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Abstract: With the rapid growth of satellite communication demand and the continuous develop-
ment of high-throughput satellite systems, the satellite resource allocation problem—also called the
dynamic resources management (DRM) problem—has become increasingly complex in recent years.
The use of metaheuristic algorithms to obtain acceptable optimal solutions has become a hot topic in
research and has the potential to be explored further. In particular, the treatment of invalid solutions
is the key to algorithm performance. At present, the unused bandwidth allocation (UBA) method is
commonly used to address the bandwidth constraint in the DRM problem. However, this method
reduces the algorithm’s flexibility in the solution space, diminishes the quality of the optimized solu-
tion, and increases the computational complexity. In this paper, we propose a bandwidth constraint
handling approach based on the non-dominated beam coding (NDBC) method, which can eliminate
the bandwidth overlap constraint in the algorithm’s population evolution and achieve complete
bandwidth flexibility in order to increase the quality of the optimal solution while decreasing the
computational complexity. We develop a generic application architecture for metaheuristic algorithms
using the NDBC method and successfully apply it to four typical algorithms. The results indicate that
NDBC can enhance the quality of the optimized solution by 9–33% while simultaneously reducing
computational complexity by 9–21%.

Keywords: high-throughput satellite system; joint resource allocation; non-dominated beam coding;
bandwidth constraint handling; computational complexity; generic application architecture

1. Introduction

Satellite communication systems have rapidly evolved into high-throughput satellite
(HTS) systems over the past two decades, with data rates of tens or even hundreds of
gigabits per second [1]. In the future, satellite communications will further develop into
satellite–terrestrial networks [2], large-scale LEO constellations [3], or 6G networks [4], for
which the efficient management of complex resources will be imperative [5]. Owing to
the flexibility and complexity of the communication resources allocated in satellite com-
munication systems, it is necessary to develop an automatic tool with efficient algorithms
for management of dynamic resources—a problem known as dynamic resource manage-
ment (DRM) [6]. In response, artificial intelligence algorithms, especially metaheuristic
algorithms, are emerging as a fundamental solution to realize fully intelligent resource
allocation and management [4]. Studies reported in the literature have focused on four
subproblems of the DRM problem: power allocation, bandwidth allocation, joint resource
allocation, and beam shape and placement. In addition, the latest research has focused
on beamforming [2] and beam hopping [7], as well as their joint allocation with carriers,
bandwidth, and power.

The power allocation problem entails maximizing system performance under the lim-
ited power of the satellite platform while minimizing total power consumption. The study
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of power allocation has practical value, as the power resources of satellite platforms are ex-
pensive and limited; increased power usage can improve signal gain and enhance user QoS.
Choi and Chan [8] characterized the problem of power allocation as a convex optimization
problem and introduced Lagrangian multipliers as a solutions, whereas Wang et al. [9]
calculated the capacity using satellite link budget equations, which are more practical than
the Shannon capacity formula used in [8]. Aravanis et al. [10] demonstrated that power
allocation is an NP hard problem and examined the application of metaheuristic algorithms.
Using the GA-SA algorithm and the NSGA-II algorithm, the authors proposed a two-stage,
multiobjective optimization method to solve the Pareto front. In [11], an allocation model
was created, taking interbeam interference and rain attenuation into account and solved us-
ing the PSO algorithm. Luis et al. [12] used a deep reinforcement learning (DRL) technique
to achieve optimal power allocation in tens of milliseconds; however, the DRL network
requires pretraining and could not achieve optimal results in all scenarios. In [13], the
performances of GA, SA, PSO, DRL, and hybrid approaches were compared with respect
to the power allocation problem. Takahashi et al. [14] combined power allocation with DBF
(digital beamforming) to maximize the traffic accommodation rate of an HTS system by
jointly optimizing the transmitted power, beam gain, and beam placement.

The bandwidth allocation problem is a subproblem of the frequency assignment
problem, which involves assigning the bandwidth of a satellite system to the beam and
the frequency subslot of the beam to each user. In [15], it was demonstrated that frequency
assignment is an NP complete problem that is difficult to approximate. As a result, some
researchers have employed mathematical programming techniques to solve the bandwidth
allocation problem. To determine the optimal Lagrange multiplier, Park et al. [16] used
a binary search, whereas Heng Wang et al. [17] utilized subgradient algorithms. The
aforementioned studies offered solutions for a small number of beams, increasing system
capacity or allocation fairness, but are inapplicable to larger datasets. Several studies have
been conducted on high-dimensional scenarios. A DRL framework for dynamic channel
assignment problems was presented in [18], and a novel image-like tensor reformulation
was designed to extract the traffic demand features. In [3], a fast heuristic assignment
algorithm for the frequency assignment problem of LEO constellations was proposed,
which can achieve the goal of serving a greater number of users with fewer beams.

The joint resource allocation problem is an optimization problem that simultaneously
allocates power and bandwidth, typically continuing to develop based on a single resource
allocation and achieving increased allocation fairness or communication service capability
than single resource allocation. Cocco et al. [19] designed an objective function that com-
bines fairness and demand fit and proposed a stochastic optimization algorithm based on
simulated annealing to solve the joint allocation of bandwidth and power. In [20], a link
budget model considering interference between beams was proposed based on [10], as well
as a GA-based joint resource allocation algorithm, which improved the USC (unmet system
capacity) results of the fixed average algorithm by 55.7%. In [21], the PSO-GA and NSGA-II
algorithms were used to examine the multiobjective optimization of power and carrier
bandwidth for a scenario in which hundreds of beams serve a highly volatile demand.
Abdu et al. [22] decomposed the JRA problem into two non-convex subproblems, i.e.,
carrier and power allocation, and solved them using a continuous convex approximation.
He et al. [23] and Gao et al. [24] studied multiobjective optimization with respect to the JRA
problem, with the difference that literature [23] used DRL, whereas literature [24] used a
metaheuristic multiobjective algorithm, i.e., CMOPSO (multi-objective PSO algorithm with
competition mechanism).

In summary, the power allocation and bandwidth allocation problems have been
intensively studied, whereas the number of studies on joint resource allocation remains lim-
ited. Although DRL [12,18,25] has gradually spread in various satellite resource allocation
scenarios, pretraining, generalization, and scenario dependency limit its versatility. Meta-
heuristic algorithms (e.g., GA, SA, PSO, etc.) are the main methods currently used owing
to their speed, ease of encoding, and optimization performance. Nonetheless, the existing
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research is subject to some limitations: (1) As bandwidth can be used with reuse patterns in
multibeam scenarios, any metaheuristic algorithm must deal with overlapping bandwidth
constraints. A method called unused bandwidth allocation (UBA) has been proposed in the
literature [20] to handle invalid solutions that do not satisfy the bandwidth constraint by
repairing the beams one by one, simultaneously increasing the algorithm’s computational
complexity and decreasing its exploration capability. (2) Different metaheuristic algorithms
have varying convergence times, which are significant in actual operational situations.
In addition to the currently studied algorithms, such as GA and PSO, it is necessary to
investigate additional metaheuristic algorithms with quicker convergence.

We address these issues by focusing on a typical subproblem of the DRM problem, namely
the joint resource allocation problem (JRA) for HTS. Based on the literature [13,20,21,26,27],
we construct a link budget model that takes into account interbeam interference and signal
modulation patterns, approaching an actual scenario.

Then, a non-dominated beam coding (NDBC) method is proposed to address the
shortcomings of the UBA method. We label adjacent rows of beams as dominant and
non-dominant beams. The algorithm only encodes and optimizes the bandwidth of the
non-dominated beams, and there is no bandwidth overlap constraint between them, such
that they can be freely taken in the value domain, which effectively increases the search
flexibility and improves the optimization quality of the algorithm. The bandwidths of the
dominant beams are then obtained based on the non-dominant beams through a simple
calculation. The computational complexity is also reduced, as invalid solutions are no
longer repaired.

Finally, the NDBC method is applied to four common metaheuristic algorithms. The
simulation results demonstrate that NDBC can effectively reduce the computational com-
plexity while substantially improving the quality of the optimization solutions. We also
find that the QPSO algorithm performs better than the GA, DE, and PSO algorithms on the
JRA problem. We speculate that QPSO is more sensitive to search flexibility.

The remainder of this paper is structured as follows. In Section 2, we present the link
budget model and derive a formula for the beam data rate. In Section 3, we present the
unused bandwidth allocation method, propose a non-dominated beam-coding method,
and suggest a generic framework for applying the NDBC method to the metaheuristic
algorithm. Finally, in Sections 4 and 5, we analyze the simulation results and conclude this
paper, respectively.

2. Problem Formulation
2.1. Joint Resource Allocation Problem Model

In this paper, we consider a GEO satellite in the Ka band with M fixed point beams
and a multibeam technique in the four-color frequency reuse pattern [1], as depicted in
Figure 1. When bandwidth allocation is performed, beams with different polarizations
are independent of each other, whereas there is a bandwidth overlap constraint between
adjacent beams using the same polarization.

The HTS system can flexibly allocate the bandwidth and power resources of each beam
based on the traffic demand of each beam, thereby optimizing QoS and spectrum utilization.
The resource allocation (RA) problem, a subset of the JRA problem, has been demonstrated
to be an NP hard problem in the literature [10], implying that the JRA problem under
consideration in this paper is also an NP hard problem. The objective function of the JRA
problem involves minimizing the unmet system capacity (USC), which has been commonly
used in the literature [10,20,21]. Di and Ri are the traffic demand of the beam and the
data rate provided by the system, respectively; BWi and Pi are the bandwidth and power
resources, respectively, allocated to beam i.
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Figure 1. Four-color frequency reuse pattern. Red and green indicate beams using right-hand
circular polarization (RHCP), whereas blue and yellow indicate beams using left-hand circular
polarization (LHCP).

The mathematical description of the JRA problem is as follows:

Obj : minimize
Mb

∑
i=1

max(Di − Ri, 0), (1)

s.t.C1 :
Mb

∑
i=1

Pi ≤ Ptot, ∀i ∈ {1, 2, · · · , Mb} (2)

C2 : Pi ≤ Pbmax, ∀i ∈ {1, 2, · · · , Mb} (3)

C3 : BWi ≤ Btot, ∀i ∈ {1, 2, · · · , Mb} (4)

C4 : BWa + BWb ≤ Btot, ∀(a, b)adj,pol (5)

where C1 and C2 are the power constraints of the model, typically handled by the propor-
tional reduction method [20]; C3 is the bandwidth maximum constraint; and C4 indicates
that the bandwidths of adjacent beams with the same polarization mode cannot overlap.

2.2. Link Budget Model

The carrier-to-noise power ratio of the satellite downlink can be calculated as follows [1,18]:

[C/N] = [Pt] + [Gt]− [OBO] + [Gr]− 10 log10
(
Tsys

)
−[LFS]− [LO] + 228.6− [BW]

(6)

where Pt denotes the transmit power of the satellite antenna (assumed to be numerically
equal to the power assigned to the beam); Gt and Gr denote the gain of the transmit and
receive antennas, respectively; OBO is the output backoff factor, taken as a fixed value
of 5 dB [20]; Tsys represents the receiver system noise temperature, usually at 320 K [1];
LFS denotes the free-space path loss; LO denotes the sum of other losses; and BW is the
beam bandwidth.

We consider four primary interference factors, including carrier-to-adjacent-beam inter-
ference (CABI), carrier-to-adjacent-satellite interference (CASI), carrier-to-cross-polarization in-
terferences (CXPI), and carrier-to-third-order intermodulation product interference (CIMI) [20].
Then, taking interference into account, the carrier-to-noise ratio is [27]:[

C
N+I

]−1
=
[

C
N

]−1
+
[

C
I

]−1
=[

C
N

]−1
+
[

C
ABI

]−1
+
[

C
ASI

]−1
+
[

C
XPI

]−1
+
[

C
IMI

]−1 (7)
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where Eb denotes the bit energy; C is the carrier power; and Rb represents the data rate (i.e.,
the bit rate, in bps), satisfying the relation Rb = 1/Tb, where Tb denotes the bit duration and
the relationship between the signal bit energy and the carrier power (i.e., Eb = CTb). We
assume that the noise bandwidth is equal to the beam bandwidth. Therefore, the density
ratio of energy per bit to noise plus interference is calculated as follows:

Eb
N0 + I0

=
CTb

N0 + I0
= (

C
N0 + I0

)× BN
RbBN

= (
C

N + I
)

BW
Rb

. (8)

The signal is modulated with a 4/8/16/32/64 element code, with the coding rate
taking values from 1/4 to 9/10. Hence, the ratio of energy per symbol to noise plus
interference power spectral density is [26]:

Es

N0 + I0
=

Ebr log2 M
N0 + I0

= (
C

N + I
)

BW
Rb

r log2 M. (9)

Typically, such a system employs an ACM (adaptive coding and modulation) strategy
to maximize spectral efficiency. According to [12], the beam data rate is:

Rb = Rs × Γ(
Es

N0
) =

BW
1 + αr

× Γ(
Es

N0
), (10)

where αr denotes the roll-off factor, Rs denotes the symbol rate, and Γ is the spectral
efficiency (in bit/symbol) of the modulation and coding scheme (MODCOD), satisfying
the following conditions [13]:

Es

N0 + I0
≥ Es

N0

∣∣∣∣
MODCOD

+ µ, (11)

where µ is the desired margin of the link (specified as 1.0 dB), whereas Es/N0|MODCOD
denotes the threshold value required for the MODCOD scheme employed by the link to
obtain the spectral efficiency (Γ) under ideal channel conditions. Accordingly, to calculate
the data rate, we assume a certain MODCOD mode, then use Equations (6)–(10) to calculate
Es/(N0 + I0). Then, we check whether condition (11) is satisfied, thus maximizing the
spectral efficiency of the link to the greatest extent possible.

3. Constraint Handling Method
3.1. Unused Bandwidth Allocation

The metaheuristic algorithm contains operators with randomness, which cause some
individuals not to satisfy the constraints and become invalid solutions. Solutions to deal
with invalid solutions often include discarding, repairing, penalizing, and transferring; the
UBA described below uses the repair method.

As depicted in Figure 2, the unused bandwidth allocation (UBA) method [20] is
utilized primarily to address the bandwidth constraint of invalid solutions. When using
UBA, all beams are encoded and optimized, such that all neighboring beam pairs have
bandwidth overlap constraints.

We assume a sequence of adjacent beams with Nb beams; a corresponding individual
in the algorithm is X = [XP, XB], where XP and XB denote the power vector and the
bandwidth vector, respectively. The bandwidth constraint can be handled as follows:

(1) With a probability of 0.5, the starting beam is selected as 1 or Nb. The beam pair is
expressed as follows:

(beama, beamb), b = a + 1, a ∈ {1, 2, · · · , Nb − 1}, (12)

(beama, beamb), b = a− 1, a ∈ {Nb, Nb − 1, · · · , 2}. (13)
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(2) For each pair of beams (beama, beamb), if xba + xbb > 1 is satisfied, the operation
xbb = 1− xba is performed in order to ensure that constraint C4 is satisfied; however,
some bandwidth may be unused.

Figure 2. Principles of coding methods and algorithm evolution (UBA).

Using a column of four adjacent beams as an example, Figure 3 illustrates the under-
lying principle of this step. As bandwidth overlap is eliminated, unused bandwidth is
gradually generated and expanded. Consequently, the bandwidth of some beams is altered;
this phenomenon has a detrimental effect on the search direction of the algorithm. It is
possible that when the beam’s bandwidth is increased to improve the objective function, a
smaller value is obtained after this step (and vice versa), causing the algorithm to search in
the opposite direction.

Figure 3. Elimination of overlapping bandwidth and the emergence of unused bandwidth.
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(3) The beams are ordered from largest to smallest based on the demand. The serial
number sequence is denoted as SortD.

bunused =

{
1− xbi −max(xbL, xbR)

1− xbi − xbA
, (14)

xb′ i = xbi + bunused, i ∈ SortD, (15)

where xbL and xbR denote the bandwidths of the adjacent beams when beam i has
two adjacent beams, whereas xbA is the bandwidth of the adjacent beam when beam
i has only one adjacent beam. As shown in Figure 2, for population evaluation, the
bandwidth vector must be transformed into a bandwidth allocation vector:

bwi = xb′ i × Btot, i ∈ {1, 2, · · · , Nb}. (16)

The UBA method has two issues: First, in step 2, it needs to repair the positions of a
significant number of particles in the algorithm population while only ensuring that this
portion of particles satisfies the constraint rather than having performed a valid search.
These particles do useless work with greater probability, in addition to increasing the
computational complexity. Second, the low-bandwidth flexibility of each beam affects the
algorithm’s ability to search the solution space, reducing its global optimization capability.

3.2. Non-Dominated Beam Coding

We assume that beams with different polarizations are independent; therefore, we
focus on the bandwidth overlap between adjacent beams with the same polarization. We
assume that beam B dominates beam A when beam A is adjacent to beam B and that the
bandwidth of beam A is influenced by beam B. If we treat the bandwidths of the beams
sequentially, the dominance phenomenon is almost ubiquitous; however, if we assign
values to the bandwidth beams at intervals, there is no influence between them.

As depicted in Figure 4, the adjacent non-dominant beams dominate the bandwidth of
the dominant beam, and there is no bandwidth overlap constraint between non-dominant
beams. The bandwidth vector (XBND) can be encoded as follows:

xbj = r, r ∼ U(0, 1), j ∈ BSND, (17)

XBND = [xb1, xb2, · · · , xbNnd ]. (18)

As demonstrated in Figure 5, the NDBC method encodes only the non-dominated
beams and generates directly corresponding bandwidth values, whereas the bandwidth of
the dominated beams is determined by their respective adjacent dominated beams.

Once the population has evolved during the population evolution session, it must be
converted to a bandwidth allocation vector in order to ensure that the bandwidth constraint
is met. The conversion method is as follows:

bwj = xbi × Btot, ∀j = ndi ∈ BSND, i ∈
{

1, 2, · · · , Nnd
}

, (19)

bwj =

{
[1−max(xba, xbb)]× Btot, ∃(a, j, b)adj,p

(1− xba)× Btot, only∃(a, j)adj,p
, f or

{
∀j /∈ BSND

∀a, b ∈ BSND&a 6= b
. (20)
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Dominated Beam

No Constraint

21 43 Nb 

Non-dominated Beam

 
Bandwidth 

Vector XBND
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Beam 
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Bandwidth 
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Vector BW 

 

Population 

Evolution

Population Evaluation

Bandwidth Allocation Calculation 

Constraint

xb1

bw1

xb2 ndN
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bw2 bw3 bN
bw −1 bN

bw

 
Figure 4. Principles of coding methods and algorithm evolution (NDBC). A column of adjacent beams
is set up one by one as a dominant beam column and a non-dominant beam column, respectively.
The two beam columns are denoted as BSD = {2, 4, · · ·} and BSND = {1, 3, · · · , Nb}, with Nd and
Nnd beams, respectively.

Figure 5. Calculation of the bandwidth of the dominant beam. To maximize bandwidth utilization,
we set bandwidth of the dominant beam to its maximum value (subject to the constraints). Although
unused bandwidth remains, this bandwidth cannot be reallocated in the current scenario.

3.3. Complexity Analysis and General Application Architecture

Assume that M denotes the total number of beams, Ge represents the number of gener-
ations, and Npop is the algorithm’s population size. For the UBA method, the computational
complexities associated with eliminating overlapping bandwidth and allocating unused
bandwidth are O

(
GeNpop M

)
and O

(
GeNpop M

)
, respectively. The total computational

complexity is as follows:

O
(
GeNpop M + GeNpop M

)
= O

(
2GeNpop M

)
. (21)
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For the NDBC method, the computational complexity of the method is primarily
attributable to the computation of the dominant beam’s bandwidth. We assume Mnd as the
total number of non-dominated beams. The computational complexity is as follows:

O
(

GeNpop Mnd
)
≈ O

(
1
2

GeNpop M
)

. (22)

Therefore, the computational complexity of NDBC is approximately one-fourth that
of UBA. As shown in Table 1, we investigated the degree of beam dominance for UBA
and NDBC in order to determine the effect of the bandwidth constraint handling method
on the search flexibility of the algorithm. As the order is randomly reversed in step 1 for
UBA, the first and last beams are actually dominated by their neighboring beams. The
non-dominated beams in NDBC are not dominated by one another, whereas the first and
last beams are dominated by only one of their neighboring beams. We quantify the number
of neighboring beams that can exert influence on a beam as its degree of dominance; the
greater the degree of dominance, the less flexible the beam’s bandwidth.

Table 1. Domination degree of UBA and NDBC.

Degree of Domination UBA NDBC

0 0 ≈ M/2
1 2 2
2 M− 2 ≈ M/2− 2

As shown in Table 1, assuming a column of adjacent beams with M beams, the UBA
method is dominated by two adjacent beams for almost all beams. On the other hand,
NDBC only needs to encode and optimize the bandwidth of the non-dominated beams,
thereby practically achieving complete search flexibility. This modification effectively
enhances the algorithm’s global optimization performance. The general architecture of the
NDBC method applied to the metaheuristic algorithm is depicted in Table 2.

Table 2. The general architecture of the metaheuristic algorithm using the NDBC method.

Input: D(Demand);
Output: Pbest, BWbest, Rbest

1: /*Initialization*/
2: /*Non-dominated Beam Coding*/
3: while iteration < Maximum iterations
4: /* Population Evolution */
5: for each operator in Algorithm do
6: /*Population Evolution*/
7: /*Power Constraint Handling*/
8: end for
9: /*Population Evaluation*/
10: /*Bandwidth Constraint Handling*/
11: /*Dominated Beam Bandwidth Calculation*/
12: /*Beam Data Rate Calculation*/
13: /*Get Optimal Solution*/
14: end while
15: Return the final solution

4. Results

The simulation scenario was configured as a GEO multibeam satellite with 37 beams.
Figure 6 depicts the beam distribution. The majority of the simulation scenario parameters
were obtained from [1,20]. Table 3 details some of the most important parameters.
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Figure 6. Schematic diagram of the distribution of 37 beams. Using the NDBC method, all red and
blue beams (17 in total) are selected as non-dominated beams, whereas all green and yellow beams
(20 in total) are dominated beams. The total demand for traffic across all beams is 24.16 Gbps, with a
standard deviation of 177 Mbps.

Table 3. Parameters used in the simulation scenario.

Parameter Symbol Value Unit

Total power Ptot 2350 W
Total bandwidth Btot 375 (×2) MHz
Power maximum Pbmax 100 W

Transmit antenna gain Gt 52.2 dB
Receive antenna gain Gr 41.5 dB
Free-space path losses LFS 209 dB
System temperature Tsys 320 K

Roll-off factor αr 0.2 —
Link margin µ 1.0 dB

Carrier-to-adjacent-beam interference C/ABI 36 dB
Carrier-to-adjacent-satellite interference C/ASI 28 dB

Carrier-to-cross-polarization interference C/XPI 30 dB
Carrier-to-third-order inter-modulation interference C/IMI 21 dB

Standard metaheuristic algorithms, such as GA [20], DE [28], PSO [29], and QPSO [30],
were utilized in our simulations. For a fair comparison, each algorithm’s population size
and termination conditions were set to the maximum number of iterations. Table 4 provides
the algorithm parameters. A DVB-S2 [31] and DVB-S2X [32] hybrid MODCOD table was
used, which was screened such that as the threshold value increased, the spectral efficiency
increases uniformly.

As depicted in Figure 7, the execution time of the constraint handling session varied
across iterations due to the random nature of the algorithm’s evolution. NDBC was more
stable and required less time to execute each algorithm than UBA. The execution time of
constraint handling is proportional to the number of iterations. Quantitatively, NDBC
required approximately one-fourth to one-fifth of the time required by UBA, achieving an
effective reduction, indicating that the computational complexity of NDBC is lower than
that of UBA. This result is consistent with the analysis presented in Section 3.3 regarding
computational complexity.
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Table 4. Algorithm parameters.

GA GA DE DE

Parameter Value Parameter Value

Tournament size
Blend Alpha

Crossover prob.
Mutation prob.

5
0.2
0.95

[0.05, 0.15]

Ini. Mutation Prob.
Crossover Prob.

0.2
0.1

PSO PSO QPSO QPSO

Parameter Value Parameter Value

Inertia weight
Cognitive factor

Social factor

[0.2, 1.0]
1.0
1.0

Systolic-expansion
factor [0.01, 0.8]

Figure 7. The execution time required for the constraint handling session: (a) constraint handling
time of a single execution (with 500 iterations and a population size of 400); (b) total constraint
handling time generated by both methods versus the number of iterations (with a population size
of 400). The results in the graph demonstrated that NDBC can reduce the execution time of the
bandwidth-constrained handling session by 75–80%.

The optimal results of each algorithm with UBA and NDBC are depicted in Figure 8.
According to the model presented in this paper, the USC was 1.967 Gbps when bandwidth
and power are distributed uniformly (denoted as average bandwidth and average power
allocation, ABAP). Figure 8a illustrates the execution time of each algorithm for varying
population sizes. Except for the GA, the relationship between the algorithm’s execution
time and population size was approximately linear. The DE, PSO, and QPSO algorithms
executed faster than the GA algorithm. In comparison to the UBA method, the NDBC
method reduced the total execution time of each algorithm by 9–21%. Figure 8b depicts
the mean values of each algorithm’s optimized solutions for varying population sizes. The
quality of the optimal solution improved proportionally to the size of the population. As
depicted in the graph, the NDBC method significantly improved the optimized solution
of each algorithm by 9–33%. In terms of algorithm comparison, the strength of algorithm
optimization capability is ranked as QPSO, PSO, DE, and GA. However, when using UBA,
this ordering is PSO, DE, GA, and QPSO. We speculate that QPSO is more sensitive to the
flexibility of the search compared to other algorithms.
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Figure 8. The execution time (a) and optimized solutions (b) obtained by the algorithms. The
population size of each algorithm ranged from 100 to 600, and 300 iterations were performed. The
dashed and solid lines in the figures represent the UBA and NDBC methods, respectively, whereas
different colors represent different algorithms.

Increasing the population size can result in a more optimal solution, but it also in-
creases the execution time. In the following simulations, the population size was set to 400
in order to control the execution time of the algorithm without causing it to take too long.
The maximum and minimum number of iterations were 500 and 200, respectively. After 50
iterations, the algorithm terminated if the improvement in the optimized solution was less
than 5× 10−5.

Figure 9 depicts the convergence curves with the best results from 50 executions of
each algorithm under the threshold termination condition, reflecting the convergence speed
and optimization capability of each algorithm. As depicted in Figure 9, GA and QPSO
had faster convergence rates, reaching convergence after approximately 100 iterations. The
NDBC method enhanced the quality of each algorithm’s optimized solution and accelerated
their convergence, and DE and QPSO showed greater potential. In combination with the
algorithm execution time, QPSO can achieve the best optimized solution in the shortest
time, indicating that QPSO performs better when the search flexibility is high.

Figure 9. Convergence for the best execution of the algorithms using different bandwidth constraint
handling methods. The dashed and solid lines in the figure represent the UBA and NDBC methods,
respectively, whereas different colors represent different algorithms.
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As shown in Table 5, the improvement in GA (UBA) in the mean USC metric (0.958)
was 51% compared to UBUP (1.967), as opposed to 55.7% (1.9→0.84) reported in the
literature [20]. We modified the link budget model based on [20] and used a different
MODCOD table such that the results slightly differed. The best average USC result of the
QPSO algorithm utilizing NDBC was 0.641, representing a 67.4% improvement relative to
UBUP (1.967) and a 21% improvement relative to the result reported in [20]. The NDBC
method improved all USC metrics in comparison to the UBA method, with improvements
of 9–36% for the USC mean and 14–38% for the execution time.

Table 5. Optimal solution and execution time of the algorithm.

Algorithm Result GA DE PSO QPSO

UBA

Worst run 1.115 1.016 0.986 1.538
Average run 0.958 0.826 0.807 1.006

Best run 0.768 0.636 0.671 0.741
Standard deviation 62.28 73.28 45.16 115.21

Average execution time 5.16 4.39 4.16 2.77
Average iteration 248.96 423.58 314.27 216.39

NDBC

Worst run 1.026 0.912 0.853 0.798
Average run 0.866 0.749 0.686 0.641

Best run 0.709 0.606 0.623 0.576
Standard deviation 64.53 65.65 46.74 46.80

Average execution time 4.02 2.66 3.57 2.23
Average iteration 220.02 292.45 321.13 214.46

For an efficient comparative analysis, we selected the ABAP algorithm, the GA(UBA)
scheme from [20], the comparison algorithm GA(NDBC), and the QPSO(NDBC) algorithm,
which applied NDBC most effectively. Figure 10 depicts the capacity allocation and USC
outcomes for each beam based on the four previously mentioned algorithms. Using the GA
algorithm, NDBC was able to achieve better allocation results for beams 6, 11, 18, 24, and 36
in comparison to UBA. QPSO was able to improve the USC results in beams 2 and 18 using
NDBC in comparison to GA. Overall, NDBC reduced resource allocation for high-demand
beams, improved USC, and increased allocation fairness.

Figure 10. Capacity allocation and USC of each beam for the best single execution of the algorithm.
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An important aspect of satellite resource allocation, i.e., traffic demand, depends
on the specific geographical location and the associated time of day; therefore, when
considering a large footprint composed of multiple beams (as in this paper), with beams
experiencing varying capacity requests that also vary in time (slowly, i.e., on the order of
hours). In this line, resource allocation in continuous time scenarios has been researched in
various studies [12,18,19]. Simulation experiments were subsequently conducted in order
to determine whether the application of the NDBC method in the continuous time case
deviated from the results in the static scenario.

Assuming that the geographical characteristics that influence beam demand remain
constant, the demand is primarily influenced by temporal characteristics. The demand
ratio of each point beam was considered to be identical to the stationary scenario described
previously, with a random deviation of 20% or less added to simulate the actual situation.
Figure 11 illustrates the total demand, with a sampling interval of 10 min and a scheduling
time limit of 3 s. The maximum and minimum number of iterations was 500 and 200,
respectively. After 50 iterations, the algorithm terminated if the improvement in the
optimized solution was less than 5× 10−5.

Figure 11. Evolution of total demand over time.

As shown in Figure 12a, the USC values of NDBC for all algorithms were superior to
those of UBA in the majority of instances, whereas the application of the QPSO and PSO
algorithms provided superior results compared to GA and DE. In conjunction with Table 5,
it is evident that the stability of PSO and QPSO utilizing NDBC is superior to that of GA
and DE (the standard deviations of the average USC were 46, 46, 65, and 64, respectively).
We selected the average allocation algorithm (abbreviated as ABAP), the scheme GA(UBA)
from [20], the comparison algorithm GA(NDBC), and the QPSO algorithm applying NDBC,
with the best results, in order to investigate the service capability of the four aforementioned
algorithms in the continuous demand scenario.

Figure 12b depicts the following phenomena: (1) the metaheuristic algorithm im-
proved the serviceability of the fixed-average algorithm, (2) NDBC can improve the service
capability of UBA when the algorithm is GA, and (3) when using NDBC, QPSO can achieve
a better solution than GA. Owing to the limited resources, the system service capacity
reaches the upper session limit of its service capacity during the peak demand period of
the day. In general, the NDBC method proposed in this paper can adapt to continuous-
time scenarios.



Entropy 2022, 24, 1536 15 of 17

Figure 12. The execution time and optimized solutions of the algorithms in continuous-time demand
scenarios. (a) The red vertical line indicates where the USC of NDBC is better than that with
UBA, and vice versa for grey; and (b) the actual offered capacity calculated by subtracting the USC
value from the total required capacity at each instant (this value is usually not equal to the total
allocated capacity).

5. Conclusions

In this paper, we proposed a non-dominated beam-coding (NDBC) method to solve
the adjacent bandwidth overlap constraint in the HTS joint resource allocation problem,
achieving full bandwidth flexibility in the evolution of the algorithm while decreasing
computational complexity. By applying the NDBC method to a metaheuristic algorithm,
it is possible to reduce the algorithm’s execution time while simultaneously enhancing
the quality of the resource allocation results. Finally, a general architecture for applying
NDBC to metaheuristic algorithms was developed. Simulations demonstrated that NDBC
can reduce the computational complexity of the bandwidth-constrained handling session
by 75–80% and the overall algorithm execution time by 9–21% while improving the USC
results by 9–33%. We also found that when NDBC was applied, the PSO and QPSO
algorithms performed better than the GA and DE algorithms. Importantly, the model does
not consider all aspects of a multibeam satellite communication system, as doing so would
make the problem extremely complex and difficult to describe. Our conclusions remain
unaffected by factors not accounted for in the model, such as the antenna pattern, satellite
payload characteristics, overall frequency plan (feeder and user links), rain attenuation, and
precoding. The results reported herein are instructive for the application of metaheuristic
algorithms to multibeam satellite DRM problems.
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