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Abstract: Chaos is considered as a natural candidate for encryption systems owing to its sensitivity
to initial values and unpredictability of its orbit. However, some encryption schemes based on
low-dimensional chaotic systems exhibit various security defects due to their relatively simple
dynamic characteristics. In order to enhance the dynamic behaviors of chaotic maps, a novel 3D
infinite collapse map (3D-ICM) is proposed, and the performance of the chaotic system is analyzed
from three aspects: a phase diagram, the Lyapunov exponent, and Sample Entropy. The results
show that the chaotic system has complex chaotic behavior and high complexity. Furthermore, an
image encryption scheme based on 3D-ICM is presented, whose security analysis indicates that the
proposed image encryption scheme can resist violent attacks, correlation analysis, and differential
attacks, so it has a higher security level.

Keywords: chaos; dynamic characteristics; image encryption; 3D infinite collapse map

1. Introduction

The 21st century is a new era of leapfrog development of information technology.
Information technology, led by big data, artificial intelligence (AI), and computer network
technology, has become a key factor in the development of a country’s political, military,
economic, cultural, and educational undertaking. We usually use digital images as a
widely used data format, since it carries a great amount of information in a visualized
manner [1]. Billions of digital images are stored, copied, and transmitted every day
through third-party platforms or insecure channels. An increasing attention is being
paid by researchers to image security [2–4]. Some work such as information hiding,
watermarking, and image encryption is done to protect the security of digital images [5,6].
Among them, image encryption is the most direct way to transform the plaintext image
into noise-like information.

Chaos is the inherent randomness of deterministic system and a special motion of
nonlinear dynamic system, which exists widely in nature. The application of chaos in
cryptography has become a hot research field, owing to its unpredictability and sensitivity
to initial values. Chaotic systems can generate pseudo-random sequences with low correla-
tion and high complexity [7–15]. An image encryption scheme generally contains two parts:
confusion and diffusion. The confusion characteristic is obtained by randomly separating
the adjacent pixels of the plaintext image, and the diffusion characteristic is obtained by
diffusing the slight differences of the plaintext image to all the pixels of the ciphertext
image. Fan et al. [16] proposed a new image encryption scheme, and a self-synchronous
chaotic stream cipher was applied to the new scheme. Alawida et al. presented an image
encryption based on a hybrid digital chaotic system in 2019 [17]. Alvarez et al. proposed
some basic requirements for cryptosystems based on chaos [18]. The key sequences gen-
erated by chaotic systems exhibit many excellent cryptographic properties. In addition,
the method of applying chaos to cryptography is easy to realize, and the algorithm has
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fast processing speed, large key space, and high security, which is very suitable for pro-
cessing large amounts of data and greatly simplifies the design process of traditional
sequential cryptography [19,20]. In an encryption scheme based on chaos, the security
level mainly relies on the complexity of chaotic maps. However, the initial conditions
and orbits of 1D chaotic maps can be easily predicted due to their simple trajectories and
few variables [21,22]. Furthermore, when the system parameters are in a certain interval,
the chaotic dynamics behavior will weaken or disappear [23,24]. In order to enhance the
dynamic characteristics and complexity of the chaotic system, several HD chaotic maps
with hyperchaotic properties were proposed [25,26]. However, some HD chaotic maps
exhibit weak chaotic performance in certain intervals [14,23,24,26]. Thus, it makes sense to
design a chaotic map with unpredictable and robust chaotic performance.

The contributions and novelties of this paper are summarized as follows: (1) a three-
dimensional (3D) hyperchaotic map, called the 3D infinite collapse map (3D-ICM), is
proposed in this paper. Quantitative evaluation criteria are used to study the chaotic
characteristics of 3D-ICM, such as the Lyapunov exponent and Sample entropy. The
results of the evaluation criteria show that 3D-ICM shares more complex chaotic dynamical
behaviors than existing 3D chaotic maps. (2) We also propose an image encryption scheme
based on the 3D-ICM. Both confusion and diffusion operations are based on sequences
produced by the 3D-ICM. The simulation results show that the scheme can efficiently
encrypt various types of images. Furthermore, different encryption schemes to encrypt the
same image were given. Compared with other schemes, this scheme has faster encryption
speed. Finally, security analysis shows that the scheme can also resist various attacks
including brute-force attack, statistic attack, correlation analysis, and differential attack,
which indicates the image encryption scheme has a high level of security.

The rest of this paper is organized as follows. The 3D-ICM and the evaluation of its
chaotic performance are presented in Section 2. Section 3 introduces an image encryption
scheme and gives the simulation results of different images. Section 4 analyzes the security
of the proposed image encryption scheme. Finally, some conclusions are drawn in Section 5.

2. The 3D Infinite Collapse Map

In order to overcome the above weakness of the low dimensional discrete-time chaotic
map, linear combinations of the output values of existing chaotic systems are proposed
to enhance the chaotic characteristics in [13,14]. Because the linear combination cannot
change the output value of the original system, only the linear combination of these
values, the performance of the presented system is not very good. Thus, a great deal
of literature has been devoted to the study of the nonlinear transformations of chaotic
output sequences [7,8,21,24–26]. However, these transformations are based on 1D and
2D chaotic systems. In order to further enhance its chaotic characteristics, this section
mainly introduces the 3D infinite collapse map (3D-ICM), and the chaos characteristics are
studied from the following three aspects: (1) the attractor; (2) the Lyapunov exponent (LE);
(3) Sample Entropy (SE).

2.1. Mathematical Definition

An infinite collapse map (ICM) was introduced [27], and the mathematical definition
of 1D-ICM is as follows:

xi+1 = sin
(

a
xi

)
, (1)

where the control parameter is a 6= 0, and x is the state variable of the system. One-
dimensional chaotic systems can be easily predicted by implementing some estimation
technologies due to its simple structure. A 2D-ICM integrates two 1D-ICMs with different



Entropy 2021, 23, 1221 3 of 16

parameters [28]. In order to further enhance the complexity of chaotic systems, a 3D-ICM
is proposed. The mathematical definition of 3D-ICM is as follows:

xi+1 = sin
(

a
xi

)
sin
(

b
yi

)
sin
(

c
zi

)
yi+1 = sin

(
c
zi

)
sin
(

b
yi

)
zi+1 = sin

(
c
yi

)
sin
(

b
zi

) , (2)

where a, b, and c are control parameters of the system; x, y, and z are the state variables of
the system. In this paper, a, b, c ∈ R and a 6= 0, b 6= 0, c 6= 0. As shown in Formula (2),
3D-ICM consists of three 1D-ICMs with different system parameters. When a = 0, the
mathematical definition of 3D-ICM is the same as that of 2D-ICM. Thus, 2D-ICM is a special
case of 3D-ICM.

2.2. Performance Evaluation

Several measures about chaotic maps, including the attractor, LE, and Sample Entropy
(SE), are adopted to evaluate chaotic properties of 3D-ICM. Furthermore, the proposed
3D-ICM is compared with two existing 3D chaotic maps, i.e., 3D discrete hyperchaotic
systems (3D-DHCS) [29], and a 3D Henon map [30]. In addition, it is compared with two
existing chaotic maps, i.e., 1D-ICM and 2D-ICM.

2.2.1. Attractor

The phase diagram of a chaotic system refers to a set of numbers to which the system
can evolve under given initial values. In the case of 3D chaotic systems, their attrac-
tors can be characterized by a larger number of points occupying a region in a three-
dimensional phase space. To visualize the attractors of 3D chaotic systems, the initial value
(0.7, −0.3, 0.8) and iteration times i = 20,000 are selected. A comparison of chaotic attrac-
tors of 3D-ICM and other 3D chaotic maps is given in Figure 1. As is depicted in Figure 1,
the output sequence of 3D-ICM almost fills the entire phase space range of (−1, 1), which
shows that 3D-ICM has the better ergodicity property than 3D-DHCS and 3D-Henon.

Figure 1. Attractors of 3D chaotic maps: (a) 3D-ICM; (b) 3D-DHCS; (c) 3D-Henon.
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2.2.2. Lyapunov Exponent

In the theory of nonlinear dynamics, the Lyapunov exponent (LE) is an important
chaotic characteristic that is used to describe the infinitesimal deviation of orbit in phase
space by a quantitative method. The sensitivity to initial conditions is an important
characteristic of chaos, that is, two orbits in phase space that are close to each other will
separate exponentially over time. The LE represents a measure of the mean convergence or
mean divergence of similar orbitals in phase space. The larger the value of LE is, the faster
the phase space trajectory diverges. This means that the more sensitive it is to the initial
conditions, the more chaotic the system is. The Lyapunov exponents of an n-dimensional
chaotic system is calculated as follows: Let the Jacobian matrix of n-dimensional chaotic
system be J. Given the initial value (x1(0), x2(0), · · · , xk(0)), and we can obtain a series
of values {(x1(i), x2(i), · · · , xk(i))}k

i=1. The Jacobian matrix of the first n is as follows:
J0 = J(x1(0), x2(0), · · · , xk(0))
J1 = J(x1(1), x2(1), · · · , xk(1))

· · ·
Jk−1 = J(x1(n− 1), x2(n− 1), · · · , xk(k− 1))

. (3)

Jk can be obtained from the following equation:

Jk = J0 J1 · · · Jk−1 (4)

The Lyapunov exponents of an n-dimensional chaotic system can be obtained as follows:

LE1 = lim
k→∞

1
k

ln|λ1|, LE2 = lim
k→∞

1
k

ln|λ2|, · · · , LEn = lim
k→∞

1
k

ln|λn|, (5)

where λ1 λ2 , · · · , λk are the eigenvalues of matrix Jk.
As Figure 2a illustrates, the three Les of the 3D-ICM are greater than 0 in all parameter

spaces. From the attractor in the last subsection, we know that the 3D-ICM is globally
bounded. What is more, the three Les are all greater than 0 in this subsection, thus the
3D-ICM is a hyperchaotic system. As is depicted in Figure 2b, the LE of the 3D-ICM is
larger than the Les of the other ICM, which indicates that the 3D-ICM is chaotic map with
more complex chaotic dynamical behaviors.

Figure 2. The values of the Lyapunov exponent of chaotic maps: (a) the three Les of 3D-ICM;
(b) comparison of Les between 3D-ICM and other ICM.

2.2.3. Sample Entropy

At present, the approximate entropy (ApEn) Algorithm [31] is widely used to measure
the complexity of chaotic sequences. However, since the ApEn algorithm avoids errors by
counting the number of templates that match its own data, if the threshold value is small,
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there will be a large number of template matches, resulting in the phenomenon that the
effect of deviation is not obvious, so there is a margin for error. In 2000, a new quantization
algorithm of time series complexity, called Sample Entropy (SE), was proposed [32], which
is an improved algorithm of ApEn. The SE of a time series {x1, x2, · · · , xN} is defined by
as follows:

SE(m, r, N) = − log
A
B

, (6)

where dimension m and distance r are usually set as 2 and 0.2× SD, respectively. SD
represents the standard deviation of the tested time series, and A and B are the number
of vectors, which are d[Xm+1(i), Xm+1(j) ] < r and d[Xm(i), Xm(j) ] < r, respectively.
The template vectors Xm(i) = {xi, xi+1, · · · , xi+m−1}, and d[Xm(i), Xm(j) ] are the
Chebyshev distance between Xm(i) and Xm(j). As Figure 3a illustrates, the three Ses of the
3D-ICM are greater than 0 in all parameter spaces. Figure 3b compares the Ses of existing
chaotic maps. It can be observed that the 3D-ICM has much larger Ses than others, which
indicates 3D-ICM has more complex output sequences.

Figure 3. The values of Sample entropy of chaotic maps: (a) the three Ses of 3D-ICM; (b) comparison
of Ses between 3D-ICM and other chaotic maps.

It can be known from the above analysis that the trajectories of the 3D-ICM are difficult
to predict over time owing to its complex chaotic properties. Which indicates that the
3D-ICM shares a much larger region, better ergodicity, and more unpredictable chaotic
behaviors than others in terms of the results of the attractor, LE, and SE. In the next section,
the 3D-ICM will be applied in image encryption.

3. An Image Encryption Scheme Based on 3D-ICM

An image encryption scheme based on the 3D-ICM is presented in this section. The
structure of the image encryption scheme is shown in Figure 4. The security key produces
the initial conditions for the 3D-ICM to generate a chaotic output sequence. The proposed
scheme is mainly based on the basic concepts of confusion and diffusion. The confusion
part can effectively separate adjacent pixels of an image into different positions, while
the diffusion part can change the pixels’ values using a reversible transform. Multiple
rounds of confusion and diffusion were carried out to obtain a higher level of security. In
this paper, two rounds of confusion and diffusion are used to compromise security and
computational efficiency. The decryption process is the inverse of the encryption process.
As for the color image, we first only need to divide the color image into three channels of
R, G, and B, and then perform confusion and diffusion processing on these three channels.
We then only need to recombine the three encrypted channels to obtain the result: the
encrypted color image. Decryption is the reverse process of encryption.
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Figure 4. Structure of the proposed image encryption algorithm.

3.1. Key Distribution

The initial conditions of the 3D-ICM are determined by the security key. When
the key space of the cryptosystem based on chaotic maps is more than 2100, it can resist
brute-force attacks [29]. The algorithm’s key length is set to 256 bits in this paper, so the
algorithm’s key space is 2256, which demonstrates it can resist brute-force attacks. Figure 5
illustrates the structural framework of the security key. We can see from Figure 5 that
it contains nine parts {a, b, c, x0, y0, z0, T, C1, C2}, where {a, b, c, x0, y0, z0} are the
initial states, T is the perturbation parameter in order to disturb the initial conditions, and
C = {C1, C2} contains two coefficients for the perturbation parameter. Each parameter
a, b, c, x0, y0, z0, T, C1, C2 has a length of 32 bits. The 32-bit binary strings in the security
key {s1, s2, · · · , s40} are used to produce decimal 9 parameters using the IEEE 754 format.
Thus, the initial conditions of the 3D-ICM for the two rounds can be calculated as follows:

x(i)0 = (x0 + T × Ci)mod1
y(i)0 = (y0 + T × Ci)mod1
z(i)0 = (z0 + T × Ci)mod1
a(i)0 = (a0 + T × Ci)

b(i)0 = (b0 + T × Ci)

c(i)0 = (c0 + T × Ci)

. (7)

Figure 5. The structure of the security key.
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3.2. Confusion Part

A novel confusion method, using three chaotic matrices to randomly separate the
adjacent pixels of an image into different positions, is presented in this part. The confusion
operation should be carried out in a square matrix, L2 × L2, where parameter L is the block
size. If the plaintext image which will be processed has a size X × Y, the length of L2 is
obtained as follows:

L2 = min{X, Y}. (8)

The detail confusion process algorithm is described in Algorithm 1.

Algorithm 1. The confusion process of the proposed image encryption scheme.

Input: The plaintext image P and three initial values {x(0), y(0), z(0)}.
Output: The confusion image F.

1. Truncate the plaintext image as size L2 × L2, where L2 is calculated using Equation (8).

2. Generate three chaotic sequences, X, Y, and z, where these lengths are L2 × L2.

3. Reshape the sequences X, Y, and z in columns into L2× L2. matrices, denoted as XL, YL, and ZL.

4. Matrices S1 = XL ×YL and S2 = XL × ZL can be obtained.

5. Sort S1 and S2 in ascending order, and obtain their index vectors I1 and I2.

6. The pixel locations of the plaintext image P are rearranged using the index matrix Ii, where
i = {1,2}.

7. The confusion image F is obtained.

A numerical example is presented in Figure 6. Matrices XL and XL are reshaped by
the chaotic sequences X and Y, whose length are 42. It can be observed that almost every
pixel is scrambled after a round confusion. Figure 7 presents a comparison plaintext image
P and confusion image F. The histogram of F is the same as that of P due to the confusion
process only changing the positions of the image’s pixels.

Figure 6. A numerical example of the confusion process.
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Figure 7. Confusion results: (a) Lena image; (b) histogram of (a); (c) confusion image; (d) histogram of (c).

3.3. Diffusion Part

By changing the value of pixel points, the diffusion part achieves the result that the
small differences in the plaintext image are diffused to almost all pixels of the ciphertext
image. The chosen plaintext attack is used to attack an encryption scheme via examining
how a small difference affects the encryption performances of a cryptosystem. An excellent
diffusion part can help cryptosystems to defeat the attack. To obtain a much higher level
of security, a diffusion scheme relying on an index matrix related to chaotic sequence is
presented. In one round of encryption, the matrix S1 and its index matrix I1 are used for
confusion, firstly, while the other matrix S2 and its index matrix I2 are used for diffusion.
Figure 8 shows a numerical example of the scheme. Suppose that confusion result F, chaotic
matrix YL, and the current pixel can randomly be changed using the previous one and the
chaotic sequence. The pixel value of diffusion image can be obtained by:

Di =

{ ⌊(
Fi + FM×N + |Y(i)| × 232)mod256

⌋
, i = 1⌊(

Fi + Di−1 + |Y(i)| × 232)mod256
⌋
, i ∈ [2, M× N]

(9)

where bαc is the floor operation to obtain the greatest integer, which is not larger than α.
As Figure 9 illustrates, the histogram of the diffuse image is evenly distributed, which is
completely different from the plaintext image and the confused image. In the first round of
encryption, the matrix S1 and its index matrix I1 are used for confusion, while the other
matrix S2, its index matrix I2, and chaotic sequence Y are used for diffusion. Furthermore,
in the second round of encryption, the matrix S2 and its index matrix I2 are used for
confusion, while the other matrix S1, its index matrix I1, and chaotic sequence Z are used
for diffusion. The two rounds of confusion and diffusion operations are applied to the
proposed image encryption scheme to obtain the final image. The decryption process is
generally the inverse operation of the encryption process. Thus, the process of diffusion
can be described as follows:

Fi =

{ ⌊(
Di − Di−1 − |Y(i)| × 232)mod256

⌋
i ∈ [2, M× N],⌊(

Di − FM×N − |Y(i)| × 232)mod256
⌋

i = 1.
(10)

What is more, the original image can be obtained using the inverse operation of confusion.

3.4. Simulation Results

In an image encryption scheme, different types of images should be encrypted into
ciphertext images with a high security level. Figure 10 presents the different types of
images encrypted by the proposed method. All plaintext images include three grayscale
images and a color image. These ciphertext images are random-like images with uni-
formly distributed, which indicates the proposed method can effectively encrypt different
types of images. In addition, an image encryption scheme should have high encryption
efficiency. The proposed encryption scheme can achieve a higher encryption efficiency
owing to confusion and diffusion having lower computational complexity. The complete
numerical experiments are performed in Matlab R2018a in a workstation with Intel(R)
Core (TM) i7-1180H CPU @ 2.3 GHz with 16.0 GB RAM memory under Windows 10 OS.
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Table 1 compares the required time between the proposed encryption scheme and existing
encryption schemes in encrypting same image. Here, images in USC-SIPI Miscellaneous
dataset are used in this paper. It can be observed that the proposed encryption scheme has
faster encryption speeds than existing encryption schemes for the same image. Therefore,
the proposed method exhibits lower time complexity.

Figure 8. A numerical example of the diffusion process.

Figure 9. Diffusion results: (a) confusion image; (b) histogram of (a); (c) diffusion image; (d) histogram of (c).

Table 1. The time (second) required to encrypt images using different schemes.

Schemes 128 × 128 256 × 256 512 × 512 1024 × 1024

Diaconu [33] 0.0567 0.2014 0.9731 3.8377

HZ [34] 0.1335 0.5783 2.4913 9.9185

ZBC1 [35] 0.0796 0.3034 1.4824 5.8175

XLLH [36] 0.0212 0.1019 0.4924 20.144

Proposed method 0.0171 0.0304 0.1314 0.7021
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Figure 10. Simulation results: (a) plaintext images; (b) histograms of plaintext images; (c) encryption results of plaintext
images; (d) histogram of the encryption results of plaintext images.

4. Security Analysis

Some analysis such as key security analysis, histogram analysis, correlation analy-
sis, and differential attack, are presented to indicate the even better performance of the
proposed image encryption scheme.

4.1. Key Security Analysis

An image encryption scheme should firstly have a large enough key space to resist
brute-force attacks. The scheme proposed in this paper has a key space of 2256 since the key
length is 256 bits. Secondly, it is very sensitive to the initial key, otherwise the incorrect keys,
which are slightly different from the initial key, can also obtain the plaintext information.
Figure 11 shows the key sensitivity results. The same plaintext image is encrypted and
decrypted by two keys K1 and K2 with one bit difference. Each key can decrypt the original
image. If the other key is used for decryption, the original image information cannot be
obtained. Thus, the proposed scheme is sensitive to its keys in both the encryption and
decryption processes.
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Figure 11. Key sensitivity analysis: (a) the plaintext image; (b) the ciphertext image E1 encrypted by
K1; (c) the ciphertext image E2 encrypted by K2; (d) the decrypted image using correct key; (e) the
decrypted D1 from E1 using K2; (f) the decrypted D2 from E2 using K1.

4.2. Histogram Analysis

Histograms can illustrate the distributions of pixel values of image. The histogram of
the original and the encrypted images are presented in Figure 10. It can be clearly observed
that the distributions of the encrypted images are random and very different from the
distributions of the original images. When verifying the security of encrypted images,
histogram analysis is necessary, but insufficient to verify the uniformity of encrypted
images. In order to further evaluate the uniformity of the histogram of the encrypted
images, we use the chi-square test in this paper. Its statistic χ2 value can be defined as:

χ2 =
255

∑
i=0

(
Ei − Z

Z

)
, (11)

where Ei is value of the current pixel, and Z is the expected occurrence frequencies of each
pixel. When α = 0.05, χ2

0.05 = 293.2478. A small χ2 value means the much more uniform
distribution of the histogram of an image. The encryption image can pass the chi-square
assessment when the calculated χ2 value of a ciphertext image does not exceed 293.2478 [28].
The chi-square values of virous encryption images are shown in Table 2. Obviously, all
results do not exceed 293.2478, which shows that the distributions of the histogram of the
encrypted images using the proposed encryption scheme are uniformly distributed.

Table 2. The χ2 distribution results of encryption image using the proposed method.

Images Lena Gray Ruler Boat Pepper

χ2 252.0624 234.4568 227.3544 226.3549 241.9653

4.3. Correlation Analysis

There is a strong correlation between each pixel of the digital image, which means
that there is a small difference in the gray value between each pixel in a large area of
the digital image. The pixel correlation of an image includes three directions: horizontal,
vertical, and diagonal. One of the goals of an encrypted image is to reduce the correlation
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between adjacent pixels. The lower the correlation between pixels, the better the encryption
algorithm, the better the encryption effect, and the higher the security. The correlation of
two pixels sequences can be defined by:

ruv =
cov(u, v)√

D(u)
√

D(v)
, (12)

cov(u, v) =
1
N

N

∑
i=1

(ui − E(u))(vi − E(v)), (13)

D(u) =
1
N

N

∑
i=1

(ui − E(u))2, (14)

E(u) =
1
N

N

∑
i=1

ui, (15)

where u and v are adjacent pixels values, and ruv is the correlation coefficient of the adjacent
pixels. When ruv → 1, which indicates that adjacent pixels are highly correlated, and when
ruv → 0, which demonstrates that adjacent pixels are low correlated [33]. In other words,
when testing the relationship number of the phase encrypted image, the closer the value is
to 0, the lower the correlation is. The 3000 pairs of adjacent pixels, from the original and
encrypted images of three directions in horizontal, vertical, and diagonal directions are
randomly selected. The distributions of these pairs are shown in Figure 12. As Figure 12
illustrates, the pixels of the plaintext image are close to the diagonal line, while the pixels
of the ciphertext image are randomly distributed. Table 3 presents the comparison results
of the correlations of adjacent pixel from plaintext and ciphertext images. Here, we use
Lena with size of 512× 512. It can be observed that the ruv values of the proposed method
are closer to 0 compared to the other schemes.

Figure 12. The correlation distributions: (a) the plaintext image and correlation distributions of three directions; (b) the
ciphertext image and correlation distributions of three directions.
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Table 3. Adjacent pixel correlations of the plaintext image “Lena” and its ciphertext image using
different encryption schemes.

Schemes Horizontal Vertical Diagonal

“Lena” image 0.9400 0.9769 0.9567

DS [9] −0.0068 −0.0062 0.0070

HZ [34] 0.0034 −0.0010 −0.0002

XLLH [36] 0.0003 0.0014 0.0022

ZBC1 [35] −0.0054 0.0042 0.0032

LSZ [37] −0.0015 −0.0021 0.0019

Proposed method −0.0009 −0.0012 0.0010

4.4. Differential Attack

Diffusion is an important property in the process of image encryption. When the pixel
position or value of the original image changes a little, this change will spread to the whole
image in an unpredictable way under the diffusion operation. In general, the attacker will
modify one or several pixels in the original image, and then observe the changes of the
results to find some meaningful relationship between the original image and the encrypted
image. A good encryption algorithm, if a small change in the original image causes a great
change in the scrambling and diffusion effect of the encrypted image, then the efficiency of
differential attack is relatively low. In order to evaluate the ability of an image encryption
scheme to resist differential attack, we use the number of pixels change rate (NPCR) and
unified averaged changed intensity (UACI) tests [35]. Suppose that C1 and C2 represent
two encrypted images, respectively. NPCR and UACI can be described as follows:

NPCR =
∑M

m=1 ∑N
n=1 D(m, n)
MN

× 100%, (16)

D(m, n) =
{

1 f or C1(m, n) 6= C2(m, n)
0 otherwise

, (17)

UACI(C1, C2) =
M

∑
m=1

N

∑
n=1

|C1(m, n)− C2(m, n)|
255×M× N

, (18)

where C1 and C2 are two encrypted images, whose original images have only one pixel
change, and D(m, n) represents the number of different pixels of the encrypted images C1
and C2. The ideal expectations of NPCR and UACI are NPCRE = 99.6094 and UACIE =
33.463507, respectively [35]. In this test, one pixel from each original image is randomly
chosen, and its value is changed to generate another original image. The mean values of
NPCR and UACI of serval encryption schemes are shown in Table 4.

Table 4. The NPCR and UACI test values of ciphered images.

Images
NPCR (%) UACI (%)

R G B R G B

4.1.01.tiff 99.6189 99.6108 99.6098 33.4652 33.4636 33.4507
4.1.03.tiff 99.6139 99.6201 99.6149 33.4982 33.4678 33.4789
4.1.04.tiff 99.6246 99.6154 99.6098 33.4532 33.4726 33.4592
4.2.03.tiff 99.6052 99.6209 99.6134 33.4585 33.4677 33.4728
4.2.07.tiff 99.6357 99.6258 99.6072 33.5240 33.4584 33.4601

Lena 99.6145 99.6254 99.6275 33.4612 33.4612 33.4704

Here, we use six color images with a size of 512× 512 in USC-SIPI Miscellaneous
dataset as examples. The NPCR and UACI test values of the ciphered images are presented
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in Table 4. The mean values of NPCR and UACI of serval encryption schemes are shown
in Table 5. Obviously, compared with the results of other references, the synthesis results
of the algorithm in this paper are closer to the ideal expected value, which shows that the
proposed algorithm has better effect in resisting differential attack.

Table 5. Comparison of the NPCR and UACI mean values of these images.

Schemes
NPCR UACI

R G B R G B

HZ [34] 99.5972 99.6072 99.6120 33.4649 33.4650 33.4652
ZBC1 [35] 99.6109 99.6139 99.6079 33.4631 33.4636 33.4641
XLLH [36] 99.6246 99.6106 99.6123 33.4644 33.4651 33.4650
LSZ [25] 99.6052 99.6152 99.6105 33.4749 33.4647 33.4652

Proposed method 99.6188 99.6179 99.6138 33.4767 33.4652 33.4654

4.5. Two-Dimensional Detrending Fluctuation Analysis

In order to implement the scaling analysis of the different encryption schemes, the
Two-Dimensional Detrending Fluctuation Analysis (2D-DFA) [37] is used to analyze the
original image P, the confusion image F, and the diffusion image E when the scrambling
stage considers two operations in this paper. Table 6 presents the result of the scaling
analysis for encrypting the same image with different schemes, where α is the scaling
fluctuation exponent. When the scaling fluctuation exponent α of the ciphertext image
is close to 1, we assume that the encryption system is secure from a perception point of
view and does not reveal any information of the original image [38]. As can be seen from
Table 6, the values of the scaling exponents of diffusion image E are lower than that of the
plaintext image P, and they are close to 1. Therefore, the encrypted image does not reveal
any information that can distinguish the original image.

Table 6. Comparison of the scaling exponents of different encryption schemes.

α

Images P Image P
Image E

ZBC1 [35] XLLH [36] LSZ [25] Proposed Method

lena 2.1463 1.1365 1.2194 1.2984 1.0015
boat.5.12 2.1954 1.2365 1.1984 1.1954 0.9989

gray.21.512 1.9978 0.9826 0.9907 0.9976 1.0149
ruler.512 2.0084 1.2654 1.0689 1.0554 1.0023

elaine.512 2.3684 1.2748 1.1607 1.1747 1.0114

5. Conclusions

In this work, a 3D chaotic system with high complexity, called the 3D-ICM, was
proposed. The excellent hyperchaotic dynamic behavior of the system has been described
via quantitative evaluation criteria, such as LE and SE. Furthermore, compared with the
existing chaotic system, it can be seen that the 3D-ICM has superior chaotic characteristics,
which makes it usable in the field of image encryption. Thus, we proposed a chaotic image
encryption scheme based on confusion and diffusion and used the 3D-ICM as a chaotic
sequence generator. The scheme has low time complexity because it only involves one
multiplication operation in the diffusion process. In addition, the scheme can also resist
various attacks including brute-force attack, statistic attack, and differential attack, so it has
a high level of security. In the future work, we will investigate the further application of
the scheme in video encryption and field-programmable gate array (FPGA).
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