belief state is ψ) assigns
her own weight P(a = α) to the outcome a = α and in the quantum-like model of decision
making this subjective probability is given by the Born rule, i.e., P(a = α) = P(a = α|ψ).

In general decision theory (i.e., not directly related to quantum experiments), the
subjective interpretation of probability is widely applied to a variety of problems, including
the framework of the subjective utility function. In the quantum-like reformulation, the
Born rule gives subjective probabilities, which decision makers assign to possible outcomes.
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In quantum physics, the subjective interpretation of probability is associated with Quan-
tum Baeysianism (QBism). We start with the following citation of Fuchs and Schack [137],
pp. 3–4:

“The fundamental primitive of QBism is the concept of experience. According to QBism,
quantum mechanics is a theory that any agent can use to evaluate her expectations for
the content of her personal experience.

QBism adopts the personalist Bayesian probability theory... This means that QBism
interprets all probabilities, in particular those that occur in quantum mechanics, as an
agent’s personal, subjective degrees of belief. This includes the case of certainty - even
probabilities 0 or 1 are degrees of belief...

In QBism, a measurement is an action an agent takes to elicit an experience. The measure-
ment outcome is the experience so elicited. The measurement outcome is thus personal
to the agent who takes the measurement action. In this sense, quantum mechanics, like
probability theory, is a single user theory. A measurement does not reveal a pre-existing
value. Rather, the measurement outcome is created in the measurement action.

According to QBism, quantum mechanics can be applied to any physical system. QBism
treats all physical systems in the same way, including atoms, beam splitters, Stern-
Gerlach magnets, preparation devices, measurement apparatuses, all the way to living
beings and other agents. In this, QBism differs crucially from various versions of the
Copenhagen interpretation...

An agent’s beliefs and experiences are necessarily local to that agent. This implies that
the question of nonlocality simply does not arise in QBism.”

See also the recent article of Fuchs [138].

What is about the QBism-interpretation of the belief state? (See [139] for the details.)
This is the theory about structuring the individual’s experiences in the situation of

uncertainty. The belief state ψ is individual’s state. So, in physics, ψ is not the state of, say,
an electron involved in the process of measurement, but of an experimenter who creates
the subjective probabilistic picture for possible outcomes of this experiment.

However, QBism diminishes the role of the quantum state. QBists suggest operating
solely with probabilities. To realize this approach, they consider non-standard quantum
observables, which are mathematically represented by Hermitian operators, but generalized
observables, which completely determine a quantum state. Such observables have n2

outcomes, where n is the state space dimension. Another property is that the outcomes are
not mutually exclusive, i.e., projections corresponding to different values are not mutually
orthogonal. Any quantum state, pure or mixed, can be represented as the vector with n2

coordinates given by probabilities for observation outcomes (for this state).
So, QBists demonstrated that one can ignore the problem of the interpretation of the

quantum state (wave function).
The author’s intention is that in quantum-like modeling one can use the QBism

methodology, the personal experience viewpoint on probability. At the same time, the
notion of the personal belief state has to be used as the seed for generation of subjec-
tive probabilities.
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