
Citation: Hinchliffe, C.; Yogarajah,

M.; Elkommos, S.; Tang, H.; Abasolo,

D. Entropy Measures of

Electroencephalograms towards the

Diagnosis of Psychogenic

Non-Epileptic Seizures. Entropy 2022,

24, 1348. https://doi.org/10.3390/

e24101348

Academic Editor: Francesco Carlo

Morabito

Received: 31 May 2022

Accepted: 17 September 2022

Published: 23 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Entropy Measures of Electroencephalograms towards the
Diagnosis of Psychogenic Non-Epileptic Seizures
Chloe Hinchliffe 1,* , Mahinda Yogarajah 2,3,4, Samia Elkommos 4,5, Hongying Tang 6 and Daniel Abasolo 1

1 Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, University of Surrey,
Guildford GU2 7XH, UK

2 Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London,
National Hospital for Neurology and Neurosurgery, University College London Hospitals, Epilepsy Society,
London WC1E 6BT, UK

3 Neurosciences Research Centre, St George’s University of London, London SW17 0RE, UK
4 Atkinson Morley Regional Neuroscience Centre, St George’s Hospital, London SW17 0QT, UK
5 School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London,

London WC2R 2LS, UK
6 Department of Computer Science, University of Surrey, Guildford GU2 7XH, UK
* Correspondence: c.hinchliffe@surrey.ac.uk

Abstract: Psychogenic non-epileptic seizures (PNES) may resemble epileptic seizures but are not
caused by epileptic activity. However, the analysis of electroencephalogram (EEG) signals with
entropy algorithms could help identify patterns that differentiate PNES and epilepsy. Furthermore,
the use of machine learning could reduce the current diagnosis costs by automating classification.
The current study extracted the approximate sample, spectral, singular value decomposition, and
Renyi entropies from interictal EEGs and electrocardiograms (ECG)s of 48 PNES and 29 epilepsy
subjects in the broad, delta, theta, alpha, beta, and gamma frequency bands. Each feature-band
pair was classified by a support vector machine (SVM), k-nearest neighbour (kNN), random forest
(RF), and gradient boosting machine (GBM). In most cases, the broad band returned higher accuracy,
gamma returned the lowest, and combining the six bands together improved classifier performance.
The Renyi entropy was the best feature and returned high accuracy in every band. The highest
balanced accuracy, 95.03%, was obtained by the kNN with Renyi entropy and combining all bands
except broad. This analysis showed that entropy measures can differentiate between interictal PNES
and epilepsy with high accuracy, and improved performances indicate that combining bands is an
effective improvement for diagnosing PNES from EEGs and ECGs.

Keywords: psychogenic non-epileptic seizures; machine learning; entropy

1. Introduction

Psychogenic non-epileptic seizures (PNES) clinically resemble epileptic seizures but
are not due to epileptic electrical brain activity [1]. Although the condition is almost as
prevalent as multiple sclerosis [2,3], PNES is regularly misdiagnosed: people with PNES
are not appropriately diagnosed for an average of seven years [4], and approximately 78%
of patients were taking at least one anti-epileptic drug at the time of accurate diagnosis [5].
This has serious adverse effects for both patients and healthcare systems, through unneces-
sary visits to hospitals, medical tests, and treatments. In addition, since anti-epileptic drugs
are not effective for PNES, these misdiagnosed patients will have endured the negative
side effects of these expensive drugs without any significant benefit [3]. Furthermore, an
estimated one in five referrals to epilepsy clinics actually have PNES [6], highlighting the
difficulties in making an accurate diagnosis.

The current gold standard method of diagnosis is the recording of a seizure with
video-electroencephalogram (EEG), from which a specialist assesses the semiology (the
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clinically observable features of the seizure) and visually inspects the EEG [7]. While this
method is reliable, there are several shortcomings. Not all epileptic seizures are associated
with qualitatively identifiable ictal EEG abnormalities [8], and EEG has a relatively poor
ability to accurately identify a patient without epilepsy, with a sensitivity of 25–56% [9]. As
a result, it can sometimes be difficult to differentiate between epileptic and psychogenic
seizures. Therefore, given the need for in-patient admission and prolonged video-EEG
recording, this diagnostic method is costly, inconvenient for the patient, and not accessible
to all hospitals [3].

Entropy is a measure of the randomness and uncertainty of a signal, and higher
entropy indicates a more complex or chaotic system [10]. It has a low computation cost
and has been shown to be effective by previous researchers, making it a suitable option for
machine learning. Entropy measures of the EEGs of PNES subjects have been of interest
to previous researchers. Pyrzowski et al. [11] used interval analysis of interictal EEGs to
compare 51 epilepsy subjects to 14 PNES and 14 headache (PNES and epilepsy free) subjects.
The EEGs were theta-alpha filtered and the zero crossing rates were histogram pooled and
normalised across the segments and/or channels. From this, the relative counts of fixed-
length intervals, several statistical measures, and the Shannon and minimum entropies were
extracted. The researchers found that only the entropy measure significantly separated
the epilepsy and non-epilepsy (headache patients included) without being affected by
the presence of antiepileptic drugs. The researchers found that Shannon entropy was
the better of the two entropies at separating epilepsy and non-epilepsy. Furthermore,
for Shannon entropy, the optimum frequency band was 7–13 Hz and performed best for
temporal-occipital channels, specifically T6 + T5.

One study [12] used 314 epileptic, non-epileptic, and healthy subjects. From these
EEGs, 14 EEG features including spectral entropy were extracted using the empirical
wavelet transform (EWT), singular spectrum empirical mode decomposition (SSEMD),
and singular spectrum empirical wavelet transform (SSEWT). The researchers compared
plots of the different types of seizures (e.g., focal non-epileptic, complex partial, interictal
non-epileptic, normal controls, etc.) for these features and with each extraction method.
For the EWT and SSEMD, the spectral entropies of the epileptic and non-epileptic groups
overlap. The SSEWT method, however, shows that spectral entropy has some separation,
with the normal subjects, focal non-epileptic, and tonic-clonic seizures isolated from the
other classes. Complex partial and generalized non-epileptic seizures are also separated
from the other seizure types but overlap each other.

Gasparini et al. [13] and Lo Giudice et al. [14] both used the entropy of the EEG
as a control for comparison to the entropies of hidden layers in deep learning models.
Gasparini et al. [13] extracted the Shannon and permutation entropies from the EEGs of six
PNES subjects and ten healthy controls and found no statistical difference between the two
classes for either measure. Lo Giudice et al. [14] used interictal EEG from 18 epilepsy and
18 PNES subjects and also found no statistical difference between the two classes for the
permutation entropy of the signal.

ECG analysis has also been a focus of previous PNES research. Ponnusamy, Marques,
and Reuber in 2011 [15] and 2012 [16], and Romigi et al. [17] all extracted the approximate
entropy (ApEn) from the heart rate (RR interval data) as a part of extensive heart rate
variability (HRV) analysis. Ponnusamy, Marques, and Reuber’s 2011 [15] study found that,
interictally, ApEn was significantly lower in PNES than in healthy controls, but there was
no statistical difference in interictal HRV ApEn between PNES and epilepsy subjects. Their
2012 study [16] found no statistical difference in ictal ApEn between PNES and epilepsy
groups. However, epileptic subjects showed a decrease in ApEn during seizure activity,
whereas PNES subjects did not. Romigi et al. [17], however, found that ApEn decreased
in PNES subjects during seizure activity compared to at rest, before, and after the attack.
Furthermore, there was no difference between subjects with PNES only and PNES subjects
with comorbid epilepsy.
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Single biomedical signal parameters have been shown to be insufficient as a differen-
tiator for PNES and epilepsy [18]. Therefore, a potential tool to mitigate these problems is
machine learning. Machine learning classifiers are mathematical algorithms that “learn”
how to separate conditions by training on a set of data. The validity of this trained model
is then tested using more data. When analysing biomedical signals, these data are typically
comprised of one or more features extracted from the signal taken at different observations.
This allows the classifiers to consider multiple factors with different types of information si-
multaneously. The model’s ability to separate the conditions is assessed using performance
metrics such as accuracy (ability to predict both conditions correctly) [19].

Machine learning has been previously used to classify entropy measures extracted
from the EEGs of PNES patients. For instance, from 2014–2018, a series of six papers
published by the same group of researchers [20–25] used spectral entropy as one of 55 EEG
features analysed by machine learning.

Ahmadi et al. [26] used EEGs from 20 epilepsy and 20 PNES subjects and compared
the Shannon entropy, spectral entropy, Renyi entropy, Higuchi fractal dimension, Katz
fractal dimension, and the EEG frequency bands with an imperialist competitive algorithm.
They found that spectral entropy and Renyi entropy were the most important EEG features
as they were always among the five best feature subsets. Furthermore, the classification
accuracy decreased significantly when either or both were excluded from a subset. They
also found that SVMs with a linear or RBF kernel were the best classifiers.

The same group did another study [10], this time with five epilepsy and five PNES
subjects. They extracted the same EEG features from each frequency band, this time
including the energy of the signal. The researchers found that beta was the best band for all
features and gamma was the worst. The highest performing features differ for each band,
making an overarching conclusion difficult.

Cura et al. [27] used synchrosqueezing to represent the time-frequency maps of
16 epilepsy and six PNES subjects. From these maps, 17 features were extracted: three flux,
flatness, and energy concentration measures; two Renyi entropy measures; six statistical
features; and five TF sub-band energy measures. The researchers used decision tree, SVM,
RF, and RUSBoost classifiers to differentiate all 17 features. For the three class problems, the
inter-PNES (non-seizure), PNES seizure, and epileptic seizure EEGs, the highest accuracy,
precision, and lowest false discovery rate were reported by RF with 95.8%, 91.4%, and 8.6%.
The highest sensitivity was reported by the RUSBoost classifier with 90.3%. All classifiers
except the SVM reported higher accuracy ≥ 93%, sensitivity ≥ 82%, and precision ≥ 86%
and lower false discovery rates ≤ 14% values. The researchers also compared the inter-
PNES and PNES EEGs for PNES seizure detection. All accuracies were ≥90% (excluding
the SVM for one patient) and RF reported the highest of these.

This paper will aim to assess the ability of seven entropy metrics to differentially
diagnose PNES and epilepsy by using these features individually as the inputs for four pop-
ular machine learning methods. This analysis will compare the diagnostic power of each
feature and each EEG frequency band for a large database of PNES and epilepsy EEG and
electrocardiogram (ECG) recordings.

2. Materials and Methods

The data used in this analysis were collected routinely at St George’s Hospital, Lon-
don and consisted of interictal and preictal surface EEG recordings from 48 PNES and
29 epilepsy patients. The PNES subjects have an age range of 17–59 (mean 34.76 ± 10.55)
and a male/female ratio of 14/34. The epilepsy subjects have an age range of 19–79 (mean
38.95 ± 13.93) and a male/female ratio of 18/11. Suitable cases were retrospectively identi-
fied from the video-EEG database of those attending for inpatient video-EEG monitoring
from 2016 to 2019. The diagnosis of functional seizures was made according to International
League Against Epilepsy diagnostic criteria [28] by at least two clinicians experienced in the
diagnosis of epilepsy and were documented through video-EEG in all cases. The diagnosis
of epileptic seizures was based upon EEG confirmed ictal epileptiform activity during
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the recorded epileptic event during video-EEG monitoring. Exclusion criteria for both
groups included cases with a dual diagnosis of both epileptic and functional non-epileptic
seizures. The recordings were taken with Natus Networks with an EEG32 headbox. The
EEG electrodes were placed according to the 10–20 system montage with Cz-Pz as the
reference electrode. The ECG is comprised of two electrodes, ECG+ and ECG-, placed on
the right and left mid-clavicular line. The sampling frequencies were either 256, 512, or
1024 Hz, and bandpass filtering from 0.5 to 70 Hz was applied. The data were reviewed
and clipped by experienced clinicians in the field, who selected awake time epochs when
patients were still and at rest, without seizures or ictal/epileptiform manifestations, and
with minimal noise. All clipped EEG data was de-identified and the video removed prior
to the current analysis. Anonymised recordings were stored in EDF+ format.

The EEGs and ECGs were preprocessed using MNE-python [29]. The signals with a
sampling rate of over 256 Hz were downsampled to this value and the common electrodes
were selected: Fp1, F7, T3, T5, O1, F3, C3, P3, Fz, Cz, Fp2, F8, T4, T6, O2, F4, C4, P4, Fpz,
Pz, ECG+, and ECG-. The EEGs were filtered using an FIR, Hamming window, bandpass
filter with cutoff frequencies of 0.5 and 40 Hz. The ECGs were filtered using a Bessel IIR
bandpass filter with cutoff frequencies of 0.25 and 40 Hz, the method for which was derived
from [30,31]. Inspection of the time and frequency plots of the EEG showed no significant
mains noise, so this was not specifically removed. The data were then segmented into
ten-second non-overlapping epochs. To remove noise, epochs where the EEG amplitude
did not exceed 1 µV were removed, and AutoReject [32] automatically removed epochs
with noisy EEG. The remaining epochs were then visually inspected to exclude any epochs
that contained flat EEG or ECG. The resulting 10,452 epochs were then baseline corrected
using the average of each subject’s EEG. These EEG samples were then filtered into the
frequency bands: delta 0.5–4 Hz, theta 4–8 Hz, alpha 8–13 Hz, beta 13–30 Hz, and gamma
30–40 Hz. The ECG channel was found by subtracting the values of the ECG+ lead from
the ECG- lead. Baseline wander was then removed using a filter with a 0.05 Hz cutoff [33].
Entropy features were extracted from every band and every channel (including ECG),
including the original broad band (0.5–40 Hz). The ECG filtering, however, was the same
for each EEG frequency band analysed (0.25–40 Hz).

The entropy measures used in this analysis were: approximate, sample, spectral,
singular value decomposition (SVD), Renyi, and wavelet entropy. These features were
extracted from each channel in each sample, giving 21 input parameters per band per
feature. The approximate and sample entropies were computed using EntropyHub [34],
the spectral and SVD entropies were calculated using MNE-features [35], and the Renyi
entropy was estimated using DIT [36].

Approximate entropy was introduced by Pincus [37] to define irregularity in sequences
and time series data [38]. Formally, given N data points from a time series {x(n)} = x(1),
x(2), . . . , x(N), the ApEn is calculated using two input parameters, a run length m and
a tolerance window r, which must be fixed [38]. To define ApEn(m, r, N), form vector-
sequences X(1), . . . , X(N −m + 1) defined by X(i) = [x(i), x(i + 1), . . . , x(i + m− 1)],
where i = 1, . . . , N −m + 1. Then define the distance d[X(i), X(j)] between vectors X(i)
and X(j) as the maximum distance in their respective scalar components. For each
i ≤ N −m + 1, construct Cm

i (r) defined as (the number of X(j) such that d[X(i), X(j)] ≤
r)/(N −m + 1). Next, define Φm(r) as the average value of ln Cm

i (r). The ApEn is then
defined in Equation (1) [38], where N is 2560 throughout this analysis.

ApEn(m, r, N) = Φm(r)−Φm+1(r) (1)

Nevertheless, to avoid the occurrence of ln(0) in the calculation of ApEn, the algorithm
includes self-matching, leading to a discussion of bias in this entropy metric [39]. Sample
entropy (SampEn) was introduced by Richman and Moorman [39] as an improvement
upon ApEn by reducing the dependency on record length and to avoid self-matching. To
define SampEn(m, r, N) of a time series {x(n)} = x(1), x(2), . . . , x(N), with a run length
m and a tolerance window r, form vector-sequences Xm(1), . . . , Xm(N −m + 1), defined
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by Xm(i) = [x(i), x(i + 1), . . . , x(i + m− 1)], where i = 1, . . . , N − m + 1. The distance
d[Xm(i), Xm(j)] between vectors Xm(i) and Xm(j) is then defined as the maximum absolute
distance between their respective scalar components. For each i ≤ N −m, construct Bm

i (r)
defined as (the number of Xm(j) such that d[Xm(i), Xm(j)] ≤ r)/(N −m− 1). Next, define
Bm(r) as the average value of Bm

i (r). Then, increase the dimension to m + 1 and calculate
Ai as the number of Xm+1(i) within r of Xm+1(j), where j ranges from 1 to N −m(j 6= i).
Define Am

i (r) as Ai/(N −m− 1) and Am(r) as the average value of Am
i (r). Therefore,

Bm(r) is the probability that two sequences will match m points, whereas Am(r) is the
probability that two sequences will match m + 1 points. Sample entropy is then defined
using Equation (2),

SampEn(m, r) = lim
N→∞

{
− ln

[
Am(r)
Bm(r)

]}
(2)

which is estimated by the statistic in Equation (3), where N is 2560 throughout this analysis.

SampEn(m, r, N) = − ln
[

Am(r)
Bm(r)

]
(3)

Since both ApEn and SampEn are highly dependent on the input parameters run
length m and tolerance window r, these values require selection. For both entropies,
the recommended range of values for the parameters are m = 1 or 2 and r between
0.1 and 0.25 times the standard deviation (SD) of the input time series x(n) [39]. There-
fore, the following parameter combinations were tested with a grid search m = [1, 2],
rSD = [0.1, 0.15, 0.2, 0.25], where r = rsd× is the SD of the input time series. To avoid
overfitting the data, a subset of ten patients per class were selected for this analysis. ApEn
and SampEn were extracted from this subset using each combination of m and r. These
features were then inputted to a support vector machine (SVM) with a radial basis function
(RBF) kernel and validated with 5-fold cross validation. The m and r combination that
returned the highest average balanced accuracy from the classifiers was then selected as
the input parameters to be used for the analysis with the full dataset. The specifics of the
machine learning aspects of this process are described below.

Spectral entropy (SpecEn) finds the Shannon entropy [40] of the power spectrum
and is calculated using Equation (4), where pi is the probability distribution of the power
spectrum of the time series, i is one of the discrete states (assuming a bin width of one
spectral unit), the sum of pi is 1, and Ω is the number of discrete states [41].

SpecEn( f ) = − 1
ln(Ω)

Ω

∑
i=1

pi ln(pi) (4)

SVD entropy (SVDEn) was defined by Alter et al. [42]. SVD is a matrix orthogonalisa-
tion decomposition method, so for a time series {x(n)} = x(1), x(2), . . . , x(N) the Hankel
matrix Hm×n can be reconstructed as

Hm×n =


x(1) x(2) · · · x(n)
x(2) x(3) . . . x(n + 1)

...
...

. . .
...

x(m) x(m + 1) · · · x(N)

 (5)

where 1 < n < N, m = N − n + 1 [43]. The SVD of Hm×n can be defined as

Hm×n = U ∑ VT = [u1, u2, . . . , uL]


σ1 0 · · · 0
0 σ2 . . . 0
...

...
. . .

...
0 0 · · · σL


v1

v2
vL

 (6)
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where the left singular vectors Um×m and right singular vectors Vn×n are orthogonal matri-
ces, and ∑m×n is a diagonal matrix composed of singular values (σ1 ≥ σ2 ≥ . . . ≥ σL ≥ 0,
L = min(m, n)) [43]. In this space, matrix Hm×n satisfies 〈k|∑|l〉 ≡ ∑l δkl ≥ 0 for all
1 ≤ k, l ≤ L [42]. Let us define the normalised eigenvalues as,

pl = σl
2/

L

∑
k

σk
2 (7)

which indicates the relative significance of the lth eigenvalue and eigenvector in terms of
the fraction of the overall expression that they capture [42]. Then the SVD entropy of the
dataset X is as shown in Equation (8) [42]:

SVDEn = − 1
log(L)

L

∑
k=1

pk log2(pk) (8)

Renyi entropy (REn) estimates the spectral complexity of a signal and is calculated
using Equation (9), where the order α ≥ 0 and α 6= 1, pα

i is the probability distribution of
the time series, i is one of the discrete states, and Ω is the number of discrete states [44].
For this analysis, α = 2 to replicate [10] for ease of comparison with this study.

REn(α) =
1

1− α
log2

 Ω

∑
i=1

pα
i

 (9)

Wavelet entropy (WaveEn) is a measure of the degree of disorder associated with the
multi-frequency signal response. The wavelet coefficients Ci,j were found using wavelet
decomposition, where i is the time index and j is the index of the different resolution levels.
The energy for each time i and level j can be found using Equation (10) [45].

Ei,j = Ci,j
2 (10)

The mean energy was then calculated using Equation (11),

E(k)
j =

1
n

k0+∆t

∑
i=k0

Ei,j (11)

where the index k is the mean value in successive time windows, which will now give the
time evolution; k0 is the starting value of the time window (k0 = 1, 1 + ∆t, 1 + ∆t, . . .);
and n is the number of wavelet coefficients in the time window for each resolution level [45].
The probability distribution for each level can be defined using Equation (12) [45].

p(k)j =
E(k)

j

E(k)
tot

(12)

Following the definition of Shannon entropy [40], the time-varying wavelet entropy was
found using Equation (13) [45]. More details can be found at [46].

WaveEn(k) = −∑
j

p(k)j ln p(k)j (13)

For this analysis, Morlet wavelets were used since they are commonly used in EEG re-
search [47].

Once these features had been extracted from every channel for every epoch in every
band, they were used to train and test four machine learning classifiers: SVM, k-nearest
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neighbours (kNN), random forest (RF), and gradient boosting machine (GBM). These
models were implemented using the scikit-learn python package [48].

SVMs were introduced in [49] and classify by searching for an optimal hyperplane
that separates the classes. If the data are separable, the hyperplane maximises a margin
around itself that does not contain any data, creating boundaries for the classes. Otherwise,
the algorithm establishes a penalty on the length of the margin for every observation that is
on the wrong side. The SVM classifiers used in this analysis used an RBF kernel, which
maps the data onto a non-linear plane. The RBF kernel between two patterns x and x′ is
calculated using Equation (14).

K
(
x, x′

)
= exp

(
−γ||x− x′ ||2

)
(14)

In this case, γ was taken as 1/(number of features × variance of the data).
The kNN algorithm is based on the idea that similar groups will cluster. The model

is trained by ‘plotting’ observations based on their features, presumably with the classes
clustering. The algorithm is tested by plotting an observation and classifying it based on
the class of the nearest neighbours. The number of nearest neighbours, k, was individually
selected by a grid search that tested 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, and 20 neighbours.
This defined k as the value that returned the highest balanced accuracy with ten-fold
cross validation.

RF was introduced by [50] and is based on randomised decision trees. Decision trees
are flowchart-like structures that predict the value of a target variable by learning a series
of simple decision rules based on the training data. RF uses an ensemble of trees, each
with a different random subset of the features in a method called bootstrap aggregating, or
bagging. This decreases the variance, compared to an individual decision tree, and reduces
the risk of overfitting. The class was then taken as the average of the trees’ probabilistic
predictions, whereas the original publication [50] let each tree vote for a single class.

GBMs are ensembles of weak learners, typically decision trees, and were introduced
by [51,52]. GBMs are similar to gradient descents in a functional space. The model is built
by adding a new tree with every iteration. The new tree is fitted to minimise the sum of the
losses of the (now previous) model. For binary classification, a prediction is made based on
the probability that the sample belongs to the positive class. This is found by applying the
sigmoid function to the tree ensemble.

To classify the feature set, ten-fold cross validation was used to define the training
and testing datasets. Since the classes in this dataset are imbalanced with more PNES
data, the epilepsy data in the training set was oversampled using a synthetic minority
over-sampling technique (SMOTE). The feature space was then reduced using principal
component analysis (PCA), with a variance of 95%.

Precision, recall, and balanced accuracy were used to evaluate the classifiers’ predic-
tions of test data. Since the dataset was imbalanced, these metrics were selected as they
avoid inflated performance metrics on imbalanced datasets. Equations (15)–(17) show the
calculations for these performance metrics.

precision =
TP

TP + FP
(15)

recall =
TP

TP + FN
(16)

balanced accuracy =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
(17)

where TP is the true positive rate, TN is the true negative rate, FP is the false positive
rate, and FN is the false negative rate. Here, PNES is the positive class and epilepsy is the
negative class.
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Permutation feature importance was also used to compare the EEG frequency bands.
This was done by adapting the algorithm [50] to include multiple features. A model m was
fitted using training data, and then a reference score s was defined using the validation
data D. Each feature (channel) of the set (band) to be assessed fn:o was then permutated
(randomly shuffled) in order to corrupt the validation samples of that band and give D̃k,n:o.
The score s̃k,n:o of model m on this corrupted validation dataset was then computed. This
process of permutating and calculating score s̃k,n:o was repeated K times with iteration k.
The importance in:o of the feature set (band) fn:o is then defined using Equation (18).

in:o = s− 1
K

K

∑
k=1

sn:o (18)

3. Results

The grid search to establish the ideal values for m and rSD found that the highest
average accuracy across the bands was returned when m = 2 and rSD = 0.2 for ApEn and
when m = 1 and rSD = 0.15 for SampEn. These parameters were then used to extract the
ApEn and SampEn from the full dataset. The accuracies from these tests can be found in
the Supplementary Materials.

Using the methods described, the balanced accuracies returned are reported in Table 1.
Tables containing the precision and recall can be found in the Supplementary Materials.

Table 1. Balanced accuracies of the entropy metrics for every classifier and EEG frequency band (ECG
is included in every band). Bold values denote the highest accuracy amongst the classifiers for each
EEG band and entropy measure.

Features Classifiers All Broad Delta Theta Alpha Beta Gamma

Renyi
entropy

SVM 91.41% 75.95% 74.74% 80.55% 80.17% 79.36% 78.14%
kNN 94.68% 83.17% 80.23% 87.73% 88.29% 89.41% 87.83%
RF 92.75% 83.29% 81.13% 88.11% 87.38% 89.17% 87.18%

GBM 81.63% 71.27% 71.97% 76.57% 76.65% 74.36% 76.26%

Sample
entropy

m = 1, r = 0.15*SD

SVM 84.11% 71.55% 66.67% 67.09% 63.83% 63.05% 58.58%
kNN 86.64% 77.61% 64.61% 66.49% 60.29% 65.85% 59.87%
RF 79.92% 77.76% 67.96% 69.70% 62.75% 66.46% 62.00%

GBM 73.62% 67.48% 63.59% 65.13% 61.21% 62.10% 59.99%

Approximate
entropy

m = 2, r = 0.2*SD

SVM 85.66% 73.04% 64.97% 67.79% 67.59% 62.20% 58.50%
kNN 87.82% 78.17% 64.07% 68.28% 67.13% 68.23% 60.87%
RF 80.87% 78.70% 67.02% 72.22% 68.52% 68.34% 63.06%

GBM 74.18% 68.60% 63.30% 65.54% 62.95% 62.58% 60.83%

SVD
entropy

SVM 83.26% 69.28% 62.44% 64.16% 62.81% 64.28% 56.58%
kNN 82.37% 72.22% 59.49% 62.48% 61.14% 61.82% 53.30%
RF 76.72% 74.84% 64.55% 66.16% 63.80% 65.82% 55.88%

GBM 72.29% 66.81% 61.78% 63.10% 60.00% 63.11% 55.87%

Spectral
entropy

SVM 79.03% 69.24% 62.84% 62.98% 63.01% 65.16% 56.25%
kNN 77.34% 72.92% 61.15% 60.40% 62.65% 65.20% 54.10%
RF 72.24% 74.79% 65.35% 63.62% 65.17% 68.36% 58.67%

GBM 69.44% 67.04% 61.80% 61.92% 60.71% 64.76% 58.32%

Wavelet
entropy

SVM 58.30% 54.72% 54.22% 60.62% 50.88% 50.94% 50.19%
kNN 53.57% 52.24% 52.48% 56.87% 50.95% 49.89% 49.54%
RF 55.26% 53.23% 52.43% 58.96% 50.35% 50.73% 50.60%

GBM 57.05% 52.36% 52.14% 59.01% 51.07% 50.72% 51.48%

Table 1 shows a range of balanced accuracies with only two instances returning below
chance (50%). The highest accuracy was 94.68%, with 96.12% precision and 95.19% recall,
which was obtained by Renyi entropy with a kNN classifier in the ‘all’ band. Generally, the
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lowest performing entropy measure was wavelet entropy, and the best was Renyi entropy.
Overall, the lowest accuracies were obtained by the gamma band, and with all the EEG
bands combined—the ‘all’ band—the highest accuracies were returned.

When comparing the entropy measures and the frequency bands, it is possible to
group the measures into three different trends: Renyi entropy; sample, approximate, SVD,
and spectral entropy; and wavelet entropy. Wavelet entropy was the measure returning the
lowest accuracies with a mean of 53.24 ± 3.18%. This measure returned higher accuracies
in the ‘all’ and theta bands, and the lowest accuracies in the alpha, beta, and gamma bands.

Sample, approximate, SVD, and spectral entropy returned higher accuracies in the ‘all’
and broad bands. The combined ‘all’ band improved the SVM, kNN, and GBM classifiers.
The RF, however, only showed a slight increase. The SVM accuracy was significantly
improved (over 12% increase, excluding spectral entropy) by the ‘all’ band for all these
measures, as well as the kNN (over 9% increase, excluding spectral entropy). The delta,
theta, alpha, and beta bands returned medium accuracies, and the gamma band returned a
further drop in classifier performance. These measures typically outperformed wavelet
entropy by a large margin, with means of 67.71 ± 7.29%, 68.97 ± 8.13%, 65.23 ± 7.44%, and
65.16 ± 5.93%, respectively.

The Renyi entropy was overall the highest performing entropy measure, with a mean
of 82.48 ± 4.20%. In the broad band, the accuracies of this measure were only somewhat
higher than the sample, approximate SVD, and spectral entropies. However, the accuracies
for Renyi entropy increased in the theta, alpha, beta, and gamma bands. In comparison,
the accuracy for the other measures remained stable or decreased in these bands, especially
gamma. The combination of ‘all’ bands improved the accuracy, especially for the SVM,
which increased by 10.86%. As a result, most of the classifiers in the ‘all’ band were able to
achieve over 90%.

The best classifiers were kNN and, generally, the higher the overall accuracy for a
band and/or feature, the bigger the difference between kNN and RF and the other two
classifiers. Overall, RF was the better classifier. However, the kNN returned the highest
accuracy value since it, along with the SVM, was greatly improved by combining all the
bands, whereas RF and GBM were less affected. Furthermore, Table 1 shows that GBM was
often the lowest performing classifier.

Since the combination of the bands performed well, a further experiment was con-
ducted to establish which specific bands were contributing to the high accuracy. Using
the same process as described above, each band was excluded from the full set and the
remaining bands were used for classification. The ECG signal was also used as an input for
each band. This experiment used the highest performing classifier, kNN, and the highest
performing entropy metric, Renyi entropy, and the outcomes are summarised in Table 2.
The importance of the band reported is the average permutation band importance over
ten-fold cross validation.

Table 2. Precision, recall, and balanced accuracy of the kNN classifier trained and tested on Renyi
entropy for all EEG frequency bands, excluding the corresponding band. ‘None’ denotes all bands
are included with no exclusions. Band Importance shows the premutation importance of the band.
The ECG channel was included in all iterations.

Band Excluded Precision Recall Accuracy Band Importance

Broad 96.40% 95.48% 95.03% 0.052
Delta 96.18% 95.63% 94.93% 0.062
Theta 95.90% 94.27% 94.08% 0.111
Alpha 95.65% 94.59% 94.03% 0.132
Beta 95.73% 94.54% 94.07% 0.128

Gamma 95.64% 94.57% 94.01% 0.114
None 96.12% 95.19% 94.68% -
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Table 2 shows that removing a single band had a minor effect on the precision and
recall, thus affecting the balanced accuracy but not significantly. Excluding broad and
delta increased the accuracy to 95.03% and 94.93%, respectively, from 94.68% when all
bands were used. However, excluding the others resulted in a loss of 0.60% or more.
Therefore, the theta, alpha, beta, and gamma bands contain important information for
Renyi entropy. The band importance from the permutation-based testing is congruent with
these findings, with the broad and delta bands returning half the permutation importance
of the other bands. These findings are congruent with the trend shown in Table 1 for the
Renyi entropy, where broad and delta slightly underperformed compared to the other four
non-combination bands.

4. Discussion

Spectral and wavelet entropy were both found by calculating the Shannon entropy
of the frequency spectrum, where spectral entropy estimated the spectrum using Welch’s
method and wavelet entropy used Morlet wavelets. Despite these similarities, the resul-
tant accuracies were significantly different, with spectral entropy outperforming wavelet
entropy in every band and with every classifier. This suggests that Welch’s method is
more suitable for extracting the uncertainty in the frequency domain for this specific task.
Furthermore, the spectral and wavelet entropies both returned the lowest accuracies, on
average, of all the measures. Therefore, our results suggest that for these data measures of
complexity, those in the time domain may be more effective than those in the frequency
domain. The measure that returned the highest accuracy, Renyi entropy, is a variation of
Shannon entropy applied directly to the time series. This further lends to the effectiveness
of temporal complexity, and further research should explore similar methods.

While the classifier performances for most entropy measures were improved by com-
bining all frequency bands, generally the SVM and kNN improved more significantly than
the decision tree-based algorithms, especially RF. Decision trees do not need to increase
the parameters with more inputs, so it is possible that the extra information was lost for
these model types. Furthermore, the nature of an ensemble of random subsamples of the
feature set, as is the case with RF, may have hindered the classifier’s ability to consider
the extra information. This could be the cause of the limited improvement and occasional
degradation of the RF when combining the classifiers, despite the high performance in
the non-combination bands. Therefore, feature selection methods, such as feature ranking,
should be used with this classifier to potentially improve accuracy with larger feature sets.

A 2021 meta-analysis on resting state EEGs for the diagnosis of epilepsy and PNES [53]
found that comparing oscillations along the theta band may separate epilepsy and PNES.
Reuber et al. [4] also found interictal slow rhythms in the theta band for nine out of 50 PNES
patients. When considering only the delta, theta, alpha, beta, and gamma bands, the current
analysis found that the theta band returned the highest balanced accuracy for 13 out of 24
(four classifiers for six entropy measures) instances, indicating that a difference in theta
oscillations could be reflected in the entropy. However, the beta band returned the highest
accuracy in 8 of these 24 instances, especially for the spectral entropy. Therefore, the beta
band could also be of interest to future researchers.

Comparison to the literature is complex due to the difference in techniques used
to analyse the EEGs of PNES patients. For instance, Pyrzowski et al [11] extracted the
entropy from pooled histograms of the zero crossing rate, and the six-paper series [20–25]
and Cura et al. [27] only used one or two entropy measures as part of a larger feature set,
obscuring the influence of the entropy. Furthermore, [11,20–25] included non-PNES subjects
within their subject cohorts. The papers that included the ECG [15–17], all analysed the
entropy of the heart rate data, a binary signal representing the R peaks, instead of the ECG
signal itself. While these studies do represent the potential of entropy for this diagnostic
task, the fundamental difference in method makes comparisons with them impossible.

Gasparini et al. [13] and Lo Giudice et al. [14] both statistically analysed the entropy
of the EEG signal. The authors of [13] found no differences between the Shannon or
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permutation entropies of PNES patients and healthy controls, and [14] found no difference
in interictal permutation entropy between PNES and epilepsy subjects. Therefore, statistical
analysis alone may not be sufficient to differentiate between these groups.

The studies published by Ahmadi et al. [10,26] give details of the performance of
similar entropy measures and classifiers in the frequency bands and use PNES-only and
epilepsy-only groups. Thus, an in-depth comparison with the current study is possible,
although neither study used an ECG channel, only EEGs, and only include the interictal
state. The 2018 study [26] used an imperial competitive algorithm to rank the individual
feature-band pairs and has listed the top five combinations of inputs for each classifier.
They found that RF and decision trees were the weaker classifiers, compared to SVM-
Linear, SVM-RBF, and GBM. However, the current analysis found that RF was overall
the best classifier, with GBM underperforming. Ahmadi et al. (2018) also found that
spectral and Renyi entropies were the most important features, compared to Shannon
entropy, Higuchi fractal dimension, and Katz fractal dimension. The current study did
not extract Shannon entropy or any fractal dimensions, so a direct comparison cannot be
made. However, this analysis did find that Renyi entropy was a very high-performing
metric for all bands, and spectral entropy was better than chance (50% accuracy) for all
tests. Ahmadi et al. (2018) do not directly compare the frequency bands, though gamma
is not listed in the features for any of the top performing inputs. This is congruent to the
current study, since gamma underperformed for most entropy measures, including spectral
entropy. The outlier is Renyi entropy, which retained high accuracies in the gamma band
in the current analysis. Furthermore, broad band Renyi entropy was listed by [26] for
most of the top performing combinations. By comparison, the current study found that
Renyi was the entropy measure that returned the highest accuracies for the broad band
analysis but returned lower accuracies than the other bands for this metric. In addition, the
delta band is not noted as important by [26] for either entropy measure; therefore, it was
found to be less important for these features, which is in agreement with the findings of the
current analysis.

The study by Ahmadi et al. 2020 [10] gave a clearer breakdown of the bands for the
Shannon, spectral, and Renyi entropy, although only the precision and recall values were
reported, not accuracy, and the broad band was not analysed. In addition, the values
reported for the delta and theta bands are exactly the same, which is statistically unlikely
and is not reflected in the ROC curves also given. Therefore, the values reported in the
current version of this paper for one of these bands may be incorrect. The delta, theta, and
gamma bands for all entropy measures and Shannon entropy in the alpha band all return
low performance metrics of roughly chance accuracy. The beta band, and spectral and
Renyi entropy in the alpha band, however, return mostly 70% precision and 60% recall.
ROC analysis showed that the beta band outperformed the delta, theta, alpha, and gamma
bands. The alpha band performed well, but much worse than the beta. The delta and
theta bands were similar to random chance, and gamma distinctly underperformed for all
measures. For the current analysis, the Renyi entropy does show that delta is one of the
bands less likely to help differentiate PNES from epilepsy, but disagrees for the theta, alpha,
beta, and gamma bands, which all return good and fairly similar accuracies. These trends
reported by Ahmadi et al. (2020) were more similar to those for the sample, approximate,
spectral, and SVD entropies; where gamma significantly underperformed. Spectral entropy
also showed a slight increase in beta band accuracies, but only spectral entropy showed
this, and delta performed on par with the other bands.

A limitation of our study is that the two classes are not age- or sex-matched. The ages
are similar enough that significant influence is unlikely. However, the PNES group has
significantly more females than males, whereas the epilepsy group has more males than
females. This is due to PNES being more commonly diagnosed in females than males by a
factor of 3:1 [54,55]. In previous studies [56–58], machine learning has been successfully
used to separate EEG entropy measures of females and males; therefore, it is possible that
the balanced accuracies were inflated by the disparity in sex between the two groups. To



Entropy 2022, 24, 1348 12 of 15

ensure that this disparity did not have a significant impact, the model that returned the
highest accuracy (Renyi entropy with a kNN classifier, with the delta, theta, alpha, beta,
and gamma bands inputted as separate features) was trained and tested again with a subset
of subjects that were age- and sex-matched. This matched dataset included 50 subjects with
a ratio of 11 females to 14 males in both classes, and the epilepsy group had a mean age
of 39.16 ± 11.86 while the PNES group had 38.52 ± 10.96. The accuracy, precision, and
recall of the matched dataset were 95.40%, 97.10%, and 93.33%. Therefore, the balanced
accuracy and precision increased slightly while the recall decreased slightly. Considering
this outcome and the similarities in the literature, it is still reasonable to conclude that the
difference in sexes between the classes had a minor impact and that entropy measures
are indeed powerful measures in differentially diagnosing PNES and epilepsy. Another
limitation is that the data includes both preictal (before seizure) and interictal (resting)
recordings. Therefore, it is not possible to separate the impacts of these different types
of data on the results. Finally, due to a small patient cohort, the current study used ten-
fold cross-validation to assess the classifiers. Therefore, samples from each subject were
present in both the training and testing datasets. While this is a limitation, it demonstrates
that this method is viable and, if trained on a larger population, could be beneficial in
clinical contexts.

5. Conclusions

This study shows that the analysis of different frequency bands in the EEG, plus the
ECG, with different entropy algorithms returns useful information for the classification of
PNES. Furthermore, the bands providing the highest accuracy vary from entropy measure
to measure. Therefore, the combination of bands for classification by machine learning
algorithms can return higher results. While this would increase the computation cost,
entropy measures are quick and low-cost; therefore, the added computation is a small
cost compared to the improved performance. The current analysis found that the highest
balanced accuracy, 95.03%, was returned by the delta, theta, alpha, beta, and gamma bands
combined for the Renyi entropy when a kNN was used in the classification. However,
this high performance may have been affected by the use of epoch-wise ten-fold cross
validation. The kNN and RF classifiers returned the overall highest accuracies, with the
GBM repeatedly underperforming compared to the others, and SVM and kNN showed
more improvement with the combination of the bands. Further analysis should explore
the combination of further low-cost features to increase the performance and improve the
robustness of the classifiers for different patients.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/e24101348/s1, Table S1: Balanced accuracies of the approximate entropy
of the small subset of data with the test values of m and rSD. Average reports the average accuracy
across the band. Ordered from the highest average balanced accuracy to the lowest in the Average
column; Table S2: Balanced accuracies of the sample entropy of the small subset of data with the test
values of m and rSD. Average reports the average accuracy across the band. Ordered from the highest
average balanced accuracy to the lowest in the Average column; Table S3: Precision of the entropy
metrics for every classifier and EEG frequency band (ECG is included in every band). Bold values
denote the highest precision amongst the classifiers for each EEG band and entropy measure; Table
S4: Recalls of the entropy metrics for every classifier and EEG frequency band (ECG is included in
every band). Bold values denote the highest recall amongst the classifiers for each EEG band and
entropy measure.
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