
entropy

Article

Learning in Convolutional Neural Networks Accelerated by
Transfer Entropy

Adrian Moldovan 1,2 , Angel Caţaron 1,2,* and Răzvan Andonie 1,3

����������
�������

Citation: Moldovan, A.; Caţaron, A.;

Andonie, R. Learning in

Convolutional Neural Networks

Accelerated by Transfer Entropy.

Entropy 2021, 23, 1218. https://

doi.org/10.3390/e23091218

Academic Editor: Friedhelm

Schwenker

Received: 14 August 2021

Accepted: 12 September 2021

Published: 16 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electronics and Computers, Transilvania University, 500024 Braşov, Romania;
adrian.moldovan@siemens.com (A.M.); razvan.andonie@cwu.edu (R.A.)

2 Technology, Siemens SRL, 500007 Braşov, Romania
3 Department of Computer Science, Central Washington University, Ellensburg, WA 98926, USA
* Correspondence: cataron@unitbv.ro; Tel.: +40-268-413000

Abstract: Recently, there is a growing interest in applying Transfer Entropy (TE) in quantifying the
effective connectivity between artificial neurons. In a feedforward network, the TE can be used to
quantify the relationships between neuron output pairs located in different layers. Our focus is
on how to include the TE in the learning mechanisms of a Convolutional Neural Network (CNN)
architecture. We introduce a novel training mechanism for CNN architectures which integrates the
TE feedback connections. Adding the TE feedback parameter accelerates the training process, as
fewer epochs are needed. On the flip side, it adds computational overhead to each epoch. According
to our experiments on CNN classifiers, to achieve a reasonable computational overhead–accuracy
trade-off, it is efficient to consider only the inter-neural information transfer of the neuron pairs
between the last two fully connected layers. The TE acts as a smoothing factor, generating stability
and becoming active only periodically, not after processing each input sample. Therefore, we can
consider the TE is in our model a slowly changing meta-parameter.

Keywords: transfer entropy; causality; Convolutional Neural Network; deep learning

1. Introduction

Sometimes, it is difficult to distinguish causality from statistical correlation. A pre-
requisite of causality is the time lag between cause and effect: the cause precedes the
effect [1,2]. We consider here causality in a statistical sense, measured by information trans-
fer. Statistical causality direction is inferred from the knowledge of a temporal structure,
assuming that the cause has to precede the effect [3]. According to the authors of [4], causal
information flow describes the causal structure of a system, whereas information transfer
can then be used to describe the emergent computation on that causal structure. For
practical reasons, it is convenient to accept that causality can be measured by information
transfer, even if the two concepts, are not exactly the same.

Transfer Entropy (TE) is an information transfer measure introduced by Schreiber [5]
as a measure used to quantify the statistical coherence between events (usually, time series).
Later, TE was considered in the framework of Granger’s causality [6,7]. Typically, causality
is related to whether interventions on a source have an effect on the target, whereas
information transfer is related to whether observations of the source can help predict
state transitions on the target. According to Lizier et al. [4], to be considered a correct
interpretation of information transfer, TE should only be applied to causal information
sources for the given destination. A comparison between the TE and causality indicators
can be found, for instance, in [4]. With this in mind, we will use the information transfer
(measured by the TE) to establish the presence of and quantify causal relationships.

Massey [8] defined the directivity of information flow through a channel in the form
of directed information. In the presence of feedback, this is a more useful quantity than
the traditional mutual information. Similarly, the TE measures the information flow from

Entropy 2021, 23, 1218. https://doi.org/10.3390/e23091218 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-1393-2723
https://orcid.org/0000-0002-3986-5437
https://orcid.org/0000-0002-6015-3151
https://doi.org/10.3390/e23091218
https://doi.org/10.3390/e23091218
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23091218
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23091218?type=check_update&version=1


Entropy 2021, 23, 1218 2 of 15

one process to another by quantifying the deviation from the generalized Markov property
as a Kullback–Leibler distance. Therefore, the TE can be used to estimate the directional
informational interaction between two random variables.

In our case, we quantify the information transfer between the neural layers of feedfor-
ward neural architectures. The information between these layers is directed: during the
feedforward phase of the backpropagation algorithm, the layers are computed successively.
We reduce the weights increment for larger values of TE with the objective of preserving the
network configuration if the information is efficiently transferred between layers. The cause
(the output from a neural layer) precedes the effect (the input to a subsequent layer). We
measure causality by this directional information transfer. The directed informational trans-
fer between two neural layers cannot be measured by a symmetrical statistical measure,
such as mutual information, where cause and effect simultaneously coexist.

A variation of the TE is the Transfer Information Energy (TIE), introduced by us
in [9,10] as an alternative to the TE. The TE measures of the reduction in uncertainty about
one event given another, whereas the TIE measures the increase in certainty about one
event given another. The TE and the TIE can be both used as quantitative indicators of
information transfer between time series. The TIE can be computed ~20% faster than the
TE [9].

Recently, there is a growing interest in applying TE in quantifying the effective con-
nectivity between artificial neurons [11–14]. For instance, the reservoir adaptation method
in [15] optimizes the TE at each individual unit, dependent on properties of the information
transfer between input and output of the system. Causal relationships within a neural
network were defined in [16]. It is a natural question if causal relationships quantified by
TE information transfer measure can be inferred from neural networks and included in the
learning mechanisms of neural architectures. There are few results reporting applications
of TE in training neural networks: Herzog et al. [17,18], Patterson et al. [19], Obst et al. [15],
and Moldovan et al. [20].

Herzog et al. [17] computed the feedforward TE between neurons to structure neural
feedback connectivity. These feedback connections were used in the training algorithm
of a Convolutional Neural Network (CNN) classifier. Herzog et al. averaged (by layer
and class) the calculation of TE gathered from directly or indirectly connected neurons,
using thresholded activation values. The averaged TEs were then used in the subsequent
neuron’s activations, within the training algorithm. Only one TE derived value is used
for each of the layers. Herzog et al. observed that there is a decreasing feedforward
convergence towards higher layers. Furthermore, the TE value is in general lower between
nodes at larger layer distances than between neighbors. This is caused by the fact that
long-range TE is calculated by conditioning on the intermediate layers.

Herzog et al. continued their research in [18]. Their goal was to define clear guidelines
about how to compute the TE based neural feedback connectivity to improve the overall
classification performance of feedforward neural network classifiers. Structuring such
feedback connection in a deep neural model is very challenging because of the very large
number of candidate connections. For AlexNet, Herzog et al. narrowed the TE feedback
connections to about 3.5% of all possible feedback connections. Then they used a genetic
algorithm to modify their connection strengths and obtain in the end a set of very small
weights, similar to many feedback paths in the brain, which amplify already connected
feedforward paths only very mildly. According to their experiments in [18], this technique
improved the classification performance. In a nutshell, the algorithmic steps in [18] are (i)
train the network employing standard backpropagation, (ii) fine-tune the resulted network
using feedback TE connections, and (iii) apply a genetic algorithm to generate the best
performing network.

Inspired by Herzog et al.’s paper [17], we defined in [20] a novel information-theoretical
approach for analyzing the information transfer (measured by TE) between the nodes of
feedforward neural networks. The approach employed a different learning mechanism
than the one in [17]. The TE was used to establish the presence of relationships and the



Entropy 2021, 23, 1218 3 of 15

quantification of these between neurons and the TE values were obtained from neuron
output pairs located in consecutive layers. Calculating the TE values required a series
of event values that were obtained by thresholding the neurons’ outputs with a constant
value. We introduced a backpropagation-type training algorithm which used TE feedback
connections to improve its performance. Compared with a standard backpropagation
training algorithm, the addition of the TE feedback in the training scheme implies a com-
putational overhead needed to compute the TE values in the training stage. However,
according to our experiments, adding the TE feedback parameter has three benefits [20]:
(a) it accelerates the training process—in general, less epochs are needed; (b) generally
achieve a better test set accuracy; and (c) it generates stability during training. The neural
models trained in [20] were relatively small. This allowed to use all training samples to
compute the TE from time series. When training complex models with large datasets, for
computational reasons, this is unpractical. The question (and main motivation for our
current work) is how to adapt our technique to such real-world cases.

We extend here the results from [20] and adapt them to a much larger neural
architecture—the CNN network. Rather then being a simple generalization, it is a novel
approach, as we had to redefine the network training process. The motivation is not only
the popularity of CNNs in current deep learning applications, but also the fact that despite
the ability of generating human-alike predictions, CNNs still lack a major component:
interpretability. CNNs utilize a hierarchy of neural network layers. We consider that
the statistical aspects of information transfer between these layers can bring an insight
into the feature abstraction process. Our idea is to use TE as a momentum factor in the
backward step of backpropagation of error and update the weights in accordance with
the uni-directional amount of information transferred between pairs of neurons. We thus
leverage the significant informational connection between two units in the learning phase,
obtaining a better granularity of the weights’ increments.

In contrast to the work in [18], we integrate the TE feedback connections in the
training algorithm, and do not use them in a subsequent fine-tuning. The way we select the
feedback connections is also different. The similarity between Herzog et al.’s method and
our work consists in using TE to compute neural feedback connections. However, the two
approaches are very different. Using feedback connections, a general training algorithm
like backpropagation adds a computational overhead, not discussed in [17,18]. We may
expect that there is a trade-off between execution time and classification accuracy.

Beyond the exploratory aspect of our work, our main insights are twofold. First, we
attempt to improve (training time, accuracy) the training algorithm of CNN architectures.
Second, we create the premises for further information transfer interpretation within deep
learning models.

The rest of the paper is structured as follows. Section 2 introduces the TE definition and
notations, whereas Section 3 explains how we compute the TE feedback in a CNN. Section 4
introduces the core of our novel method—the integration of the TE feedback mechanism
into the training phase of a CNN. Experimental results are presented in Section 5. Section 6
contains the final remarks and open problems.

2. Transfer Entropy Notations

The recent literature on TE applications is rich and illustrates an increasing interest for
the use of this tool in a broad range of applications to measure the directional information
flow between time series based on their probability density functions. Applications of TE to
date has mainly been concentrated in neuroscience, bioinformatics, artificial life, climate sci-
ence, finance, and economics [21]. An introduction to TE is offered by Bossomaier et al. [21].
A nonparametric approach of causality considering the conditional entropy was introduced
by Baghli [22]. An extensive analysis of causality detection based on information-theoretic
approaches in time series analysis is provided in [23].



Entropy 2021, 23, 1218 4 of 15

To introduce the formal definition of TE, let us consider two discrete stationary pro-
cesses I and J. Relative to time t, k previous data points of process I, l previous data
points of process J, and the next point of process I contribute to the definition of TE as
follows [5,24]:

TEJ→I =
n−1

∑
t=1

p(it+1, i(k)t , j(l)t ) log
p(it+1|i(k)t , j(l)t )

p(it+1|i(k)t )
, (1)

where i(k)t and j(l)t are the k and l dimensional delay vectors of time series I and J, re-
spectively, and it+1 and jt+1 are the discrete states at time t + 1 of I and J, respectively.
The generalization of the entropy rate to two processes is a method to obtain a mutual
information rate which measures the deviation from independence, and therefore TEJ→I
can be obtained from Kullback entropy [5]. TE provides an evaluation of the asymmetric
information transfer between two stochastic variables, being a tool which can be used to
estimate the unidirectional interaction of pairs of time series.

The precise calculation of the entropy-based measures is an well-known difficult task
and the computational effort is still significant when accurate estimation of TE from a
dataset is required [25]. One of the most widely used approach is based on the histogram
estimation with fixed partitioning, but it is not scalable and is sensible to bins width setting.
As TE is derived from the nonparametric entropy estimation, popular methods are widely
used for computing the transfer entropy TE [25–27]: kernel density estimation methods,
nearest-neighbor, Parzen window density estimation, etc.

3. Computing the TE Feedback in a CNN

CNNs employ a particular form of linear transformation: convolution. A convolution
operation retains the important and variational features of an input, while flattening the
non-variant components. CNN design follows vision processing in living organisms
and became very popular starting with the seminal paper of Yann LeCun et al. [28] on
handwritten character recognition, where they introduced the LeNet-5 architecture. Since
then, research on CNN architectures produced a variety of deep networks, like AlexNet [29],
VGG [30], GoogleNet [31], ResNet [32], and more recently EfficientNet [33]. These have
many applications which makes them widely used in image recognition and classification,
medical imaging, and time series analysis, to name a few.

Despite the ability of generating, especially in image recognition tasks, human-alike
predictions, CNNs still lack a major component: interpretability [34]. Neural networks
in general are known for their black-box type of behavior, hiding the inner working
mechanisms of reasoning. However, reasoning and causal explanations are extremely
important for domains like medicine, law, and finance. It is tempting to model statistical
cause–effect relationships between CNN neural layers using TE, with the goal to contribute
to the interpretability of a CNN. As a first step, even improving the learning algorithm
using an information transfer indicator is interesting, as it may lay the ground for future
causality explanations.

To quantify inter-neural information transfer in a CNN, we have to quantify the rela-
tionship between training the samples and the output values of neurons. The measurable
relationship is constructed by selecting subsequent layers and extracting TE values for the
pairs of neurons implied. The computed TE values will directly participate in learning
mechanism of the network, described in Section 4.

Each TE value is computed by combining two time series, I and J, each obtained by
binarization of the activation function of a neuron, with threshold g. Each value in time
series I and J is a neuron output computed for an input sample. An ideal binarization
threshold should produce only few positive values. The reason is that, in such a case,
the obtained TE values tend to have a comparative value with learning rate, and then
tend to flatten during CNN training; this gives stability to the learning process. A similar
binarization technique was used by Herzog et al. in [17,18].



Entropy 2021, 23, 1218 5 of 15

We compute I and J in Equation (1) for individual pairs of neurons from adjacent
layers k and l, l being the next layer after k. Index t is the position of an input sample in
the training sequence. Time series I and J are updated online, after processing each input
sample. For each considered pair of neurons, the TE value is computed only periodically,
after a processing a fixed number of training samples. For all pairs of neurons in layers k
and l, we obtain a triangular adjacency matrix of TE values.

It is computationally not feasible to compute the TE values for all possible pairs of
neurons. Actually, according to our experiments, not all inter-neural information transfers
are relevant for the training process of a network. We observed that the highest impact of
using TE in training a CNN is within the last layers. We interpret this as a fine tuning of
the classification process, as the classifiable features are available in the final layers of the
network. Therefore, we compute the TE values only between the neurons of the last two
layers of the CNN. The focus on the last two layers diminishes the computational overhead
for calculating the TE values. Our approach is different than the one in Herzog et al. [17,18],
where TE interactions between non-adjacent layers are also calculated.

4. TE Feedback Integration in CNN Training

Backpropagation training has two standard phases [35]: feedforward and backward.
In the forward phase, for each input sample, in addition to the activations of the neurons
for each layer, we also record the time series needed for the TE computation.

The last layer’s output is used to calculate the error, which for classification tasks is
usually L = −ln(pc). In the backward phase the weights of error are updated, in reverse
order, starting from the last layer. In contrast to the standard backpropagation algorithm,
we update the weights with a value resulted from multiplying the current weights by
the identity matrix minus the computed TE values. The two phases (feedforward and
backward) are alternated until the entire training set is used, and this completes one
training epoch. The training consists of several epochs, the training set being randomized
at the start of each epoch. In practice, the backpropagation algorithm is used in conjunction
with a Mini-batch Gradient Descent (SGD) [36] that updates the weights after a batch of
training samples is processed. Mini-batch Gradient Descent is the algorithm of choice for
neural networks training. Updating the gradient with the TE addition is synchronized
with the batch gradient updates. Without synchronization, the SGD method will diminish
the impact of the TE term.

After each batch of training samples goes through forward computation, the backprop-
agation of errors and new weights computation is performed using Algorithm 1. Different
than in the standard backpropagation algorithm [35], we multiply (line 8 of the algorithm)
the updated weights by (I− (tetete(k))>).

Each pair of neurons generates a te value; two consequent layers k and l will produce
triangular matrix te(k), used to update the weights for layer k as shown in the Algorithm 1.
From line 8 of the algorithm, we conclude that the right member will tamper the weights
values, in particular when the cost function has a strong coercive action on the misclassified
samples. This accelerates the learning process, as the weights are updated with smaller
deltas at the beginning of epochs. Without te, the weights receive larger corrections at the
beginning of the epoch.



Entropy 2021, 23, 1218 6 of 15

Algorithm 1: Backpropagation using TE for a single step and a single mini-

batch. Mini-batches are obtained by equally dividing the training set by a fixed

number. This algorithm is repeated for all the available mini-batches and for a

number of epochs. Bold items denote matrices and vectors. σ′ is the derivative

of the activation function σ. The k and l indices are the same as the ones in

Equation (1).

1 begin

2 foreach layer k=1, 2, ..., l do

3 zzz(k) = www(k)aaa(k−1) + bbb(k), where zzz(k) is the output of layer k and bbb is the bias

4 aaa(k) = σ(zzz(k)), where aaa(k) is the output of the activation function σ

5 end

6 foreach layer k=l − 1, ..., 1 do

7 δ(k) = ((www(k+1))>δ(k+1)) � σ′(zzz(k)), δ(k) is the layer error, � is the

elementwise product

8 www(k) = (www(k) − ηδ(k)aaa(k−1)) · (I− (tetete(k))>) where I is the identity matrix

9 end

10 end

5. Experimental Results

All experiments were completed on an AWS Sagemaker ml.p2.xlarge instance using
NVIDIA Tesla K80 GPU, with 4 vCPU cores and 61 GB of RAM, engineered on top of
PyTorch 1.7.1. The repository is available on GitHub https://github.com/avmoldovan/
CNN-TE (accessed on 10 September 2021).

We used the following well-known datasets as benchmarks: CIFAR-10 [37], FashionM-
NIST [38], STL-10 [39], SVHN [40], and USPS [41] datasets. This selection was determined
by the vast amount of literature surrounding it and the number of available implementa-
tions and comparisons.

The networks used consist of the following sequential components: convolution and
feature engineering, deconvolution and classifier (in this order). Within these, various
mechanisms were used to prevent overfitting (e.g., dropout) and obtain normalization.

Our experiments and additions to this architecture involved mainly the classifier part
of the network, but we have also ran experiments on the convolutional layers.

We applied the TE on the last (fully connected) two layers—the pre-softmax and
softmax layers—with different binarization thresholds determined experimentally (see
Table 1). The TE term is applied on the weights of the k-th layer (see the red arrows in
Figure 1).

The softmax layer transforms the outputs of a linear layer into probabilities. The
maximum probability corresponds to the predicted class. For all outcomes with probability
above the threshold, the J time-series are positive.

Figure 2 depicts the architecture of the network used for the USPS dataset.

https://github.com/avmoldovan/CNN-TE
https://github.com/avmoldovan/CNN-TE


Entropy 2021, 23, 1218 7 of 15

Version September 10, 2021 submitted to Entropy 7 of 14

4096

fc8

transfer entropy

n

softmax

forward step

backward step

neuron connections

Figure 6. During the feedforward step, we compute time series I and J, and the te matrix, as shown by
the green arrows. When the backward step propagates the errors, we then use the te matrix in the weight
updates as shown in the Algorithm 1.

1 2 3 4
Epochs

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Tr
an
sf
er
 E
nt
ro
py
 st
d.
 d
ev
.

Transfer Entropy std. dev.
Gradients std. dev. (right)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Gr
ad
ie
nt
s s

td
. d

ev
.

Evolution of te and gradients for the updated layer during the first epochs

Figure 7. Evolution of the te standard deviation values on the first 4 epochs for the SVHN+TE dataset, for
the pre-softmax layer. Each data point in the plot represents a batch. The rest of the TE values have a similar
shape, and decrease slowly during training. We observe the spikes of the TE values at the beginning of each
epoch due to the training set randomization. During the first epoch the TE values are not calculated for the
first batches in order to prevent anomalous values, hence its value is close to 0.

During training, at the beginning of each epoch, we noticed an increased instability, visible237

through the high variation and values of the gradients, as seen in Figure 7. These observation238

apply for all datasets and networks, with or without the TE added. The TE values also exhibit239

instability and have larger values at the beginning of each epoch. However, the TE values show240

smaller values during the first epochs due to the selected threshold value that matches larger241

weights values from subsequent epochs. During each epoch and also during the whole training242

process, the slope of the gradients gradually decreases, and the TE variation also decreases.243

To validate the TE impact, we set a target accuracy to be reached by both implementations244

with/without TE. We observed the implementation that reaches the target accuracy w.r.t. the245

number of epochs needed, as well as the average time per epoch. These results show which of246

the two implementation requires less epochs to reach a target accuracy on the test set. For a fair247

Figure 1. During the feedforward step, we compute time series I and J, and the te matrix, as shown
by the green arrows. When the backward step propagates the errors, we then use the te matrix in the
weight updates as shown in the Algorithm 1.

Version September 10, 2021 submitted to Entropy 6 of 14

5. Experimental results218

All experiments were completed on an AWS Sagemaker ml.p2.xlarge instance using219

NVIDIA Tesla K80 GPU, with 4 vCPU cores and 61GB of RAM, engineered on top of Py-220

Torch 1.7.1. The repository is available on GitHub1.221

We used the following well-known datasets as benchmarks: CIFAR-10 [37], FashionMNIST222

[38], STL-10 [39], SVHN [40] and USPS [41] datasets. This selection was determined by the vast223

amount of literature surrounding it and the number of available implementations and comparisons.224

The networks used consist of the following sequential components: convolution and feature225

engineering, deconvolution and classifier (in this order). Within these, various mechanisms226

were used to prevent overfitting (e.g., dropout) and obtain normalization. Our experiments and227

additions to this architecture involved mainly the classifier part of the network, but we have also228

ran experiments on the convolutional layers.229

We applied the TE on the last (fully connected) two layers, the pre-softmax and softmax230

layers, with different binarization thresholds determined experimentally (see Table 1). The TE231

term is applied on the weights of the k-th layer (see the red arrows in Figure 6).232

The softmax layer transforms the outputs of a linear layer into probabilities. The maximum233

probability corresponds to the predicted class. For all outcomes with probability above the234

threshold, the J time-series are positive.235

Figure 4 depicts the architecture of the network used for the USPS dataset.236

32

conv1

64

conv2

576

fc2

144
pre-

softmax

transfer entropy

10

softmax

Figure 4. Illustration of the feedforward phase for the USPS dataset. The green arrows indicate the layers
outputs that are used to compute the TE2.

1 https://github.com/avmoldovan/CNN-TE
2 Plotted using https://github.com/HarisIqbal88/PlotNeuralNet

Figure 2. Illustration of the feedforward phase for the USPS dataset. The green arrows indicate the
layers outputs that are used to compute the TE (Plotted using https://github.com/HarisIqbal88/
PlotNeuralNet (accessed on 10 September 2021)).

https://github.com/HarisIqbal88/PlotNeuralNet
https://github.com/HarisIqbal88/PlotNeuralNet


Entropy 2021, 23, 1218 8 of 15

During training, at the beginning of each epoch, we noticed an increased instability,
visible through the high variation and values of the gradients, as seen in Figure 3. These
observation apply for all datasets and networks, with or without the TE added. The
TE values also exhibit instability and have larger values at the beginning of each epoch.
However, the TE values show smaller values during the first epochs due to the selected
threshold value that matches larger weights values from subsequent epochs. During each
epoch, and also during the whole training process, the slope of the gradients gradually
decreases and the TE variation also decreases.

1 2 3 4
Epochs

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Tr
an
sf
er
 E
nt
ro
py
 st
d.
 d
ev
.

Transfer Entropy std. dev.
Gradients std. dev. (right)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Gr
ad
ie
nt
s s

td
. d

ev
.

Evolution of te and gradients for the updated layer during the first epochs

Figure 3. Evolution of the te standard deviation values on the first 4 epochs for the SVHN+TE
dataset, for the pre-softmax layer. Each data point in the plot represents a batch. The rest of the TE
values have a similar shape and decrease slowly during training. We observe the spikes of the TE
values at the beginning of each epoch due to the training set randomization. During the first epoch
the TE values are not calculated for the first batches in order to prevent anomalous values, thus its
value is close to 0.

To validate the TE impact, we set a target accuracy to be reached by both implementa-
tions with/without TE. We observed the implementation that reaches the target accuracy
w.r.t. the number of epochs needed, as well as the average time per epoch. These results
show which of the two implementation requires less epochs to reach a target accuracy
on the test set. For a fair comparison, we used the same hyperparameters for the CNNs
with/without TE implementations (see Table 1). The results are summarized in Tables 2–6.

Table 1. Parameters.

CIFAR-10+TE FashionMNIST+TE STL-10+TE SVHN+TE USPS+TE

learning rate (η) 0.01 0.01 0.01 0.01 0.01
momentum 0.9 0.9 0.9 0.9 0.9
dropout 0 0.25 0. 0.3 0.25
threshold rate 1 (g1) 2.0 2.0 2.0 2.0 5.0
threshold rate 2 (g2) 0.99 0.99 0.99 0.99 0.99
te window length 100 100 4000 200 90
batch size 500 100 200 200 60



Entropy 2021, 23, 1218 9 of 15

Table 2. Results for CIFAR-10 [37], with/without TE. The increased training time results from the
large size of the last linear layer.

CIFAR-10+TE CIFAR-10

Target 98% accuracy in epoch 5 6
Top 1 accuracy at epoch 5 98.02% 97.58%
Average epoch duration 2110 s 81 s
Total training duration 10,550 s 492 s

Table 3. Results for Fashion-MNIST [38] dataset, with/without TE.

FashionMNIST+TE FashionMNIST

Target 97% accuracy in epoch 23 28
Top 1 accuracy at epoch 23 97.0% 97.02%
Average epoch duration 71 s 41 s
Total training duration 1720 s 1162 s

Table 4. Results for STL-10 [39] dataset, with/without TE.

STL-10+TE STL-10

Target 98% accuracy in epoch 5 7
Top 1 accuracy at epoch 5 98.33% 78.63%
Average epoch duration 28 s 7 s
Total training duration 128 s 53 s

Table 5. Results for SVHN [40] dataset, with/without TE.

SVHN+TE SVHN

Target 94% accuracy in epoch 9 11
Top 1 accuracy at epoch 9 94.05% 91.67%
Average epoch duration 512 s 491 s
Total training duration 4587 s 5369 s

Table 6. Results for USPS [41] dataset, with/without TE.

USPS+TE USPS

Target 99% accuracy in epoch 3 3
Top 1 accuracy at epoch 3 99.32% 99.05%
Average epoch duration 376 s 33 s
Total training duration 1138 s 102 s

As observed in [20], using time series constructed from the full length of the epoch
results in smoother TE values. Computing the TE for large time series (e.g., >106) is
computationally impractical. We also observed the necessary length of the time series in
that produces observable and positive outcomes. Therefore, we limited this length to u
(determined experimentally), using a sliding window technique. To obtain smoother TE
values, we slid the window with every batch of training samples, instead of dividing the
training set into u-sized windows. Figure 4 illustrates how the time series were computed.



Entropy 2021, 23, 1218 10 of 15

Using this approach, we analyzed the impact of the window length on the accuracy
of the classifier. After q training samples, we computed the TE. The u windows overlap
partially, as shown in Figure 4. According to our experiments, limiting the length of the
time series does not have a significant impact on the performance of the trained classifier.
Furthermore, as we found that a u value five times the batch size is a good trade-off
between accuracy and computational overhead.

Version September 10, 2021 submitted to Entropy 9 of 14

Table 5: Results for SVHN [40] dataset, with/without TE.

SVHN+TE SVHN

Target 94% accuracy in epoch 9 11
Top 1 accuracy at epoch 9 94.05% 91.67%
Average epoch duration 512 s 491 s
Total training duration 4587 s 5369 s

Table 6: Results for USPS [41] dataset, with/without TE.

USPS+TE USPS

Target 99% accuracy in epoch 3 3
Top 1 accuracy at epoch 3 99.32% 99.05%
Average epoch duration 376 s 33 s
Total training duration 1138 s 102 s

u1

u···
uq

i(k)t i(k)t+1 · · · i(k)n−2 i(k)n−1

j(l)t j(l)t+1 · · · j(l)n−2 j(l)n−1

te(u1)
Jl ,Ik

i(k)t i(k)t+1 · · · i(k)n−2 i(k)n−1

j(l)t j(l)t+1 · · · j(l)n−2 j(l)n−1

te(uq)
Jl ,Ik

Figure 8. Illustration of how time series I and J are produced for a pair of neurons from layers k and l, for
multiple windows of events u1 . . . , uq.

Convolutional layers are a major building blocks used in CNNs [42]. A convolution is262

performed on the input data with the use of a kernel to produce a feature map. Applying the TE263

to measure the inter-neural information transfers between the input data and the resulted feature264

maps is interesting to be considered. We can compute the median of the activations of the neurons265

within each convolutional kernel from layer conv1 (see Figure 4), and pair it with the outputs of266

subsequent layer conv2. The obtained te values can be used in the CNN learning process. In our267

experiments, under this setup, the learning process diverged. In the best run, the top 1 accuracy268

hardly reached a considerable value. In addition, this approach has a considerable computational269

overhead, especially if we consider several convolutional layers. This justifies our focus on the270

last two fully connected layers only.271

It is also interesting to evaluate the impact the length s of the time series. Experimentally,272

we observed that, when s is a multiple of the batch size b, the accuracy maintains a favorable273

trend. In this scenario, the time series are constructed as illustrated in Figure 8. The best results274

were obtained when the length of the series are extended to the full epoch.275

In another set of experiments, we tried to minimize the number of considered neuron pairs276

from the last two layers, with a minimum impact on the achieved accuracy. In other words, we277

tried to obtain an optimal performance - computational overhead trade-off. We found that the278

Figure 4. Illustration of how time series I and J are produced for a pair of neurons from layers k and
l, for multiple windows of events u1 . . . uq.

Convolutional layers are a major building blocks used in CNNs [42]. A convolution is
performed on the input data with the use of a kernel to produce a feature map. Applying
the TE to measure the inter-neural information transfers between the input data and the
resulted feature maps is interesting to be considered. We can compute the median of
the activations of the neurons within each convolutional kernel from layer conv1 (see
Figure 2) and pair it with the outputs of subsequent layer conv2. The obtained te values
can be used in the CNN learning process. In our experiments, under this setup, the
learning process diverged. In the best run, the top 1 accuracy hardly reached a considerable
value. In addition, this approach has a considerable computational overhead, especially
if we consider several convolutional layers. This justifies our focus on the last two fully
connected layers only.

It is also interesting to evaluate the impact the length s of the time series. Experimen-
tally, we observed that when s is a multiple of the batch size b, the accuracy maintains a
favorable trend. In this scenario, the time series are constructed as illustrated in Figure 4.
The best results were obtained when the length of the series are extended to the full epoch.

In another set of experiments, we tried to minimize the number of considered neuron
pairs from the last two layers, with a minimum impact on the achieved accuracy. In other
words, we tried to obtain an optimal performance–computational overhead trade-off. We
found that the accuracy improves significantly even when using only 10% of the randomly
selected neurons. The neurons were selected randomly for an entire epoch or by a TE
window. The two strategies yielded similar results. This is somehow similar to dropout, as
only some of the connections are updated using the TE feedback. The top performance is
achieved when all neurons are selected.

According to our experiments, using the TE feedback loops for additional layer pairs
improves the performance. However, this increases exponentially the number of TE
computations needed. For the USPS network (see Appendix A.5), a very simple dataset,
computing the TE for the last two linear layers adds an overhead of 7 min of training time



Entropy 2021, 23, 1218 11 of 15

per epoch. Computing the TE only for the pre-softmax and softmax layers training takes
6 min per epoch. Computing the TE for the convolutional layers for the USPS network
implies an increased computational overhead. For all possible pairs of kernels between the
convolutional layers, we measured an extra three days of training per epoch. Performance
cost increases almost linearly with the number of performed TE calculations. The exact
number of TE computations for a pair of layers is a product of the layer sizes and the
number of batches. Therefore, it is computationally not practical to compute the TE for all
layers.

We also conducted other experiments, applying the TE correction on an identical
network, pre-trained without the TE mechanism. We continued training, freezing all layers
(except the pre-softmax and softmax layers), and applying the TE correction. The results
were not consistent through multiple executions, since the TE training on top of the non-TE
training changes the convergence logic and creates instability.

6. Conclusions and Open Problems

TE can be used to measure how significantly neurons interact [11,12]. In our study,
we add specific TE feedback connections between neurons to improve performance. Our
results confirm what we obtained in our previous study on a simple feedforward neural
architecture [20]. Adding the TE feedback parameter accelerates the training process, as
fewer epochs are needed. On the flip side, it adds computational overhead to each epoch.
The optimal balance between these two conflicting factors is application dependent.

According to our results, in a CNN classifier it is efficient to consider only the inter-
neural information transfer of the neuron pairs between the last two fully connected layers.
The information transfer within these layers has the most significant impact on the learning
process, since they are the closest to the high-level classification decision. Many of the
inter-neural information transfer connections appear to be redundant, and this allows us to
use only a fraction of them. These observations are very interesting and may be further
discussed in from a neuroscientific perspective (e.g., the vertebrate brain [43,44]).

Generally, to optimize the generalization of a learning algorithm, we try to minimize
the number of its parameters. As adding the TE in the learning mechanism generates new
hyper-parameters, connected to the integration of the TE in the learning algorithm, the
question is if this does not conduct to overfitting and a weaker generalization performance.
In our experiments, the TE acted as a smoothing factor, becoming active only periodically,
not after processing each input sample. Therefore, we can consider the TE is in our model a
slowly changing meta-parameter. This can be related to the hierarchy of quickly-changing
vs. slowly-changing parameters in learning neural causal models [45]. We observed that
the TE feedback generates stability during training, this being compliant with the results
presented in [20].

According to the authors of [18], it is tempting to speculate that a similar principle—an
evaluation of the relevance of the different feedforward pathways—might have been a
phylo- or ontogenetic driving force for the design of different feedback structures in real
neural systems.

Author Contributions: A.M., A.C. and R.A. equally contributed to the published work. All authors
have read and agreed to the published version of the manuscript.

Funding: The costs to publish in open access were covered by Siemens SRL.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Entropy 2021, 23, 1218 12 of 15

Abbreviations
The following abbreviations are used in this manuscript:

te transfer entropy value
TE Transfer Entropy
g the binarization threshold
u window of time series used to calculate TE
W weights matrix
C loss function
CNN Convolutional Neural Network
SGD Stochastic Gradient Descent
CNN+TE CNN + Transfer Entropy—our proposed method
MLP Multi-layer perceptron

Appendix A. CNN Architectures

Appendix A.1. FashionMNIST

The architecture used for the FashionMNIST [38] dataset is https://www.kaggle.com/
pankajj/fashion-mnist-with-pytorch-93-accuracy (accessed on 10 September 2021):

Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
ReLU(inplace=True)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))
BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
ReLU(inplace=True)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
Linear(in_features=2304, out_features=600, bias=True)
Dropout(p=0.25, inplace=False)
Linear(in_features=600, out_features=120, bias=True)
Linear(in_features=120, out_features=10, bias=True)
Softmax(dim=1)

Appendix A.2. CIFAR-10
For CIFAR-10 [37] dataset we used the following layout https://github.com/aaron-

xichen/pytorch-playground (accessed on 10 September 2021):

Conv2d(3, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(128, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(128, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(256, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(256, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(512, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(512, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1))
BatchNorm2d(1024, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
Linear(in_features=1024, out_features=10, bias=True)
Softmax(dim=1)

Appendix A.3. STL-10
For the STL-10 dataset [39] we used the following network architecture https://github.

com/aaron-xichen/pytorch-playground (accessed on 10 September 2021):

https://www.kaggle.com/pankajj/fashion-mnist-with-pytorch-93-accuracy
https://www.kaggle.com/pankajj/fashion-mnist-with-pytorch-93-accuracy
https://github.com/aaron-xichen/pytorch-playground
https://github.com/aaron-xichen/pytorch-playground
https://github.com/aaron-xichen/pytorch-playground
https://github.com/aaron-xichen/pytorch-playground


Entropy 2021, 23, 1218 13 of 15

Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(32, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(64, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(128, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(128, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))
BatchNorm2d(256, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
BatchNorm2d(256, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
Linear(in_features=256, out_features=10, bias=True)
Softmax(dim=1)

Appendix A.4. SVHN
For the SVHN dataset [40] we used the following network architecture https://github.

com/aaron-xichen/pytorch-playground (accessed on 10 September 2021):

Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(32, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
Dropout(p=0.3, inplace=False)
Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(32, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
Dropout(p=0.3, inplace=False)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(64, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
Dropout(p=0.3, inplace=False)
Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(64, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
Dropout(p=0.3, inplace=False)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(128, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
Dropout(p=0.3, inplace=False)
Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(128, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
Dropout(p=0.3, inplace=False)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))
BatchNorm2d(256, eps=1e-05, momentum=0.1)
ReLU(inplace=True)
Dropout(p=0.3, inplace=False)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
Linear(in_features=256, out_features=10, bias=True)
Softmax(dim=1)

Appendix A.5. USPS
For the USPS dataset [41] we used the following network architecture https://github.

com/aaron-xichen/pytorch-playground (accessed on 10 September 2021):

Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
ReLU(inplace=True)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))
BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
ReLU(inplace=True)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1)
Linear(in_features=576, out_features=144, bias=True)

https://github.com/aaron-xichen/pytorch-playground
https://github.com/aaron-xichen/pytorch-playground
https://github.com/aaron-xichen/pytorch-playground
https://github.com/aaron-xichen/pytorch-playground


Entropy 2021, 23, 1218 14 of 15

Dropout(p=0.25, inplace=False)
Linear(in_features=144, out_features=10, bias=True)
Softmax(dim=1)

References
1. Shadish, W.; Cook, T.; Campbell, D. Experimental and Quasi-Experimental Designs for Generalized Causal Inference; Houghton Mifflin:

Boston, MA, USA, 2001.
2. Marwala, T. Causality, Correlation and Artificial Intelligence for Rational Decision Making; World Scientific: Singapore, 2015. [CrossRef]
3. Zaremba, A.; Aste, T. Measures of Causality in Complex Datasets with Application to Financial Data. Entropy 2014, 16, 2309–2349.

[CrossRef]
4. Lizier, J.T.; Prokopenko, M. Differentiating information transfer and causal effect. Eur. Phys. J. B 2010, 73, 605–615. [CrossRef]
5. Schreiber, T. Measuring Information Transfer. Phys. Rev. Lett. 2000, 85, 461–464. [CrossRef] [PubMed]
6. Barnett, L.; Barrett, A.B.; Seth, A.K. Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables. Phys. Rev.

Lett. 2009, 103, 238701. [CrossRef]
7. Hlaváčková-Schindler, K. Equivalence of Granger Causality and Transfer Entropy: A Generalization. Appl. Math. Sci. 2011,

5, 3637–3648.
8. Massey, J.L. Causality, feedback and directed information. In Proceedings of the 1990 International Symposium on Information

Theory and its applications and Its Applications, Honolulu, HI, USA, 27–30 November 1990; pp. 303–305.
9. Cat,aron, A.; Andonie, R. Transfer Information Energy: A Quantitative Causality Indicator Between Time Series. In Proceedings

of the Artificial Neural Networks and Machine Learning—ICANN 2017—26th International Conference on Artificial Neural
Networks, Alghero, Italy, 11–14 September 2017; pp. 512–519. [CrossRef]

10. Caţaron, A.; Andonie, R. Transfer Information Energy: A Quantitative Indicator of Information Transfer between Time Series.
Entropy 2018, 20, 323. [CrossRef]

11. Lizier, J.T.; Heinzle, J.; Horstmann, A.; Haynes, J.D.; Prokopenko, M. Multivariate information-theoretic measures reveal directed
information structure and task relevant changes in fMRI connectivity. J. Comput. Neurosci. 2011, 30, 85–107. [CrossRef]

12. Vicente, R.; Wibral, M.; Lindner, M.; Pipa, G. Transfer entropy—A model-free measure of effective connectivity for the
neurosciences. J. Comput. Neurosci. 2011, 30, 45–67. [CrossRef] [PubMed]

13. Shimono, M.; Beggs, J.M. Functional Clusters, Hubs, and Communities in the Cortical Microconnectome. Cereb. Cortex 2015,
25, 3743–3757. [CrossRef]

14. Fang, H.; Wang, V.; Yamaguchi, M. Dissecting Deep Learning Networks—Visualizing Mutual Information. Entropy 2018, 20, 823.
[CrossRef]

15. Obst, O.; Boedecker, J.; Asada, M. Improving Recurrent Neural Network Performance Using Transfer Entropy. In Proceedings of the
17th International Conference on Neural Information Processing: Models and Applications—Volume Part II; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 193–200.

16. Féraud, R.; Clérot, F. A methodology to explain neural network classification. Neural Netw. 2002, 15, 237–246. [CrossRef]
17. Herzog, S.; Tetzlaff, C.; Wörgötter, F. Transfer entropy-based feedback improves performance in artificial neural networks. arXiv

2017, arXiv:1706.04265
18. Herzog, S.; Tetzlaff, C.; Wörgötter, F. Evolving artificial neural networks with feedback. Neural Netw. 2020, 123, 153–162.

[CrossRef]
19. Patterson, J.; Gibson, A. Deep Learning: A Practitioner’s Approach, 1st ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017.
20. Moldovan, A.; Caţaron, A.; Andonie, R. Learning in Feedforward Neural Networks Accelerated by Transfer Entropy. Entropy

2020, 22, 102. [CrossRef]
21. Bossomaier, T.; Barnett, L.; Harré, M.; Lizier, J.T. An Introduction to Transfer Entropy. Information Flow in Complex Systems; Springer:

Berlin/Heidelberg, Germany, 2016.
22. Baghli, M. A model-free characterization of causality. Econ. Lett. 2006, 91, 380–388. [CrossRef]
23. Hlaváčková-Schindler, K.; Paluš, M.; Vejmelka, M.; Bhattacharya, J. Causality detection based on information-theoretic approaches

in time series analysis. Phys. Rep. 2007, 441, 1–46. [CrossRef]
24. Kaiser, A.; Schreiber, T. Information transfer in continuous processes. Phys. D Nonlinear Phenom. 2002, 166, 43–62. [CrossRef]
25. Gencaga, D.; Knuth, K.H.; Rossow, W.B. A Recipe for the Estimation of Information Flow in a Dynamical System. Entropy 2015,

17, 438–470. [CrossRef]
26. Hlaváčková-Schindler, K. Causality in Time Series: Its Detection and Quantification by Means of Information Theory. In

Information Theory and Statistical Learning; Emmert-Streib, F., Dehmer, M., Eds.; Springer: Boston, MA, USA, 2009; pp. 183–207.
[CrossRef]

27. Zhu, J.; Bellanger, J.J.; Shu, H.; Le Bouquin Jeannès, R. Contribution to Transfer Entropy Estimation via the k-Nearest-Neighbors
Approach. Entropy 2015, 17, 4173–4201. [CrossRef]

28. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

http://doi.org/10.1142/9356
http://dx.doi.org/10.3390/e16042309
http://dx.doi.org/10.1140/epjb/e2010-00034-5
http://dx.doi.org/10.1103/PhysRevLett.85.461
http://www.ncbi.nlm.nih.gov/pubmed/10991308
http://dx.doi.org/10.1103/PhysRevLett.103.238701
http://dx.doi.org/10.1007/978-3-319-68612-7_58
http://dx.doi.org/10.3390/e20050323
http://dx.doi.org/10.1007/s10827-010-0271-2
http://dx.doi.org/10.1007/s10827-010-0262-3
http://www.ncbi.nlm.nih.gov/pubmed/20706781
http://dx.doi.org/10.1093/cercor/bhu252
http://dx.doi.org/10.3390/e20110823
http://dx.doi.org/10.1016/S0893-6080(01)00127-7
http://dx.doi.org/10.1016/j.neunet.2019.12.004
http://dx.doi.org/10.3390/e22010102
http://dx.doi.org/10.1016/j.econlet.2005.12.016
http://dx.doi.org/10.1016/j.physrep.2006.12.004
http://dx.doi.org/10.1016/S0167-2789(02)00432-3
http://dx.doi.org/10.3390/e17010438
http://dx.doi.org/10.1007/978-0-387-84816-7_8
http://dx.doi.org/10.3390/e17064173
http://dx.doi.org/10.1109/5.726791


Entropy 2021, 23, 1218 15 of 15

29. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in
Neural Information Processing Systems 25; Curran Associates, Inc.: Red Hook, NY, USA, 2012.

30. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
31. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.E.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with

Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp 1–9.

32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

33. Tan, M.; Le, Q.V. EfficientNet: R ethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019.

34. Muşat, B.; Andonie, R. Semiotic Aggregation in Deep Learning. Entropy 2020, 22, 1365. [CrossRef] [PubMed]
35. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Parallel Distributed Processing: Explorations in the Microstructure of Cognition; MIT

Press: Cambridge, MA, USA, 1986; Volume 1, pp. 318–362.
36. Shalev-Shwartz, S.; Singer, Y.; Srebro, N.; Cotter, A. Pegasos: Primal estimated sub-gradient solver for SVM. Math. Program. 2011,

127, 3–30. [CrossRef]
37. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; Technical Report; University of Toronto: Toronto, ON, Canada,

2009.
38. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv

2017, arXiv:1708.07747.
39. Coates, A.; Ng, A.; Lee, H. An Analysis of Single-Layer Networks in Unsupervised Feature Learning. J. Mach. Learn. Res. Proc.

Track 2011, 15, 215–223.
40. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A. Reading Digits in Natural Images with Unsupervised Feature

Learning. NIPS 2011, 1–9.
41. Hull, J.J. A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 550–554. [CrossRef]
42. Lecun, Y.; Haffner, P.; Bottou, L.; Bengio, Y. Object Recognition with Gradient-Based Learning. In Contour and Grouping in

Computer Vision; Springer: Berlin/Heidelberg, Germany, 1999.
43. Gilbert, C.D.; Li, W. Top-down influences on visual processing. Nat. Rev. Neurosci. 2013, 14, 350–363. [CrossRef] [PubMed]
44. Spillmann, L.; Dresp-Langley, B.; Tseng, C.H. Beyond the classical receptive field: The effect of contextual stimuli. J. Vis. 2015,

15, 7. [CrossRef] [PubMed]
45. Ke, N.R.; Bilaniuk, O.; Goyal, A.; Bauer, S.; Larochelle, H.; Pal, C.; Bengio, Y. Learning Neural Causal Models from Unknown

Interventions. arXiv 2019, arXiv:1910.01075.

http://dx.doi.org/10.3390/e22121365
http://www.ncbi.nlm.nih.gov/pubmed/33279911
http://dx.doi.org/10.1007/s10107-010-0420-4
http://dx.doi.org/10.1109/34.291440
http://dx.doi.org/10.1038/nrn3476
http://www.ncbi.nlm.nih.gov/pubmed/23595013
http://dx.doi.org/10.1167/15.9.7
http://www.ncbi.nlm.nih.gov/pubmed/26200888

	Introduction
	Transfer Entropy Notations
	Computing the TE Feedback in a CNN
	TE Feedback Integration in CNN Training
	Experimental Results
	Conclusions and Open Problems
	CNN Architectures
	FashionMNIST
	CIFAR-10
	STL-10
	SVHN
	USPS

	References

