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(a) (b) 

Figure S1. Behavior of the best-performing model is representative of the ensemble of the top-per-
forming models. (a) The average normalized cell activity levels of 72 top-performing (out of 100 
trained) models depicted at the time-steps 1000, 2000, 3000, 4000, 5000, 6000, 7000 and 8000; and (b) 
the normalized cell activity levels of the representative best-performing model whose behavior is 
depicted at the same time-steps as (a). It can be observed that even though the two sets of behaviors 
don’t precisely match they are qualitatively similar in that they undergo similar rugged intermedi-
ate trajectories before settling to their respective final patterns. 

 
   (a)                        (b) 

Figure S2. Regenerative and rescaling behaviors of the boundary-marker. (a) Regeneration: the 
model is run for 4000 time-steps following homogeneous conditions as before leading the blue pat-
tern, then all states but that of the middle two cells are zeroed out (green) and run for another 4000 
time-steps resulting in the final pattern (red). Even though the blue and red patterns don’t exactly 
coincide they are quite close to each other. (b) Rescaling: the model is simulated in the same way as 
Fig 5a, except with 22 cells instead of 12 cells. With almost double the number of cells, the model 
takes about 3.5 times longer (14000 time-steps) to settle, and moreover it converges (last 100 time-
steps shown) to a smoother pattern compared to the 12-cell case. 
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Figure S3. The pattern attractor-space of the boundary-marker level. The model converges 
to patterns (black) that are qualitatively similar to the target pattern (red) when started 
from a set of 1000 random initial conditions (grey). The initial conditions specifically in-
volved a randomized initial number of ‘active’ cells whose activity states were drawn from 
the interval [-1,1] and boundary-marker states from the interval [1,2] with uniform proba-
bilities. In the case of the ‘non-active’ cells, the activity states were set to 0 and the bound-
ary-marker states were set to 2. The internal controller states were set to 0 in both cases. 

 
     (a)                      (b) 

Figure S4. The boundary controller nodes’ activities simultaneously resemble the boundary-marker 
and the network-activity patterns. Each line in the plot represents the asymptotic activity of a par-
ticular controller node across the network. That is, each line represents (a) the vector 
(𝑦௜,ଵሺ𝜏ሻ, … , 𝑦௜,௡ሺ𝜏ሻሻ for a particular controller node 𝑖 ∈ ሼ1, . . ,6ሽ at 𝜏 ൌ 4000 and (b) its cell-normal-

ized version ሺ𝑦నଵෞ , … , 𝑦న୬ෞ ሻ where 𝑦పఫෞ ൌ  ൬௬೔ೕି ୫୧୬భರೕರ೙ ௬೔ೕ൰൬ ୫ୟ୶భರೕರ೙ ௬೔ೕି ୫୧୬భರೕರ೙ ௬೔ೕ൰. These observations could be attributed to 

the model design where all the nodes in the boundary controller receive inputs from both the cor-
responding cells’ activity and boundary marker states. 
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Figure S5. Individual nodes in the boundary controller network of every cell possess information 
about the network-level boundary-marker pattern that they control. Each line in the plot represents 
the normalized causal influence exerted by the initial state ሺ𝑡 ൌ 0ሻ of a single internal controller 
node in a specific cell over the asymptotic ሺ𝜏 ൌ 3500ሻ activity states of the (influenced) cells, that 
is, it’s the normalized vector ൬డ௕భሺଷହ଴଴ሻ෣డ௬ೕ,ೖሺ଴ሻ , … , డ௕ሺଷହ଴଴ሻ෣డ௬ೕ,ೖሺ଴ሻ ൰ for a specific controller node 𝑗 ∈ ሼ1, . . ,6ሽ in the 

influencing cell 𝑘 ∈ ሼ1, . . , 𝑛ሽ where, డ௕ഢሺఛሻడ௬ണ,ೖሺ଴ሻ෣ ൌ ങ್೔ሺഓሻങ೤ೕ,ೖሺబሻ ି ୫୧୬భರ೔ರ೙ ങ್೔ሺഓሻങ೤ೕ,ೖሺబሻ୫ୟ୶భರ೔ರ೙ ങ್೔ሺഓሻങ೤ೕ,ೖሺబሻ ି ୫୧୬భರ೔ರ೙ ങ್ሺഓሻങ೤ೕ,ೖሺబሻ. 

 
Figure S6. Causal network integration behind the boundary-marker pattern developed under ho-
mogeneous initial conditions. An arrow from cell 𝑗  to cell 𝑘  represents the causal influence 𝜕𝑏௞ሺ𝜏ሻ/𝑑𝑦௜,௝ሺ0ሻ where ∃𝑖: 𝜕𝑏௞ሺ𝜏ሻ/𝜕𝑦௜,௝ሺ0ሻ is a statistical outlier in the set ሼ డ௕ೖሺఛሻడ௬భ,ೕሺ଴ሻ , … , డ௕ೖሺఛሻడ௬ల,ೕሺ଴ሻሽ. Blue 

links represent positive influence and red links represent negative influence. Multiple arrows orig-
inating from a cell may be associated with distinct intrinsic controller nodes of the originating cell. 
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The causal network attractor organizes into modules where most cells around the center are caught 
in eddies of negative feedback (one slightly more on the anterior shown in light red, and the other 
more on the posterior side shown in dark red) that the outer cells participate less in. Importantly, 
the boundary cells act as “organizers” influencing the rest of the network and each other via distinct 
positive and negative influences partly explaining how the model successfully marks its own 
boundaries. This strategy makes sense since the boundary cells are special in the sense that they 
have one less connection compared to the other cells, which the network capitalizes on. 

  
           (a) (b) 

Figure S7. Rescaling the model (double the number of cells) rescales the corresponding causal net-
work attractor underlying the boundary-marker pattern. The (a) causal network attractor and (b) its 
schematized version following rescaling of the model and simulating it with homogeneous initial 
conditions. The causal network attractor following regeneration is not shown, as it looks identical 
to the original (Fig S6). The rescaled boundary-marker causal network preserves some but not all 
the characteristic features of the original (Fig S6). Specifically, although it preserves the “organizer” 
character of the boundary cells, it appears to have split the two eddies of the original. Moreover, the 
rescaled network contains only positive influences as opposed to the mixed influences of the origi-
nal. An investigation of the logic behind these similarities and differences is beyond the scope of 
this paper. 

 
Figure S8. The mean causal network attractors associated with the boundary-marker patterning. 
The thickness of the edges represents the frequency with which they appear in the set of attractors. 
The initial conditions that were used here are the same as those described in Fig S3. This causal 
network attractor preserves the “organizer” character of the boundary cells as the homogeneous 
case (Fig S6), though it does not preserve the signs of the influences. 


