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Abstract: Multiqubit CCZ gates form one of the building blocks of quantum algorithms and have
been involved in achieving many theoretical and experimental triumphs. Designing a simple and
efficient multiqubit gate for quantum algorithms is still by no means trivial as the number of qubits
increases. Here, by virtue of the Rydberg blockade effect, we propose a scheme to rapidly implement
a three-Rydberg-atom CCZ gate via a single Rydberg pulse, and successfully apply the gate to realize
the three-qubit refined Deutsch–Jozsa algorithm and three-qubit Grover search. The logical states of
the three-qubit gate are encoded to the same ground states to avoid an adverse effect of the atomic
spontaneous emission. Furthermore, there is no requirement for individual addressing of atoms in
our protocol.

Keywords: multiqubit controlled gate; Rydberg blockade; quantum algorithm

1. Introduction

Fault-tolerant quantum computing [1], exploiting quantum mechanical phenomena
such as superposition and entanglement, is crucial for solving difficult problems in many-
body quantum mechanics and mathematics which lack efficient algorithms on classical
computers. It also holds a promise for simulation of quantum systems [2], chemistry [3],
materials science [4], finance [5], and so on [6–12]. Any quantum computation can comprise
of a sequence of one- and two-qubit quantum gates [13]. Therefore, extensive efforts have
been made to achieve high-speed, high-fidelity, and robust two-qubit gates, and various
two-qubit gate schemes have been proposed, such as adiabatic gates [14], diabatic gates [15],
resonator-induced gates [16], and microwave gates [17].

With the rapid development of quantum information science, an enormous amount
of ingenious work, e.g., quantum error correction [18] and quantum algorithms [19], re-
quires the large-scale quantum computation based on the multiqubit controlled operations
(the number of qubit is greater than 2). Although the multiqubit controlled operations
can be decomposed into a series of universal single- and two-qubit gates, the quantum
system becomes more and more complicated as the number of qubits increases, and it is
more difficult to get an error per gate (the difference between 1 and average gate fidelity)
below the fault-tolerant threshold. Thus, the direct implementation of multiqubit logic
gates can greatly simplify the quantum circuit and improve the efficiency and quality of
quantum information processing, which results in the increased attention to straight multi-
qubit gates [20–23]. For instance, three-qubit controlled gates, a typical class of multiqubit
gates, have been demonstrated in many experimental platforms, such as trapped ions [24],
Rydberg atoms [25,26], superconducting systems [27], nuclear magnetic resonance [28],
and photonic architecture [29]. However, it is still a challenge for the direct realization of
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a fast multiqubit logic gate with fewer driven fields and without individual addressing
of atoms.

Rydberg atoms have long been deemed as a promising platform because of the strong
and tunable interactions between Rydberg states, and play important roles in entanglement
generation [30,31], quantum simulators [32], quantum state transfer [33], and so on. The in-
teraction can lead to the phenomenon of Rydberg blockade [34], which prevents nearby
atoms from being excited to the Rydberg state simultaneously via a single Rydberg excita-
tion. Motivated by the first Rydberg-blockade proposal to perform fast gate operations [35],
extensive efforts have been made to improve the gate fidelity and design alternative pro-
posals [36–39], as well as generalize relevant ideas to multiqubit gates [40–46]. Particularly,
Han et al. [37] implemented fast two-qubit entangling gates via Rydberg blockade and
required neither individual addressing of atoms nor adiabatic procedures. Nevertheless,
their scheme can not rapidly implement a three-qubit gate, and the logical states have to be
encoded by different ground and excited states, which increases the complexity and the
adverse effect of the decoherence. Jandura et al. [46] also designed the controlled-Z gate
and its three qubit generalization. However, the complicated laser pulses dependent on
operation time lead to more restrictions.

In this work, we put forward an alternative scheme to rapidly implement a three-
Rydberg-atom CCZ gate via a single Rydberg pulse, where the average gate fidelity can
be above 97%. Our protocol not only requires neither individual addressing of atoms nor
adiabatic procedures, but also encodes the logical states with the same ground states. In
addition, compared with the schemes comprised of step-by-step operations on different
atoms [23], our scheme is the one-step implementation scheme. It significantly reduces
the complexity of experimental operations and raises the feasibility of experiments. Fi-
nally, we successfully apply our proposal to realize three-qubit refined Deutsch–Jozsa
algorithm [47,48] and three-qubit Grover search [49,50].

2. Principle of the Fast Three-Rydberg-Atom CCZ Gate

The system to realize the fast CCZ gate consists of three 87Rb Rydberg atoms trapped
in three tweezers with separation rij shorter than the blocking radius, where rij is the
atomic distance between the i- and j-th atoms, and there is no requirement for the shape
of the atomic arrangement. Each atom includes two ground states and one Rydberg
state. The ground states are |0〉 ≡ |F = 1, mF = 0〉 and |1〉 ≡ |F = 2, mF = 0〉 of 5S1/2
hyperfine clock states with splitting 2π × 6.83 GHz, which are used as encoded quantum
bits to effective restrain the adverse effect of atomic spontaneous emission. The Rydberg
state |r〉 ≡ |70S1/2, mj = −1/2〉 can be dispersively coupled to the ground states via
one common Rydberg pulse [23] with effective Rabi frequency Ω ≈ 2π × 3.5 MHz and
adjustable detuning δ. Due to the above design, our scheme is simple for experiment and
needn’t individual addressing of atoms. The corresponding schematic illustrations for the
setup and atomic levels of the three-Rydberg-atom system is shown in Figure 1.

In the interaction picture, the total Hamiltonian can be written as

HI =
Ω
2

3

∑
j=1

σr1
j eiδt + H.c. + ∑

k>j
Ujkσrr

j σrr
k , (1)

where |α〉jj〈β| is parameterized as σ
αβ
j (α, β = 0, 1, r) and Uij denotes the Rydberg–Rydberg

interaction of i- and j-th atoms. Here, we consider the Rydberg–Rydberg interactions
are caused by the long-range van der Waals interaction, which is equal to −C6/r6

ij and

C6 = −2π × 862.69 GHz·µm6 for the Rydberg state |r〉 ≡ |70S1/2, mj = −1/2〉 [51]. It is
noteworthy that the result of our scheme is independent of the functional form of Uij and
only the strength of the interaction at a given fixed distance of the two atoms is relevant.
Thus, a dipole-dipole interaction is also valid for our scheme.
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Figure 1. Schematic illustrations for the setup and atomic levels of the three-Rydberg-atom system.
Each atom includes two ground states |0, 1〉 and one Rydberg state |r〉. The Rydberg state is disper-
sively coupled to the ground states via one common Rydberg pulse with effective Rabi frequency
Ω ≈ 2π × 3.5 MHz and adjustable detuning δ. The Rydberg–Rydberg interaction between the i- and
j-th atoms is described as Uij.

While the condition of Rydberg blockade min(Uij)� Ω is satisfied, the simultaneous
excitations of Rydberg atoms will be suppressed and the Equation (1) can be simplified as
an effective Hamiltonian (see Appendix A for details),

Heff =
Ω
2 ∑

j
P0

j−1σr1
j P0

j+1eiδt + H.c. (2)

Here, P0
j = 1− σrr

j and periodic boundary conditions of j is considered. Based on
the effective Hamiltonian, we can obtain the gate operation in the subspace spanned by
{|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉} as

Cs(t) = diag{C0, C1, C1, C2, C1, C2, C2, C3}, (3)

where

Cl = cos
(

1
2

δχlt
)
+ i

1
χl

sin
(

1
2

δχlt
)

,

χl =

√
lΩ2

δ2 + 1, l = 0, 1, 2, 3.

Once a suitable time for the gate operation is selected, we can obtain a gate op-
eration diag{1, 1, 1,−1, 1,−1,−1, 1}. To get the target CCZ gate Cz = diag{−1, 1, 1, 1,
1, 1, 1, 1}, three single qubit logical gates (operation σ11

j − σ00
j for the j-th atom) operated on

the subspace {|0〉, |1〉} will be further performed in succession, and the Equation (3) can be
obtained as

C(t) = diag{−C0, C1, C1,−C2, C1,−C2,−C2, C3}. (4)

Then we characterize the quality of the gate operation via the trace-preserving-
quantum-operator-based average gate fidelity [52,53]

F̄(ε, Û) =
∑α tr(ÛÛ†

αÛ†ε(Ûα)) + d2

d2(d + 1)
, (5)

where Ûα is the tensor of Pauli matrices I I I, I IX, . . . , ZZZ, d = 8 is the dimension for
the three-qubit logic gate, Û is the perfect CZ gate, and ε is the trace-preserving quantum
operation obtained through our real logic gate C(t), i.e., ε(Ûα) = C(t)ÛαC†(t). The analysis
formula of the average gate fidelity for our scheme can be described as

F̄ =
1

72
|C0 + 3C1 − 3C2 + C3|2 +

1
9

. (6)
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Then one can regulate the detuning δ and the operation time to make F̄ tend to 1.
In Figure 2a, we plot the average gate fidelity with respect to δ as well as the gate op-

eration time, where the system is governed by the full Hamiltonian of Equation (1). The av-
erage gate fidelity can rapidly reach 97.31% with the gate operation time t = 0.8049 µs and
δ/2π = 1.166 MHz, which is good enough for the direct implementation of the three-qubit
CCZ gate. For the other values of δ, it can also be above 90% within t = 1.2 µs. These
results adequately demonstrate the feasibility and the high efficiency of our scheme. In
addition, the CCZ gate can be realized directly without the three single qubit logical gates,
i.e., set a suitable time to make Cs(t) equal to the CZ gate. In Figure 2b, we also illustrate
the average gate fidelity without the three single qubit logical gates as functions of δ and t.
Compared with our original scheme, the scheme without the three single qubit logical gates
will spend too much time. Furthermore, the average gate fidelity can only arrive at 92.62%
with t = 1.955 µs and δ/2π = 2.993 MHz. The relevant data exhibits the importance for
the operation of three single qubit logical gates.

Compared with the implementation of the fast two-qubit entangling gates via Rydberg
blockade [37], it is observed that the aim of our scheme is to make the direct implementation
of the CCZ gate easier and more efficient. Therefore, our scheme is designed for the three-
Rydberg-atom system and cannot be generalized, which is a limitation for the present
method. Besides, the method is sensitive to the variations of gate operation time. It is also
the fundamental limitation for the schemes governed by the unitary dynamics.

Figure 2. (a) The average gate fidelity with respect to δ as well as the gate operation time, where
the system is governed by the full Hamiltonian of Equation (1) to realize the gate of Equation (4).
(b) The average gate fidelity without the three single qubit logical gates as functions of δ and t. For the
two sub-pictures, the Rabi frequencies and the interaction strengths are Ω = 2π × 3.5 MHz and
Uij = U ≈ 2π × 35 MHz corresponding the atomic distance rij = r ≈ 5.4 µm.

3. Applications of Quantum Algorithms
3.1. Refined Deutsch–Jozsa Algorithm

Quantum algorithms play an important role in improving computational speed over
their classical counterparts due to computational parallelism or interference effects. For the



Entropy 2022, 24, 1371 5 of 9

numerous quantum algorithms, the original Deutsch–Jozsa (DJ) algorithm [54] or its modi-
fied version (refined DJ algorithm) [47] represents a paradigmatic example, which has been
implemented in various systems [55–57].

The heart of the original DJ algorithm [54] is to distinguish constant functions fC(x)
from balanced functions fB(x) in an N-qubit system in terms of one query of binary-valued
function f (x) : {0, 1}N → {0, 1}. The function can be described as the unitary operation

U f |x〉|y〉 = |x〉|y⊕ f (x)〉, (7)

where x is an N-qubit input and y is the auxiliary qubit. To improve the original DJ
algorithm, Collins et al. [47] proposed the refined DJ algorithm that fully removes the
auxiliary qubit y. The corresponding action of the f -controlled gate can be expressed
as [47,48]

UN
f |x〉 = (−1) f (x)|x〉. (8)

For the three-qubit system N = 3, there are one f -controlled gate of the constant
functions U3

fC
= diag{1, 1, 1, 1, 1, 1, 1, 1} and 35 nontrivial and distinct f -controlled gates

of the balanced functions U3
fBj

(j = 1, 2, . . . , 35). Here, U3
fBj

can be decomposed into

the combination of CCZ gate J111 = diag{1, 1, 1, 1, 1, 1, 1,−1} and single qubit logical
gates of the k-th atom σx,k = σ10

k + σ01
k [37]. For example, the f -controlled gate U3

B1 =
diag{1,−1, 1,−1,−1, 1, 1,−1} can be constituted as

U3
B1 = J111 J100 J011 J001 (9)

with J100 = σx,3σx,2 J111σx,2σx,3, J011 = σx,1 J111σx,1, and J001 = σx,2σx,1 J111σx,1σx,2. As for
the gate J111, it can be implemented by replacing the dispersive coupling |1〉 ↔ |r〉 with
the dispersive coupling |0〉 ↔ |r〉 in our three-qubit CCZ gate scheme. In Figure 3, we
illustrate the contour of average gate fidelity of U3

B1 with respect to the detuning and the
gate operation time. The three-qubit Rydberg system is also governed by the original
Hamiltonian. It can be found that the f -controlled gate of the balanced function can be
achieved with a high fidelity 89.84% as t = 0.8049 µs and δ/2π = 1.166 MHz, which
certifies the feasibility of the application.

Figure 3. Contour plot of average gate fidelity of U3
B1 with respect to the detuning and the gate

operation time. The relevant parameters are the same as those of Figure 2a.

3.2. Grover Search

Grover search [49] is another remarkable quantum algorithm to find out a certain
state and is widely used in various fields [58–64], which can be carried out via three
steps [65]. Firstly, one can employ Hadamard gates to prepare a superposition state
|ψ0〉 = ∑N−1

α=0 |α〉/
√

d, where d is the dimension of the system. The second step is to
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perform an iteration Q including two operations: (a) Take advantage of quantum phase
gate Iτ = I − 2|τ〉〈τ| (I is the identity matrix) to get the inversion of the amplitude of the
marked state |τ〉; (b) Use the diffusion transform D (Dαβ = 2/d− δαβ, α, β = 1, 2, . . . , d) to
get the inversion about the average of the amplitudes of all states. Finally, the marked state
can be obtained by a measurement of the whole system. In this section, we discuss the
application of our scheme on the three-qubit Grover search.

For our three-qubit system, the Hadamard gate can be defined as

H⊗3 =

(
1√
2

)3( 1 1
1 −1

)
⊗
(

1 1
1 −1

)
⊗
(

1 1
1 −1

)
,

which can be performed via external microwave pulses. The iteration Q for the second step
can be characterized as

Q = H⊗3C(t)H⊗3 Iτ , (10)

where the C(t) can be obtained by the original Hamiltonian of Equation (1). While the
gate operation time t is suitable, we can obtain an approximate three-qubit quantum phase
gate with

C(t) ≈ diag{−1, 1, 1, 1, 1, 1, 1, 1}. (11)

Then a full Grover search for three qubits is available through our scheme.
In Figure 4, we take the marked state |101〉 as an example and calculate the fidelity of

the state searched for as functions of the iteration number with different Rydberg–Rydberg
interaction strength. For simplicity, the Rydberg–Rydberg interaction strength between the
i- and j-th atom has been assumed as Uij = U. The result is good enough for the three-qubit
Grover search with the second iteration and U/2π = 35 MHz, where a fidelity of up to
92.46% can be acquired. Moreover, the fidelity can be also improved to 94.76% and 95.08%
with the increasing of the Rydberg–Rydberg interaction strength. These can fully reflect the
feasibility for the application of our scheme to the three-qubit Grover search.

1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

Figure 4. Fidelity of the state searched for as functions of the iteration number with different Rydberg–
Rydberg interaction strength. The marked state is |101〉 and the initial state is |000〉. The relevant
parameters are the same as those of Figure 2a and the gate operation time for C(t) is set as 0.8049
µs. For simplicity, the Rydberg–Rydberg interaction strength between the i- and j-th atom are
assumed as Uij = U.

4. Discussion and Summary

While the ambient temperature is chosen as {0, 77, 300, 700} K, the effective lifetime
of 70S1/2 for Rb atoms will be {410.41, 287.78, 151.55, 92.257} µs, respectively [66]. Conse-



Entropy 2022, 24, 1371 7 of 9

quently, the operation time of all the above schemes that can be achieved within 1 µs is
much shorter than the effective lifetime of the Rydberg state.

In summary, we successfully achieve a fast three-Rydberg-atom CCZ gate via a com-
mon Rydberg pulse and apply it to the three-qubit refined Deutsch–Jozsa algorithm and
three-qubit Grover search. In our scheme, the Rydberg blockade effect is used to inhibit
the simultaneous excitations of Rydberg atoms. The logical states are encoded into the
same ground states to avoid the adverse effect of the atomic spontaneous emission. Ad-
ditionally, compared with the previous scheme, our proposal requires neither individual
addressing of atoms nor step-by-step operations on different atoms. Accordingly, the com-
plexity of experimental operations is reduced and the feasibility of experiments is raised
significantly. With the current experimental technologies, the average gate fidelity of the
three-Rydberg-atom CCZ gate can be above 97% with a short operation time. We believe
the present scheme supplies a viable prospect for the realizations of multiqubit gate and
quantum algorithms.

Author Contributions: Conceptualization, X.S. and S.T.; methodology, X.S.; software, D.L.; validation,
C.Y.; data curation, D.L.; writing—original draft preparation, D.L. and C.Y.; writing review and
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published version of the manuscript.
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(11774047, 12174048) and the Hunan Provincial Natural Science Foundation of China (2020JJ4146).

Data Availability Statement: Data available on request from the corresponding author.
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Appendix A

Here, we will show the detailed derivation from the Equation (1) to the Equation (2) of
the main text. For simplicity, we can choose the interaction strengths U12 = U13 = U23 = U,
and the Equation (1) can be rewritten as

HI =
Ω
2

3

∑
j=1

σr1
j eiδt + H.c. + U ∑

k>j
σrr

j σrr
k . (A1)

Then we utilize the formula iU̇†
0 U0 + U†

0 HIU0 to reformulate the Hamiltonian in a
rotating frame with respect to U0 = exp {−itU ∑k>j σrr

j σkk
k } as [67,68],

HU =
Ω
2 ∑

j,m,n
Pm

j−1σr1
j Pn

j+1ei[(m+n)U+δ]t + H.c., (A2)

where m, n = 0, 1, P0
j = 1 − σrr

j , P1
j = σrr

j , and periodic boundary conditions of j is
considered. While the condition of Rydberg blockade U � Ω is satisfied, the simultaneous
excitations of Rydberg atoms will be suppressed and the Equation (A2) can be simplified as
the effective Hamiltonian, i.e., the Equation (2) of the main text,

Heff =
Ω
2 ∑

j
P0

j−1σr1
j P0

j+1eiδt + H.c. (A3)
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