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Abstract: Motor imagery-based brain–computer interfaces (MI-BCIs) have great application prospects
in motor enhancement and rehabilitation. However, the capacity to control a MI-BCI varies among
persons. Predicting the MI ability of a user remains challenging in BCI studies. We first calculated
the relative power level (RPL), power spectral entropy (PSE) and Lempel–Ziv complexity (LZC)
of the resting-state open and closed-eye EEG of different frequency bands and investigated their
correlations with the upper and lower limbs MI performance (left hand, right hand, both hands and
feet MI tasks) on as many as 105 subjects. Then, the most significant related features were used to
construct a classifier to separate the high MI performance group from the low MI performance group.
The results showed that the features of open-eye resting alpha-band EEG had the strongest significant
correlations with MI performance. The PSE performed the best among all features for the screening
of the MI performance, with the classification accuracy of 85.24%. These findings demonstrated
that the alpha bands might offer information related to the user’s MI ability, which could be used
to explore more effective and general neural markers to screen subjects and design individual MI
training strategies.

Keywords: motor imagery; electroencephalogram; resting-state; alpha rhythm; performance variation

1. Introduction

Brain–computer interface (BCI) is a direct communication pathway between the central
nervous system and external devices that replaces, restores, enhances or improves natural
central nervous system output [1,2]. Among all BCI paradigms, motor imagery (MI) is one
of the most natural BCI paradigms, which is a mental process of motion intention without
actual action output. Motor imagery-based BCI (MI-BCI) has been widely applied in
clinical rehabilitation, acquisition and the refinement of motor skills [3]. The sensorimotor
electroencephalographic (EEG) rhythms could be voluntary modulated by MI, which are,
respectively, known as event-related desynchronization/synchronization (ERD/ERS) at
mu/alpha (8–13 Hz) and beta (14–30 Hz) bands [4]. Based on this, the neural oscillation
patterns induced by different MI tasks could be used for BCI control.

However, the EEG response of the same MI task is varied between subjects, which leads
to inter-subjects variability in MI-BCI performance [5,6]. Moreover, in daily experiments, a
notable portion of subjects could not use MI to drive BCI successfully [7], which was known
as “BCI-illiteracy” or “BCI-inefficiency” [8]. In fact, controlling a MI-BCI requires training
to acquire these skills [9]. Thus, the inter-subjects variability in MI-BCI performance has
raised questions about how to design the appropriate training strategy to improve users’
ability. In the process of solving the above problem, the prediction of users’ ability is a
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crucial step. Hence, it is meaningful to find a pre-experimental predictor related to MI
performance [10,11]. The predictor of MI performance can not only be used to avoid the
loss of time for both users and experimenters, but it can also help us understand the reason
for the poor MI performance to guide the design of personalized training protocols [7].

So far, two kinds of predictors have been investigated: psychological and neurophys-
iological predictors. Daum et al. found that attention might be correlated to the ability
of the regulation of slow cortical potentials (SCP) [12]. Burde et al. showed that a person
who felt more comfortable with the BCI technology and believed in his/her own ability
was likely to yield a good performance [13]. Furthermore, Hammer et al. investigated the
correlation between the parameters such as attention span, personality, motivation and so
on with the performance of MI-BCIs and found the modulation effect of the psychological
parameters on the control performance [14]. In addition, fatigue is directly related to
BCI performance. Ferreira et al. showed that MI ability was significantly decreased after
intermittent exercise [15]. However, some psychological factors are subjective and are,
therefore, not suitable for predicting BCI performance.

At the same time, there are some studies that investigate the neurophysiological
correlates of performance variations between subjects. One of the previous studies found
that the power of gamma oscillations could modulate the sensorimotor rhythm induced
by motor imagery [16]. Ahn et al. analyzed the resting-state EEG data at the eyes-open
state of 52 subjects and found that the power of theta band (4~8 Hz) and alpha band
(8~13 Hz) were related to MI performance [17]. Zhang et al. discovered that the power
spectral entropy (PSE) of eyes-closed resting-state EEG in channel C3 was correlated
with MI performance through the experiment consisting of 40 subjects [18]. Moreover,
Lee et al. demonstrated that the connections of the resting-state network could affect
MI performance [11]. Generally speaking, physiological indicators are more objective
and convincing than psychological indicators and could be used to guide the training of
MI-BCIs, which attract the most researchers in this study topic.

In addition, it should be noted that in the practical application of MI-BCI, the recog-
nition of lower limbs is as important as that of upper limbs [19,20]. However, most of
the previous studies are based on the left- and right-hand MI tasks. Therefore, a large
public database including both upper and lower limbs MI tasks should be used to find
the possible predictors of MI performance. Moreover, researchers often focus on the study
of single feature analysis. More sensitive EEG features for MI performance and the joint
analysis of multi-dimensional features need further exploration. Hence, this paper studied
the correlations between the multi-frequency resting state EEG features and MI perfor-
mance of four MI tasks (left hand, right hand, both hands and both feet) among more
than 100 subjects. Lempel–Ziv complexity (LZC) is often used as an EEG feature to detect
diseases such as depression. Therefore, to explore resting-state EEG features related to
the user’s motor imagery performance, band power features and two non-linear dynamic
features (PSE and LZC) of resting-state EEG were calculated to analyze their correlations
with MI performance and construct the prediction models. Finally, other interpretations of
the results were discussed.

2. Materials and Methods
2.1. Database Introduction

All EEG data used in this paper were from EEG Motor Movement/Imagery Dataset [21,22].
A total of 109 subjects participated in the experiment. The experiment included: one one-
minute eyes-open resting run; one one-minute eyes-closed resting run; three imagined
left/right hand grip runs; and three imagined both hands/feet grip runs. The MI tasks
in each run appeared randomly and each task had 25 trials. The EEG data were recorded
from 64 electrodes by the BCI2000 system under offline experimental conditions (position
of electrodes as shown in Figure 1). The sampling rate was 160 Hz.
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Figure 1. Position of 64-electrodes [21,22].

2.2. Subject Grouping

Due to the abnormal labels of 4 subjects in the database, the data of 105 subjects were
analyzed in this paper. The EEG signals of MI tasks were first filtered by an 8–30 Hz
Butterworth band-pass filter. Multiclass common spatial pattern (Multi-CSP) was used
to extract the features of the EEG patterns induced by four MI tasks, i.e., left/right hand
MI and both hands/feet. CSP is one of the most popular spatial filtering methods for the
recognition of MI tasks [23]. We selected the eigenvectors corresponding to the two largest
eigenvalues for the CSP filter of each class to extract features. A linear support vector
machine (SVM) was used to build the multiclass classifier with the help of the famous
software package LIBSVM [24]. We selected the default SVM type and set the penalty
factor C to 1. The classification accuracies were computed ten times with a ten-fold cross-
validation procedure. We utilized the mean classification accuracy to represent the MI
performance. The performances of each subject and their standard deviations are shown
in Figure 2. The subjects were assigned to three groups: group H (high MI performance,
60~100% accuracy, N = 20); group M (medium MI performance, 40~60% accuracy, N = 42);
and group L (low MI performance, lower than 40% accuracy, N = 43). We also calculated
the classification accuracies of two classes of MI tasks, i.e., left hand vs. right hand, and
both hands vs. feet, to analyze the correlations between EEG features and MI performance.
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2.3. Resting-State Signal Processing

Eyes-open and -closed resting-state EEG signals were used to analyze the performance
variation. Common average reference (CAR) was utilized to increase the signal-to-noise
ratio [17]. For the EEG data of each channel, we could record about 9600 data points of a
one-minute task. Every 1500 points were taken as an epoch according to the convention.
So, we could obtain six epochs of each resting task. For each epoch, relative power level
(RPL), power spectral entropy (PSE) and Lempel–Ziv complexity (LZC) in the theta, alpha,
beta and gamma bands of eyes-open and eyes-closed resting-state EEG were calculated.
Then, the mean of six epochs were the feature of each channel to analyze their correlations
with MI performance.

We first used four Butterworth band-pass filters to obtain the theta (4~8 Hz), alpha
(8~13 Hz), beta (13~30 Hz) and gamma (30~50 Hz) frequency bands’ EEG signals, respec-
tively. Then, we calculated power of each frequency band as follows:

P =
1
N
|x(t)|2 (1)

We normalized the band powers by using the full power Pall , which was obtained by
summing all powers from 4 to 50 Hz. We calculated the RPL as follows:

RPLi =
Pi

Pall
(2)

Pi represented the energy of the ith frequency band, which was calculated by the
Formula (1).

PSE reflects the distribution of the power spectrum and belongs to the information
entropy of the frequency domain [25]. The higher PSE value indicates that the signal is
more complex and disordered. PSE was calculated as follows:

Firstly, we calculated the frequency spectrum X(ωi) of resting-state EEG signals by
the periodogram method. ωi represented the ith frequency band. Then, we calculated the
power spectrum density:

PSD(ωi) =
1
N
|X(ωi)|2 (3)

Normalized the power spectral density as shown in Formula (4):

PSDi =
PSD(ωi)

∑i PSD(ωi)
(4)
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The PSE could be calculated by the standard entropy formula:

PSEi = −
n

∑
i=1

PSDi ln PSDi (5)

LZC measures the complexity of the signals by measuring the repeatability of the
time series [26], which has been used to identify users’ emotional states [27]. The larger
the LZC is, the faster the new patterns appear in the representation time series, which
means the system is more complex. The calculation process of LZC was as follows. The
EEG time series data were converted into a binary sequence C(n) and the initial value was
defined as 1. The traversal process of intertemporal sequence EEG points could refer to [26].
Before data conversion, we used four Butterworth band-pass filters to obtain the theta,
alpha, beta and gamma frequency bands’ EEG signals, respectively. Then we obtained the
LZC of each frequency band:

LZC =
C(n)

n
log2 n

(6)

As the nonlinear dynamics features, PSE and LZC reflect the complexities of the
analyzed system from two different perspectives. A Pearson correlation analysis was used
for the correlation analysis. We utilized the independent sample t-test for the significance
analysis. Moreover, we used the Multi-SVM method to conduct the screening model of the
MI performance.

3. Results
3.1. Correlation Analysis

In Figure 3, we found that all three features calculated in this paper (RPL, PSE, LZC)
had the strongest and most significant correlation with left/right hand MI performance in
the alpha band, whether for the eyes-open resting-state EEG or the eyes-closed state. The
maximum correlations were r = 0.5 for RPL, r = −0.53 for PSE and r = −0.46 for LZC at the
C4 channel. Pearson correlation coefficients between RPL and MI performance showed a
significant positive correlation in most channels. The PSE and LZC of all channels showed
a significant negative correlation with MI performance.

The results of the correlation between RPL, PSE and LZC, respectively, and both
hands/feet MI performance were similar to the results of left/right hand MI performance
(Figure 4). That was, all features in the alpha band showed significant correlation with MI
performance. The maximum correlations were r = 0.36 of RPL at Cp4 channel, r = −0.49 of
PSE at C4 channel, and r = −0.39 of LZC at the Cp4 channel in the alpha band. In short,
RPL was positively correlated, while PSE and LZC were negatively correlated with BCI
performance. The statistical significance levels by p-value in the alpha band were high
enough to conclude. We could infer that the alpha bands may offer more information
related to the user’s MI ability.

For the four classes of MI tasks, we performed the repeated measurement ANOVA
among the absolute values of correlation coefficients in different frequency bands. We
used SPSS for performing the repeated-measures ANOVA. Mauchly’s test of sphericity
(p < 0.001) showed that the sphericity assumption was violated. After Greenhouse–Geisser
correction, there was significant difference (p < 0.001) among the absolute values of the
correlation coefficients in different frequency bands, whether for the two resting states
(eyes open and eyes closed) or the three features (RPL, PSE, LZC). Then, we performed a
paired t-test between pairwise frequency bands for the absolute values of the correlation
coefficients. We found that all three features (RPL, PSE, LZC) in the alpha band had the
strongest correlation with four classes of MI performance significantly (p < 0.001), which
was consistent with the above results of the two classes of MI tasks. Hence, the following
results for the four classes of MI tasks were RPL, PSE and LZC at alpha rhythm.
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Figure 5 shows the absolute values of the correlation coefficients between the RPL,
PSE and LZC, respectively, on the channels corresponding to the motor cortex (Fz, Fc3, Fc4,
C3, C4, C5, C6, Cp3, Cp4, Cp5, Cp6, Cpz) and the four classes of MI performance. It was
obvious that the correlations of the eyes-open resting-state EEG features were significantly
stronger than the eyes-closed resting-state EEG (Greenhouse–Geisser-corrected repeated-
measures ANOVA, p < 0.001). The two channels with the greatest correlation coefficients
were C3 (r = 0.47) and C4 (r = 0.49) for RPL; C4 (r = −0.62) and Cp4 (r = −0.58) for PSE;
and C3 (r = −0.45) and Cp4 (r = −0.47) for LZC. From the above results, it could be seen
that the most relevant channels were mainly located in the channels corresponding to
the sensorimotor cortex. For the two non-linear dynamic features, PSE and LZC were
negatively correlated with MI performance in alpha rhythm, which indicated that the brain
neural oscillations of people with weak MI ability were more disordered and complex in
the resting state.

Entropy 2022, 24, 1556 8 of 12 
 

 

 
Figure 5. The absolute values of correlation coefficients between Fz, Fc3, Fc4, C3, C4, C5, C6, Cp3, 
Cp4, Cp5, Cp6, Cpz channels’ RPL, PSE, LZC, respectively, and four classes of MI performance. (a) 
The correlation coefficients were calculated using open-eyes resting-state EEG. (b) The correlation 
coefficients were calculated using closed-eyes resting-state EEG. 

We calculated the average value of the two channels of each feature (C3 and C4 for 
RPL, C4 and Cp4 for PSE, C3 and Cp4 for LZC) as the feature value of each subject. Figure 
6 shows the mean feature value and standard deviations of each group. The features of 
different subjects’ groups were compared and analyzed. The independent sample t-test 
was used for the statistical analysis. For RPL, PSE and LZC features, there were significant 
differences between group H and group M (p < 0.001) and group H and group L (p < 0.001), 
while group M and group L did not show statistical significance. These results showed 
that the high MI performance group and the low MI performance were distinguishable. 
We could also see that the feature distributions of different groups were not linear, which 
was the same as the previous study [17]. 

 
Figure 6. Distribution of RPL (a), PSE (b) and LZC (c) of alpha rhythm in eyes-open resting state 
among three groups (***p < 0.001). 

3.2. Screening Model of the MI Performance 
We selected the alpha band eyes-open RPL on C3 and C4, PSE on C4 and Cp4, and 

LZC on C3 and Cp4 of each subject to generate a classifier to separate the high MI perfor-
mance group (group H) from the low MI performance group (group L). The ten-fold clas-
sification accuracy of the combination of the above characteristics was 84.05%. We ob-
tained the accuracy of 80.00% for RPL, 85.24% for PSE and 81.19% for LZC. The PSE per-
formed the best among all characteristics for the screening of the MI performance. 

We also constructed the three-class screening model of the MI performance using the 
above characteristics. Figure 7 shows the prediction distribution, which could reflect the 
inner-category classification results for the three MI performance groups. It shows that 

Figure 5. The absolute values of correlation coefficients between Fz, Fc3, Fc4, C3, C4, C5, C6, Cp3,
Cp4, Cp5, Cp6, Cpz channels’ RPL, PSE, LZC, respectively, and four classes of MI performance.
(a) The correlation coefficients were calculated using open-eyes resting-state EEG. (b) The correlation
coefficients were calculated using closed-eyes resting-state EEG.

We calculated the average value of the two channels of each feature (C3 and C4 for
RPL, C4 and Cp4 for PSE, C3 and Cp4 for LZC) as the feature value of each subject. Figure 6
shows the mean feature value and standard deviations of each group. The features of
different subjects’ groups were compared and analyzed. The independent sample t-test
was used for the statistical analysis. For RPL, PSE and LZC features, there were significant
differences between group H and group M (p < 0.001) and group H and group L (p < 0.001),
while group M and group L did not show statistical significance. These results showed that
the high MI performance group and the low MI performance were distinguishable. We
could also see that the feature distributions of different groups were not linear, which was
the same as the previous study [17].
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3.2. Screening Model of the MI Performance

We selected the alpha band eyes-open RPL on C3 and C4, PSE on C4 and Cp4, and LZC
on C3 and Cp4 of each subject to generate a classifier to separate the high MI performance
group (group H) from the low MI performance group (group L). The ten-fold classification
accuracy of the combination of the above characteristics was 84.05%. We obtained the
accuracy of 80.00% for RPL, 85.24% for PSE and 81.19% for LZC. The PSE performed the
best among all characteristics for the screening of the MI performance.

We also constructed the three-class screening model of the MI performance using the
above characteristics. Figure 7 shows the prediction distribution, which could reflect the
inner-category classification results for the three MI performance groups. It shows that
the misclassification which occurred among the three groups was imbalanced. For the
three-class screening model, group H and group L were predictable. However, group M
was easily predicted to be group L, which meant that the resting-state EEG patterns of
group M were similar to group L. Hence, the distribution of EEG characteristics correlated
to the MI performance was nonlinear, which was consistent with Figure 6.
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4. Discussion

From the results of the correlation between RPL, PSE, LZC and the MI performance, we
could see that for each characteristic the most significant correlation was in alpha rhythm.
Previous studies have shown that MI is accompanied by changes in alpha and beta rhythm
EEG in the motor-related cortex, which is always named mu or beta ERD. The amplitude
of alpha (or mu) rhythm oscillations significantly decreased over the motor regions that
began in the motor preparation stage [28], which indicated that alpha rhythm was more
relevant to motor planning/programming. In addition, cross-frequency coupling played an
important role in brain neural computation and communication, in which low-frequency
neural oscillation signals acted as global interactions between brain regions form, and
high-frequency neural oscillation signals were usually relatively localized activity [29]. It
could be inferred that, compared with beta rhythm, alpha rhythm was more important for
the trans-regional transmission and integration of motor information. Hence, alpha rhythm
tended to recruit neurons in larger cortical areas under MI than beta rhythm.

Some studies found that the resting-state EEG alpha rhythm power of professional
athletes was significantly higher than that of non-professional athletes or beginners [30],
and it was related to motor control and final motor performance [31]. The analysis results
in this paper also showed that the RPL, PSE and LZC in resting-state alpha rhythm were
most relevant to MI performance. These results illustrated that alpha rhythm played an
important role in motor-related mental information processing. In addition, we found that
the correlations of eyes-open resting-state EEG features were stronger than eyes-closed
resting-state EEG, which may be due to the interference of the increased occipital alpha-
band (~10 Hz) power induced by the eyes closed state [32].

In this paper, we firstly used LZC as the neural maker to predict the MI performance
and obtained an accuracy of 81.19%. The results demonstrated the feasibility of LZC for MI
performance prediction. Ahn et al. utilized the RPL features of theta and alpha bands and
obtained a classification accuracy of 82.35% for the separation of the high MI performance
group from the low MI performance group among 34 subjects [17]. Theoretically, the power
calculated in the time domain is the same as the power calculated in the frequency domain.
We also calculated the RPL using PSD. The correlation results of the RPL calculated in the
frequency domain were similar to those calculated in the time domain—that was, RPL had
the strongest and most significant correlation with MI performance in the alpha band for
the eyes-open resting-state EEG state. Due to the larger sample size, the screening model
constructed in this paper had higher robustness. Moreover, we compared the features of
upper and lower limbs MI tasks to reach a more convincing conclusion. The PSE result
obtained in this paper was not consistent with the study of Zhang et al. [18]. In this paper,
LZC was also the nonlinear dynamics, which confirmed the PSE result. In addition, the
number of subjects was 40 in [18], which was less than half of our sample. From this point
of view, our results were more reliable. Furthermore, previous research has shown that
MI performance was correlated with subjects’ basic characteristics (gender, age, lifestyle,
etc.) [33,34] and psychological states (motivation, self-confidence, frustration, etc.) [13,14].
This may be another reason for inconsistent results that need to be further explored.

5. Conclusions

In this paper, we investigated the correlation between resting-state EEG with upper
and lower limbs MI performance. The above results showed that the EEG characteristics
of the alpha rhythm of eyes-open resting state had the most significant correlation. An
efficient screening model of the high MI performance group and the low MI performance
group was constructed based on the three features, i.e., RPL, PSE and LZC. The above
research findings can be used to further explore neurophysiological markers related to MI
performance and to design tailored MI training strategies.
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