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Abstract: Entropy estimation faces numerous challenges when applied to various real-world prob-
lems. Our interest is in divergence and entropy estimation algorithms which are capable of rapid
estimation for natural sequence data such as human and synthetic languages. This typically requires
a large amount of data; however, we propose a new approach which is based on a new rank-based
analytic Zipf–Mandelbrot–Li probabilistic model. Unlike previous approaches, which do not consider
the nature of the probability distribution in relation to language; here, we introduce a novel analytic
Zipfian model which includes linguistic constraints. This provides more accurate distributions for
natural sequences such as natural or synthetic emergent languages. Results are given which indicates
the performance of the proposed ZML model. We derive an entropy estimation method which incor-
porates the linguistic constraint-based Zipf–Mandelbrot–Li into a new non-equiprobable coincidence
counting algorithm which is shown to be effective for tasks such as entropy rate estimation with
limited data.

Keywords: entropy estimation; Zipf–Mandelbrot–Li law; language models; probabilistic
natural sequences

1. Introduction

Natural systems such as language, can be understood in terms of symbolic sequences
described within an information-theoretic framework, where meaning is encoded through
the arrangement of probabilistic elements. When placed in a mathematical framework, we
can characterize and begin to understand the meaning of messages, not only on the basis
of the meaning directly attached to words, but on the statistical characteristics of symbols.

Using this approach, natural language can be viewed as observing one or more discrete
random variables X of a sequence X = X1, . . . , Xi, . . . , XK , Xi = x ∈ XM, that is, xi may
take on one of M distinct values, XM is a set from which the members of the sequence are
drawn, and hence xi is in this sense symbolic, where each value occurs with the probability
p(xi), i ∈ [1, M].

The single symbol Shannon entropy (if not otherwise specified, any reference to
entropy will refer to the classical Shannon entropy of unigram probabilities.) is defined for
unigrams as [1,2]

H0(X) = −
M

∑
i=1

p(xi) log2(p(xi)) (1)

In the context of language processing, statistical models of symbol sequences are of
interest and can be defined by the probability p(Ω) = p(s1, . . . , sN) where Ω is a sequence
of N symbols {si}. If the full sequence is available, the n-gram entropy can be directly
computed using the same formula as (1), where instead of computing unigram probabilities,
the joint probabilities are estimated so the n-gram entropy is obtained. However, the
problem with this approach is that a large amount of data is generally required and the
reliability is questionable for N > 5 [3].
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In probabilistic language modeling, it is often of interest to predict the next symbol
in a sequence using the previous symbols. Hence, the joint probability can be computed
using the Markov property by considering the previous block of symbols in terms of the
conditional probabilities as

p(s) = ∏
i=1...N

p(si|s1 . . . , si−1) (2)

Hence, provided the symbol probabilities can be estimated, it is possible to determine the
n-gram probabilities and n-gram entropy of language sequences.

A related method of characterizing language models is to measure perplexity [4],
defined as

Pe(s) = 2H(s) (3)

In contrast to entropy, which can be understood as measuring the average number of
bits to encode the information in a symbol, perplexity can be intuitively understood as
measuring the total number of bits required to encode the information in a sequence; hence,
the smaller the value the better.

While entropy provides a measure of information in a given sequence, this raises the
question of how quickly the information grows with increasing text length [1,5]. The idea
is that the entropy rate can measure the complexity of language by the average information
content of symbols such as words taken over a sufficiently long period. Similarly, the ef-
fectiveness of compression algorithms can be measured by how closely the algorithm can
compress any stationary and ergodic source down to the entropy rate for a sufficiently long
input source sequence [6].

Entropy rate has been of interest for analyzing the information content neuronal spike
sequences [7], complexity of short heart period variability [8], attention models using visual
salience attention [9], complexity of animal vocal complexity [10], statistical structure of
non-redundant coding sequences in DNA [11], behavior prediction [12] and in estimating
the long-term memory of language models [13].

A problem with entropy estimation is characterizing infrequently occurring symbols,
hence requiring a potentially large number of samples to adequately model the probabilistic
structure [14].

In contrast to statistical descriptive applications which depend on large amounts of
data, we are interested in building models of social interaction using entropy estimation
methods with limited available data.

Various efficient methods of entropy estimation have been proposed. Entropy esti-
mation over short symbolic sequences for dynamical time series models was considered
in [15]. A computationally efficient method for calculating entropy based on a James–
Stein-type shrinkage estimator was proposed in [16]. Methods for overcoming bias in
maximum likelihood entropy estimators with limited data have been examined in [17].
The Nemenman–Shafee–Bialek (NSB) entropy estimator extends this concept to correct sam-
ple size-dependent bias by using a Bayesian approach to construct priors with power–law
dependence on the probabilities, in particular, using Dirichlet distributions [18].

The advantages of more sophisticated entropy estimation techniques which go beyond
naive plug-in methods are evident. These can be broadly referred to as “model-based”
because they introduce some additional complexities into an otherwise simple algorithm
which takes into account some understanding of the nature of the data and the estima-
tion process whilst remaining broadly applicable. For example, a model-based estimator
using an understanding of how sequences of symbols will have probabilistic patterns of
“coincidence” was proposed in [19].

In this paper, we consider a novel probabilistic model-based entropy estimator which
extends [19] and is comparable to [18] in that it uses a limited amount of data and an a priori
model as a basis for constructing an efficient entropy estimator. The model “hint” that we
introduce is the idea that for many natural sequences including language, instead of a naive
estimator, the probabilistic distribution of symbols is expected to follow linguistic patterns.
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Hence, the basis for our proposed approach is to develop an analytic rank-based Zipfian-
style probabilistic model which is constrained to accommodate the linguistic features of
human language and to incorporate this into an efficient non-equiprobable coincidence
counting the entropy estimation algorithm.

In the next section, we describe a coincidence-counting entropy estimator and intro-
duced the concept of linguistic entropy. In Section 3, we introduce a new framework of
linguistic probabilistic models which is incorporated into the proposed entropy estimator.
In Section 4, we demonstrate the efficacy of the proposed model and show that it provides
a high degree of accuracy while requiring a small number of samples.

2. Model-Based Entropy Estimation
2.1. Coincidence Counting Approach

Entropy estimation difficulties can occur with low probability events exacerbated
due to real-world issues surrounding the data, including problems of small data sets [20],
limited resource environments [21], bias due to heavy-tailed distributions [22] and uneven
distributions with poorly populated bins [23]. The latter problem is especially evident
in estimating entropy in language involving very low probability events such as infre-
quent words.

The problem of undersampling in the context of entropy estimation, where the alpha-
bet size is large compared with the number of samples, that is, N � M, has been considered
at length where it is well known that significant bias can occur, particularly in the case of
using binning approaches [23,24]. Hence, alternative entropy estimation algorithms are of
interest which can provide useful results with a small number of samples [25–27].

One class of proposed solutions is based on the method of coincidence counting to
derive entropy from the phase space trajectory of symbolic events [28]. In particular, Ma
proposed the method of coincidence counting as a suitable method of deriving entropy
from the phase space trajectory, noting the problematic issue of metastability with estimat-
ing the empirical probability distribution. A simple algorithm for entropy estimation based
on this approach was proposed in [19]. Their novel approach used the idea of estimating
probabilities from a quadratic function of the inverse number of symbol coincidences; how-
ever, it has the limitation of this method, which was that it assumed equiprobable symbols.
In the next section, we show how it is possible to extend this to the non-equiprobable case
by using an analytic Zipf–Mandelbrot–Li law.

2.2. Linguistic Entropy Estimation

Consider a sequence of symbols which is defined by a discrete (or symbolic) random
variable x which may take on a finite number M of distinct values xi ∈ {x1, . . . , xM} with
probabilities p(xi), i ∈ [1, M]. For example, suppose M = 4 and we have a sequence of
symbols abcdabc. The frequency of symbols can be estimated as a function of the distance
between consecutive repeating symbols or the ‘coincidence distance’ and in this case,
the initial distance for a is D(a; M) = 5. Hence, it can be observed that by measuring this
distance, it may be possible to estimate the relative frequency of any given symbol by
measuring the distance between them.

To compute the probability f (n; M) of a first coincidence occurring exactly at the nth
symbol for 1 < n < M means that it is necessary to compute the probability of drawing no
repeating symbols in the entire sequence up to the (n− 1)th draw given by F̃(n− 1; M) and
consequently drawing any qn−1 ∈ [2, . . . , n− 1] identical symbols is given by F(n− 1; M).
Hence, the nth symbol coincidence probability is given by [19]

f (n; M) = F(n; M)− F(n− 1; M) (4)

The expectation of the discrete parameter n and its associated probability f (n; M) is
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given by

E[n] = J(n; M) (5)

=
M

∑
n=0

n f (n; M) (6)

Since n is a function of M, we may define the coincidence distance:

D(M) = E[n]. (7)

By forming a model to estimate M using the symbol distance D such as

M̂(D) = G(Θ; D) (8)

=
np

∑
i=0

θiDi (9)

then by measuring D(M) and hence evaluating M from the parametric model, then the
entropy can be directly estimated from the symbol coincidences.

The model parameters θi can be determined by fitting a curve to an ensemble of data.
For equiprobable symbols, the Shannon entropy is estimated as

H0(M) = log2(M̂(D)) (10)

Using this approach with only a small number of symbol observations, entropy esti-
mation for equiprobable symbols was shown to be accurate and with a low bias of [19,29].

Now, for any given M, each symbol of a specified rank r can be treated as being
equiprobable and hence by considering the probability of each ranked symbol, then
we have:

F̃(n; M) = 1 · (1− P2) · (1− P3) · · · (1− Pn−1) (11)

where F̃(n; M) is the probability of drawing any symbol on the first try followed by any
other different symbol up to the nth draw and up to n symbols, and Ph is the probability
of independently drawing h− 1 identical symbols from a set of M in h− 1 draws.

It follows that we can define the probabilities in terms of rank using a probabilistic
model such as the Zipf–Mandelbrot–Li law developed by Li [30], who showed that the
constants can be computed as

α =
log2(M + 1)

log2(M)
(12)

β =
M

M + 1
(13)

γ =
Mα−1

(M− 1)α
(14)

with a normalization step introduced in [14] as

γ′ =
γ

κ
(15)

to give:
M

∑
i=1

p(i) = 1,
M

∑
i=1

γ

(r + β)α = κ (16)

which leads to:

P(r; M) =
γ̃(

r(L) + β̃
)α̃

(17)
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This approach provides an equiprobable representation of the symbols by considering a
different model for each symbol rank.

Hence, an invertible rank-based model for D(M) = J′(n, r, M) such as a power-based
model is chosen so that the inverse model can be directly estimated using the forward
model, for example, as

D̂(M; r) =
1
a

(
M̂(r; D)− c

) 1
b (18)

where θ = {a, b, c} are the forward parameters.
Given an estimate M̂(D; r) from the observed inter-symbol distance, it is possible

to apply this parameter to the Zipf–Mandelbrot–Li set of equations in addition to our
rank-based probability model, and estimate the entire set of symbolic probabilities. Using
P̂h(r, M), the entropy can then be easily estimated as

Ĥ1(r, X) = −
M̂

∑
h=1

P̂h(r, M) log2

(
P̂h(r, M)

)
(19)

which defines the rank r Shannon entropy estimate.
The model is applied by determining the mean distance between symbols Di(r) and

then finding the estimated value M̂(D; r) which is used to estimate entropy. The scaling of
the inverse model curves for the proposed algorithm can be observed in Figure 1.

Figure 1. The inverse model curves (1..40) for the proposed algorithm are shown here for the range
of the top 40 ranked symbols, also shown here for an alphabet size of M = 200.

2.3. Remarks on Bias and Convergence Properties

The proposed algorithm is defined in terms of a Zipf–Mandelbrot–Li distribution
which uses a coincidence counting approach to estimate the mean symbolic distance be-
tween one or more ranked symbols and then use this to form an estimate of the whole
distribution. We can consider the bias and convergence properties in terms of the maxi-
mum likelihood estimator for D̂(M; r) in contrast to the probabilities directly in a plug-in
entropy estimator.

Algorithmic bias can occur due to systematically underestimating the mean distance
between symbols Di(r) [29]. To compute the bias precisely requires a closed form of the
probability density function of Di(r). Analyzing this requires considering (4) and (11)–(16),
where an approximation to the probability distribution can be obtained from the mul-
tiplicative process defined by (11) in terms of a log-normal distribution [31]. However,
since a closed form solution for the likelihood of a log-normal distribution is not generally
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available, it is non-trivial to determine the specific bias properties [32,33]. One possible
solution to this is to examine the probabilistic bounds [34]. Though we do not consider
it in this paper, the bias properties of the proposed algorithm may also be improved by
applying techniques such as the Miller–Madow procedure [16].

In terms of the convergence properties of the algorithm, a full proof of convergence
properties is beyond the scope of this paper; however we provide an indication of some
properties of the expected result. Note that Di(r) can be determined from the maximum
likelihood estimation of the inter-symbol distance for any given symbol. Choosing the
most frequent symbol r = 1, then Di(1) will converge in the sense of a usual maximum
likelihood estimator to within some limits with a particular confidence level [35].

Convergence depends on symbols with rank r = 1, with specified probability P̂h(1, M)
and all other possible symbols with probability 1− P̂h(1, M). Hence, the number of symbols
required to estimate Di(r) to within the specified degree can be found by means of the
Dvoretzky–Kiefer–Wolfowitz (DKW) inequality [35].

Since the convergence of Di(r) depends on the estimation of P̂h(r, M), then the DKW
inequality provides the following result [14]:

P

{
sup
r∈N

∣∣∣P̂h(r, M)− P(r, M)
∣∣∣ < εr

}
≤ ζ ′ (20)

where for a maximum difference εr between the estimated probability P̂h(r, M) and its
theoretical target value P(r, M), there will be nr samples required to estimate the probability
with a confidence level of ζ ′, specified by

ζ ′ = 1− 2e−2nrε2
r (21)

Hence, following [14], it can be shown that for a given confidence level, the minimum
number of samples required to estimate P(r, M) which are described by a Zipf–Mandelbrot–
Li approximation, can be found as

Nr ≤
8

P(r, M)∆2
r

ln
(

2
1− ζ ′

)
(22)

where for a ranked distribution, ∆r is found as

∆r = P(r, M)− P(r + 1, M) (23)

Now, it follows that the relative convergence performance can be defined in terms of a
scaling factor λ f (M) which measures the reduction in samples required for convergence
compared to a naive plug-in estimator as measured against the symbolic alphabet size M.

Hence, we have:

λ f (M) =

8
P(M,M)∆2

M
ln ( 2

1−ζ ′)

8
P(1,M)∆2

1
ln ( 2

1−ζ ′)
(24)

which simplifies to:

λ f (M) =
P(1, M)∆2

1
P(M, M)∆2

M
(25)

A graph of the relative convergence performance is shown in Figure 2 where an
improvement of several orders of magnitude in the reduction in the number of samples
required can be observed for alphabet sizes in the ranges M = 20− 40 which are of typical
interest in both natural and synthetic languages.

In contrast, the conventional plug-in estimator requires an estimation of all symbol
probabilities which depends on the probabilities of all symbols and consequently signif-
icantly more samples. A full derivation of this latter result is shown in [14]. Hence, the
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proposed entropy estimation algorithm converges with a factor of approximately λ f (M)
fewer symbols than in the conventional case.

Figure 2. This graph shows the relative convergence performance λ f (M) of the proposed algorithm
scaled against a conventional plug-in entropy estimation algorithm as measured against the symbolic
alphabet size M. Note that the improvement is easily several orders of magnitude for alphabet sizes
of interest in the range 20–40.

The current estimator employs a ZML distribution, and in the next section, we extend
this model to include linguistic constraints.

3. Linguistic Probabilistic Models
3.1. Limitations of Zipfian Models for Language

For various natural sequences, Zipf’s law describes how the frequency of ranked
events occurring in such a way that they can be described by a power law [36–38]. This
question of whether Zipf’s law is a universal law of natural language and other phenomena
has generated substantial interest over a long period of time [39].

The premise of Zipf in 1949 was that natural systems follow a principle of least
effort, which means that individuals will follow a course of action which involves the
expenditure of the least amount of work [40]. In terms of human language, this implies that
the distribution of word use would follow the same principle so communication would
occur efficiently with the least effort.

Various ongoing works have attempted to prove and disprove results in this field.
Miller proposed that a monkey typing would produce a natural language with Zipfian
distribution [41]. This argument was based on the result that the probabilistic distribution
of words in natural languages only occurs as a statistical artifact of random spaces and can
be described by Zipf’s law.

While this claim has continued to generate considerable interest decades later, in fact,
Miller’s result was shown to be flawed by Howes in 1968 [42]. The problem with Miller’s
result is that assumes all word probabilities are strictly ranked by word length. Moreover,
it assumes that all possible words of the same length have the same probability and that all
sequences of letters are equiprobable. Clearly, these assumptions are not valid for natural
language. A more recent analysis of this problem was performed, for example, considering
unequal letter probabilities and log normal rank distributions [43,44]. It was found in [45]
that the average information content was more consistently ranked than word length, by
examining the inter-word statistical dependencies as the n-gram entropy of words in a
local linguistic context.
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Cancho and Sole considered the principle of least effort in human language as a
compromise between speaker’s and hearer’s needs, where they were able to show results
which indicate how Zipf’s law explains the observations [46]. The concept of efficiency in
languages was considered in [47], where efficiency can be defined in terms of successfully
transmitting many different messages with minimal effort, yet balanced in terms of infor-
mativeness and complexity. Principles of least effort are closely related to the concept of
semantic language universals by which such effort can be instantiated and measured. Ac-
cordingly, the principle of ease of learning was found to have strong evidence as a language
universal in [48].

Zipf’s law has been shown to occur as a result of the choice of rank as an independent
variable [30,49], and hence has been challenged in terms of suitability as a universal
model of human language or other natural sequences [50]. For example, in [30], it was
reported that because the word frequency distribution of random texts can exhibit Zipfian
characteristics, then Zipf’s law is unsuitable as a criterion for identifying natural languages.
However the statistical analysis of this result was disputed in [51] where it was shown that
the rank distributions of random and natural texts are statistically inconsistent, and this
suggests that Zipf’s law may exist as a fundamental principle in natural languages.

While word frequency has generated significant interest, Zipf’s law may operate
at other levels in natural language, for example some results show the ranked order
of phrases in natural language [52]. Moving towards more complex understandings of
how Zipf’s law can be refined, Corral considered the issue of how Zipf’s law applies
to normalized language element lemmas, i.e., a stem-like word form [50], and how a
more complex formulation of Zipf’s law of word frequency arising from a mixture of
conditional distributions of frequency at different lengths may provide a better explanation
of observations [53].

It is evident that there is not yet a single definitive answer as to the question of
whether Zipf’s law is necessarily a universal model of human language. However, it is
clearly useful in forming a model of ranked symbolic information transmission which
mimics human language elements [49,53] and have proved helpful as a probabilistic model
for characterizing the observed behavior of natural symbolic sequences [54]. Here, we
do not seek to prove the universality of Zipfian laws for language, but we consider their
use as a way to model some aspects of natural language and how this may be useful for
entropy estimation.

While a number of variations of Zipf’s law have been proposed, including the Bradford
Law [55] and Lotka Law [56], we previously proposed a new variation of the model we
refer to as the Zipf–Mandelbrot–Li law [14,30,57–60], which models the frequency rank
r of a language element x ∈ ΣM+1 from an alphabet of size M + 1, then, for any random
word of length L, given by vk(L) = {ws, x1, . . . , xL, ws}, k = 1, . . . , ML the frequency of
occurrence is determined as

pi(L) =
λ

(M + 1)L+2 i = 1, . . . , ML (26)

where Li showed that λ can be analytically determined [30].
While these various rank-based laws provide a convenient analytical framework to

model symbolic sequences, there is a problem in terms of known languages because such
simple models carry no particular linguistic information. For example, consider the case of
five-letter words. In English, there are approximately 12,500 known five-letter dictionary
words. However, in the unconstrained ZML model, there can be 11.8 M words allowed.
In the unconstrained form, this means that we allow words such as aaaag, rrrrx, czzzs,
xyyaa and many other invalid words. A way to understand this is that such words do not
conform to known linguistic principles such as orthographics [61], syllable structure [62],
consonant/vowel ratio and organization [63,64], letter position [65] and graphemes [66].
Each of these can be viewed as a constraint on the allowable letters and their position in
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any word and hence it is evident that an unconstrained word-letter model allows a greater
number of words than should be anticipated.

This raises the question of whether it is possible to introduce a probabilistic model
which extends the advantageous Zipf–Mandelbrot–Li law to one which includes some
linguistic constraints. Such a model would potentially provide the same useful analytic
formulation while providing a more realistic bound on the types of words implicitly per-
mitted. While the ZML model offers an effective basis for computing linguistic behavioral
characteristics, it is evident that there is a need for improved models which provide a
greater degree of conformity to the true properties of human language if such models are
to be better utilized.

3.2. Unconstrained Rank-Ordered Probabilistic Model

Given a natural sequence such as language elements, consider a Zipfian probabilistic
model of symbolic events which models the frequency rank r of a word (a word or n-gram
is not necessarily referring to human language, but indicates a specific set of sequentially
occurring symbols.), i.e., the r-th most frequent word, by a simple inverse power law, such
that the frequency of a word f (r) scales according to an equation which is given by

f (r) ∝
1
rα

(27)

where a proportionality-dependent constant on the particular corpus may be introduced,
Ref. [30] and where typically α ≈ 1. Thus, if pi(x) follows a Zipfian law, then p0(x) ∝ 1/M
and pi(x) = ϕ f (r). This power law equation can be understood in terms of the principle of
least effort. It indicates that frequency decays linearly as the rank increases according to a
log–log scale.

A way to view this is that according to Zipf’s law, efficient language will minimize the
effort between speaker and hearer [46]. Hence, the speaker may use a small vocabulary of
common words to minimize effort in speaking and the hearer may desire a large vocabulary
of less common words to minimize the effort in terms of ambiguity or confusion (Note that
ambiguity and confusion are different concepts. The former may define the meaning of
words, whereas confusion can relate to the intelligibility of words. Zipf’s law provides a
mathematical explanation of the balance between these competing features.).

We consider the Zipf–Mandelbrot law below [58]:
Given symbols x ∈ ΣM+1 from an alphabet of size M + 1 which includes a blank

space ws then for any random word of length L, given by vk(L) = {ws, x1, . . . , xL, ws},
k = 1, . . . , ML the total number of words possible is given by

Nw =
L

∏
k=1

Mk, k = 1, . . . , L

= ML (28)

It follows that the frequency of occurrence for an unconstrained word of length L
following a Zipf–Mandelbrot–Li distribution is determined as

pi(L) =
γ

(M + 1)L+2 i = 1, . . . , ML (29)

where γ is a normalization constant. Now, the summation of all probabilities of all such
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words is given by

∞

∑
L=1

Nw(L)pi(L) = 1 (30)

=
∞

∑
L=1

γML

(M + 1)L+2 (31)

=
γM

(M + 1)2 (32)

and hence the normalization constant can be found as

γ =
(M + 1)2

M
(33)

Li subsequently showed that, using an exponential transformation from the word
length to word rank model, it is possible to derive a rank ordered, parametric probabilistic
model-which extends the Zipf–Mandelbrot model and is defined in terms of the alphabet
size M [30].

3.3. Constrained Linguistic Probabilistic Model

The model proposed by Li is particularly advantageous in a number of ways; however,
in terms of our interest in synthetic language, the model makes a number of assumptions
which depart from known statistical linguistics. For example, the model assumes that for
a word of length L, the total number of words possible is ML given by (28). However,
for a typical alphabet size, this vastly overestimates the number of words expected in a
language, including many words which would not occur in known human languages.

As described in the previous section, the problem with the current ZML law is that
the model is based on a simple estimate of the upper limit of possible words without con-
sideration given to linguistic rules or other natural language principles beyond the initial
power law. For example, in the English language, this might include orthographic spelling
rules such as: (a) every word has at least one vowel; (b) “q” is almost always followed by
“u”; (c) “s” never follows “x”; and (d) words never end in “v” or “j”. These could potentially
be considered as priors in a model, and there are other aspects of interaction in human
communication and natural languages beyond linguistics which could be considered as
statistical principles (For convenience we refer to these broadly as linguistic constraints
and note that they may be related to verbal or written language.)to include in a model.

Another view of this problem is in terms of optimal coding, where the aim is typically
to encode the most frequently used words in the most efficient way [67,68]. Despite ongoing
interest in this area, there is strong evidence for Zipf’s law of abbreviation which indicates
that the highest ranking most frequent words tend to be shorter [38].

In contrast to a considerable body of work in deriving models to analyze and under-
stand natural language, our interest is in deriving a probabilistic framework for construct-
ing synthetic languages. Hence, in this section, we propose to consider a modified cZML
law which is constrained to include linguistic principles.

As an example of linguistic features, we might consider the example of double-letter
words. An extremely small number of words have double letters in comparison to the
number of actual words possible. For five-letter English words, there are approximately
100 readily identifiable double letter words out of a possible 1.5× 1018 words. Hence, we
can introduce a new ZML model which introduces the constraint of not permitting words
with adjacent double letters.

The derivation of the ZML with linguistic constraints is given in Appendix A.1. The
effect of parametrization due to the constraints is indicated in Figure 3 where it can be
readily seen that the effect is most significant for smaller values of M but diminishes quickly
as M increases. Similarly, the effect of the constrained cZML model can be observed in
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Figure 4 where the change in the symbolic probabilities can be observed for small values
of M.

Figure 3. The effect of the proposed linguistic constraints on the modified ZML (cZML) vs. the usual
ZML model are shown here by contrasting the relative parameters α̃/α against M. It can be readily
seen that the effect is most significant for smaller values of M but diminishes quickly as M increases,
observed here for values up to M = 12.

Figure 4. The effect of the proposed linguistic constraints on the modified cZML model are shown
here by contrasting the ranked probabilities in each case. An example is shown here for M = 4.

This new cZML model introduces synthetic linguistic constraints based on having
no adjacent repeating symbols. It is evident that other constraints can be considered to
improve the accuracy of the model from a linguistics perspective, which we derive in the
next section.

3.4. Constrained Linguistic Probabilistic Model II

This issue of the language space is well known in terms of language smoothing, where
techniques such as the CN-gram (continuation n-gram [69]) have been proposed to reduce
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the space of possible words. Based on known human languages, the value of Ñw(L; M)
used by the constrained ZML model considered above is generally too large for a given
value of M.

Hence, in this section, we derived a constrained cZML which introduces a reduced
lexicon space through a CN-gram-style approach. The derivation of the ZML with linguistic
constraints in this case is given in Appendix A.2.

The effect of the second form of the constrained ZML model can be observed in
Figure 5 where the change in the symbolic probabilities can be observed for small values
of M. While only a small probabilistic variation is observed, this corresponds to a signifi-
cantly reduced maximum vocabulary size, which will lead to a more accurate estimation
of entropy.

Figure 5. The second form of linguistically constrained cZML model has the effect of flattening the
ranked probabilities. In the example shown here for M = 10, it can be observed that the mid-ranked
probabilities are increased, while the highest and lowest ranked probabilities are decreased.

In the next section, we consider the performance of these newly proposed constrained
ZML models within the efficient model-based entropy estimation algorithm described in
Section 2.

4. Performance Results
4.1. Constrained Linguistic ZML Model for Natural Language

To test the performance of the proposed models, we applied them to English language
data from the Google Web Trillion Word Corpus [70,71].

The proposed linguistically constrained cZML model approximates the higher ranked
probabilities with better accuracy than the original ZML model and also enables better
accuracy for the low-ranked probabilities (Figures 6 and 7).

We consider the full set of 676 two letter bigrams from the Google data set. The nonlin-
ear behavior of the actual data is evident (Figure 7). The original ZML model shows linear
behavior and does not approximate the low ranked probabilities very well. In contrast,
the proposed linguistically constrained cZML model has the effect of flattening the ranked
probabilities to give better high-ranked approximation, while also producing more accurate
behavior for the low ranked probabilities.
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Figure 6. The second form of linguistically constrained cZML model has the effect of flattening the
ranked probabilities. In the example shown here for M = 26, it can be observed that the mid-ranked
probabilities are increased, while the highest and lowest ranked probabilities are decreased.

Note that since we utilize a model-based approach for estimating entropy, the choice
of Zipfian model is significant to the outcome. Hence, because the proposed model
more accurately approximates typical linguistic sequences, this can can be expected to
lead to a more accurate entropy estimation process, though still within the limitations
described above.

Figure 7. Performance of the constrained linguistic cZML model on actual English language data as
compared to the unconstrained ZML model. In this case, we consider the full set of 676 two letter
bigrams from the Google data set. The nonlinear behavior of the actual data is evidently (dashed
curve) modeled with a higher degree of accuracy than the unconstrained model (dot dashed curve).

It is evident that, given the success of this approach, it is possible to consider numerous
other constraints to improve the accuracy of the model from a linguistic perspective.
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4.2. Entropy Rate Estimation

The entropy rate can be defined as the limit of joint entropy for an increasing number
of symbols given by [67]

hr(X) = lim
N→∞

1
N

HN(X) (34)

= lim
N→∞

1
N

HN(X1, . . . , XN) (35)

where X = X1, . . . , XN can represent successive blocks of symbols. The task of entropy rate
estimation is known to present a challenge due to the difficulty in obtaining a consistent
estimate [72] and various number methods have been described. It is shown that, for the
condition of stationarity, the entropy rate can be defined in terms of conditional entropy
as [67]:

hr(X) = lim
N→∞

HN(XN |X1, . . . , XN−1) (36)

In practice, for finite sequences of symbols, the condition of stationarity may not hold
and therefore estimating the entropy rate using (35) may result in a different value than
with (36).

The value of entropy rate was estimated by Shannon using an experimental approach
and found to be about one bit-per-character (bpc) [5]. Cover estimated the entropy rate
for the novel Jefferson the Virginian, by Dumas Malone to be 1.25 bpc [73]. A word trigram
method which used the cross-entropy between this model and a balanced sample of En-
glish text trained on a language model of 583 million symbols was applied to Form C of
the Brown corpus which yielded an upper bound entropy rate estimate of 1.75 bpc [74].
A number of unigram entropy estimation methods using a stabilization criterion and a
linear entropy to entropy rate conversion model were considered in terms of a large scale
study across three parallel corpora, encompassing approximately 450M words in 1259
languages, leading to estimates of the entropy rate of 6 bits per word in [75]. An estima-
tion method using the limit of successive backward differences in n-gram entropies was
proposed in [76]. Compression algorithms have also been used as a basis for entropy rate
estimation [77,78].

A method using an exponential extrapolation function was proposed in [79] to provide
an estimate of entropy rate across multiple languages and 20 corpora provided results
tending towards infinity. Interestingly, this result indicated that the entropy rates of human
languages are positive but approximately 20% smaller than without extrapolation, which
appears to be in agreement with the results obtained for entropy rate estimation using the
algorithm proposed here.

Some issues are evident in the experimental studies because of the use of different
entropy rate estimation algorithms, different corpora, the treatment of how n-grams are
evaluated, for example whether only actually occurring n-grams within words are used or
not (see for example the contrasting discussions between [3,74,75]), the inclusion of only
alphabetic characters or whether to include punctuation, and various other factors.

Here, we estimate the entropy rate using the proposed cZML model-based entropy
estimator applied to the Brown corpus which consists of approximately 5.5 million charac-
ters [80]. While a comprehensive comparison of the various entropy estimation algorithms
is beyond the scope of this paper, the results of the proposed algorithm are compared
with the plug-in entropy estimation approach. Prefiltering was performed to remove all
non-alphanumeric characters except for spaces, and n-grams which are not part of any
word were excluded. It is well recognized that a smaller data set presents a challenge for
entropy estimation especially with increasing word lengths [3,75] and so it is of interest to
observe the relative performance of the proposed algorithm.

The conditional entropy rate estimation approach of (36) was adopted in each case.
For the entire Brown corpus, the entropy rate was estimated as 1.29 bpc, whereas using
plug-in method, the result was 2.04 bpc and outside the upper bound indicated in [74].
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The results from the proposed algorithm compare well with the result of 1.25 bpc for a large
collection of English corpora in [3]; however, it is evident that the results from the plug-in
method are significantly different, giving less confidence in their reliability. The advantage
of requiring fewer samples for the proposed entropy estimation algorithm is also apparent
in this case of entropy rate estimation.

4.3. Convergence of Constrained cZML Entropy Estimation Algorithm

The convergence characteristics of the proposed algorithm can be thereby obtained by
generating a random sequence of symbols according to

{
pj(x)

}
and the estimated entropy

is developed as a function of the sample size Ns.
This approach is applied to an example case where M = 30 with the results shown

in Figure 8. The performance of the proposed algorithm is compared with a conventional
plug-in estimator on a defined entropy estimation task over a large range of samples sizes
up to Ns = 106 symbolic samples. The mean entropy estimate is obtained by averaging
over Nv = 75 trials, where it can be observed that the new algorithm converges very
rapidly, requiring significantly fewer samples to converge compared to a conventional
plug-in estimator approach [14].

Note that since both the proposed algorithm and the conventional plug-in entropy
estimation algorithm rely on a maximum likelihood method, the computational burden of
each is O(N). However, the key advantage of the proposed model-based algorithm is that
it requires substantially fewer samples than the conventional plug-in entropy estimator.

Figure 8. The convergence performance of the proposed entropy estimation algorithm is compared
to a regular plug-in estimator for M = 30 as a function of the sample size, up to Ns = 106 samples
averaged across Nv = 75 trials. It can be noted that the estimate Ĥ0(Ns) from the proposed algo-
rithm converges rapidly very closely towards the true entropy value (within three decimal places).
In contrast, the conventional plug-in estimator Ĥp(Ns) converges much more slowly towards a
biased estimate.

It is well known that conventional plug-in estimators will give biased estimates.
For the proposed algorithm, any such bias will result from the accuracy with which Dr(M)
can be estimated. It can be noted that as with conventional probability estimates, provided
the system is stationary, it is possible to improve the estimate of Dr(M) by increasing the
number of samples.
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5. Conclusions

Entropy estimators which go beyond naive maximum likelihood methods are of
considerable interest, particularly in terms of overcoming limitations due to data. The
approach of coincidence counting is recognized as a potentially powerful approach for
model-based estimators. Here, we show that an efficient coincidence counting estimator
can be derived using a Zipf–Mandelbrot–Li law which provides a significant reduction in
the data required.

Interestingly, while Zipfian laws are ubiquitous in fields such as natural language, sur-
prisingly, it appears that these models have evidently been developed essentially without
particular regard for the possible inclusion of linguistic constraints.

In this paper, by introducing some simple linguistic constraints, we extended the
regular rank-based Zipf–Mandelbrot–Li model to one which provides more realistic as-
sumptions and makes it more suitable for a broad range of probabilistic language models
which rely on an analytical Zipfian framework. Such models can be applied to the human
language and provide a necessary foundation for developing synthetic language models.

Conceptually, the idea of model-based entropy estimators seems like it may potentially
sacrifice accuracy; however, our results show that for natural systems where the symbolic
events follow an approximate Zipfian distribution and using limited data, the performance
is better than that obtained by a naive entropy estimator. We derived results which
indicate that the expected improvement in convergence and demonstrated the efficacy
of the proposed model on the entropy rate estimation and two-letter bigram entropy
estimation where it was shown to produce more accurate behavior for both low-ranked
and high-ranked symbolic probabilities.

The proposed constrained linguistic Zipf–Mandelbrot–Li model appears to be the first
time this approach has been adopted. In future work, it would be of interest to further
extend this concept by introducing more sophisticated linguistic constraints and to explore
applications where limited data are available.
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Appendix A. Derivation of Constrained Linguistic Zipf–Mandelbrot–Li Models

Appendix A.1. cZML Model I

The Zipf–Mandelbrot–Li law with linguistic constraints of the first type is derived
as follows. For a word of length L, which is constrained to have no repeating adjacent
symbols, the total number of words possible is given by

Ñw = M
L

∏
k=1M

(Mk − 1), k = 2, . . . , L

= M(M− 1)L−1 (A1)

https://norvig.com/ngrams
https://www.nltk.org/book/ch02.html
https://www.nltk.org/book/ch02.html
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and the frequency of occurrence for a word of length L using the constrained probabilistic
model is:

p̃i(L) =
γ̃

(M + 1)ML+1 i = 1, . . . , Ñw(L) (A2)

where γ̃ is a normalization constant. It follows that γ̃ can be determined from the
word frequency normalization condition via the summation of all probabilities of such
words [30], hence:

∞

∑
L=1

Ñw(L) p̃i(L) = 1 (A3)

=
∞

∑
L=1

γ̃(M− 1)L−1

(M + 1)ML (A4)

=
γ̃

(M + 1)
(A5)

and hence the normalization constant can be found as

γ̃ = M + 1 (A6)

From (A2), the probability for any possible constrained word is:

p̃i(L) =
1

ML+1 i = 1, . . . , Ñw(L) (A7)

and hence the frequency of occurrence of all words of length L and with the constraint that
there are no adjacent repeating symbols is given by an exponential function of L as

p̃(L) = M(M− 1)L−1 p̃i(L) (A8)

=
(M− 1)L−1

ML (A9)

Now it follows that the rank can be considered either in terms of the direct probability
or equivalently, as the incremental change in probability as we change the word length,
i.e., from L− 1 to L. Consider the rank of probabilities in the exponentially decreasing
distribution {pi(M, L)}, defined as

r(i; {pi(M, L)}) = argi({pi(M, L)}) (A10)

then from (A2) it follows that:
pi(L) < pi(L + 1) (A11)

and hence:
r(L) > r(L + 1) (A12)

where it is evident that the rank r(L) is proportional to an inverse function g of the
corresponding probabilities, such that:

r(L) = g(M, L)

≤ ML (A13)

Hence, since the rank is effectively determined by the inverse of the probabilities,
and the probabilities are found as the inverse of the number of occurrences, and accordingly,
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we can calculate the total number of cumulative occurrences for all words up to length L,
which in turn provides a measure of the ranking. Therefore, we have:

L−1

∑
k=1w

Ñw(k) < r(L) ≤
L

∑
k=1

Ñw(k) (A14)

where:

L−1

∑
k=1

Ñw(k) =
L−1

∑
k=1

M(M− 1)k−1 (A15)

=
M
(
(M− 1)L−1 − 1

)
M− 2

(A16)

and:

L

∑
k=1

Ñw(k) =
L

∑
k=1

M(M− 1)k−1 (A17)

=
M
(
(M− 1)L − 1

)
M− 2

(A18)

and hence:
M
(
(M− 1)L−1 − 1

)
M− 2

< r(L) ≤
M
(
(M− 1)L − 1

)
M− 2

(A19)

which represents the exponential transformation from the constrained word’s length to the
word’s rank under the given constraint:

Rearranging (A19) and taking logs, for the lower bound, we have:

(M− 2)r(L)
M

> (M− 1)L−1 − 1 (A20)

L− 1 < logM−1

(
(M− 2)r(L)

M
+ 1
)

(A21)

and for the upper bound, we have:

(M− 2)r(L)
M

≤ (M− 1)L − 1 (A22)

L ≥ logM−1

(
(M− 2)r(L)

M
+ 1
)

(A23)

Following a similar approach to [30], raising 1
M to the power of the terms in (A21)–(A23)

gives:
1

ML−1 >

(
1
M

)ς

≥
(

1
ML

)
(A24)

where:

ς = logM−1

(
(M− 2)r(L)

M
+ 1
)

(A25)

Using the identity (
1
a

)log b
=

(
1
b

)log a
(A26)
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then, it follows using a change of base:(
1
M

)ς

=

(
1

(M−2
M )r(L) + 1

)logM−1(M)

(A27)

=

(
1

(M−2
M )r(L) + 1

) log(M)
log(M−1)

(A28)

noting that:
1

MML−1 =
1

ML = p̃i(L− 1) (A29)

1
MML =

1
ML+1 = p̃i(L) (A30)

then (A24) can be multiplied by 1/M to give probabilistic bounds, and hence we have:

1
M

(
1

(M−2
M )r(L) + 1

)α̃

=
1
M ( M

M−2)
α̃(

r(L) + M
M−2

)α̃
(A31)

=

Mα̃−1

(M−2)α̃(
r(L) + M

M−2

)α̃
(A32)

=
γ̃(

r(L) + β̃
)α̃

(A33)

where:

α̃ =
log(M)

log(M− 1)
(A34)

β̃ =
M

M− 2
(A35)

γ̃ =
Mα̃−1

(M− 2)α̃
(A36)

which leads to:

p̃i(L− 1) <
γ̃(

r(L) + β̃
)α̃
≤ p̃i(L) (A37)

which can be considered as a new form of Zipf–Mandelbrot–Li law which includes the
specified linguistic constraints such that the constants originally computed according
to (12)–(16), are now computed according to (A34)–(A36).

Note that as the alphabet size M increases, the parameter given by (A34) converges to
that of (12) in the original formulation:

lim
M→∞

α̃

α
= 1 (A38)

A formulation of the model using a maximum word length Lmax can now be introduced. It
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follows that a new value for γ̃ can be determined from the word frequency normalization
condition via the summation of all probabilities as before, hence:

Lmax

∑
L=1

Ñw(L) p̃i(L) = 1 (A39)

=
Lmax

∑
L=1

γ̃(M− 1)L−1

(M + 1)ML (A40)

which can be shown to reduce to:

γ̃

M + 1
−

γ̃M(M−1
M )

(Lmax+1)

(M + 1)(M− 1)
= 1 (A41)

=
γ̃
(

1− (M−1
M )

L max
)

M + 1
(A42)

and hence:
γ̃ =

M + 1

1− (M−1
M )

Lmax
(A43)

Appendix A.2. cZML Model II

The Zipf–Mandelbrot–Li law with linguistic constraints of the second type is derived
as follows. For a word of length L, the total number of words possible is given by

Ñw = M
L−1

∏
k=1

η(Mk − 1), k = 1, . . . , L

= ηL−1M(M− 1)L−1 (A44)

and hence the frequency of occurrence for a word of length L using the constrained
probabilistic model is

p̃i(L) =
γ̃

(M + 1)(ηM)L+1 i = 1, . . . , Ñw(L) (A45)

where: γ̃ is a normalization constant. It follows that γ̃ can be determined from the
word frequency normalization condition via the summation of all probabilities of such
words [30], hence:

∞

∑
L=1

Ñw(L) p̃i(L) = 1 (A46)

=
∞

∑
L=1

γ̃ηL−1M(M− 1)L−1

(M + 1)(ηM)L+1 (A47)

=
∞

∑
L=1

γ̃η−2M−L(M− 1)L−1

(M + 1)
(A48)

=
γ̃

η2(M + 1)
(A49)

and hence the normalization constant can be found as

γ̃ = η2(M + 1) (A50)
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From (A45), the probability for any possible constrained word is

p̃i(L) =
1

ηL−1ML+1 i = 1, . . . , Ñw(L) (A51)

and hence the frequency of the occurrence of all words of length L and with the constraint
that there are no adjacent repeating symbols is given by an exponential function of L as

p̃(L) = ηL−1M(M− 1)L−1 p̃i(L) (A52)

=
(M− 1)L−1

ML (A53)

Now it follows that the rank can be considered either in terms of direct probability
or equivalently, as the incremental change in probability as we change the word length,
i.e., from L− 1 to L. Consider the rank of probabilities in the exponentially decreasing
distribution {pi(M, L)}, defined as

r(i; {pi(M, L)}) = argi({pi(M, L)}) (A54)

then, from (A45), it follows that:

pi(L) < pi(L + 1) (A55)

and hence:
r(L) > r(L + 1) (A56)

where it is evident that the rank r(L) is proportional to an inverse function g of the
corresponding probabilities such that:

r(L) = g(M, L)

≤ ML (A57)

Hence, since the rank is effectively determined by the inverse of the probabilities,
and the probabilities are found as the inverse of the number of occurrences, accordingly,
we can calculate the total number of cumulative occurrences for all words up to length L,
which in turn provides a measure of the ranking. Therefore, we have:

L−1

∑
k=1w

Ñw(k) < r(L) ≤
L

∑
k=1

Ñw(k) (A58)

where:

L−1

∑
k=1

Ñw(k) =
L−1

∑
k=1

ηk−1M(M− 1)k−1 (A59)

=
M
(

ηL(M− 1)L − η(M− 1)
)

η(M− 1)(η(M− 1)− 1)
(A60)

=
M
(

ηL−1(M− 1)L−1 − 1
)

η(M− 1)− 1
(A61)
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and:

L

∑
k=1

Ñw(k) =
L

∑
k=1

ηk−1M(M− 1)k−1 (A62)

=
M(ηL(M− 1)L − 1)

η(M− 1)− 1
(A63)

and hence:
M
(

ηL−1(M− 1)L−1 − 1
)

η(M− 1)− 1
< r(L) ≤ M(ηL(M− 1)L − 1)

η(M− 1)− 1
(A64)

which represents the exponential transformation from the constrained word’s length to the
word’s rank under the given constraint. Rearranging (A64) and taking logs, we have:

(η(M− 1)− 1)r(L)
M

> ηL−1(M− 1)L−1 − 1 (A65)

L− 1 < logη(M−1)

(
(η(M− 1)− 1)r(L)

M
+ 1
)

(A66)

and for the upper bound, we have:

(η(M− 1)− 1)r(L)
M

≤ (M− 1)L − 1 (A67)

L ≥ logη(M−1)

(
(η(M− 1)− 1)r(L)

M
+ 1
)

(A68)

Following a similar approach to [30], raising 1
M to the power of the bound terms

in (A65)–(A68) gives:
1

ML−1 > (
1
M

)ς ≥ (

(
1

ML

)
) (A69)

where:

ς = logη(M−1)

(
(η(M− 1)− 1)r(L)

M
+ 1
)

(A70)

Using the identity: (
1
a

)log b
=

(
1
b

)log a
(A71)

then it follows using a change of base:(
1
M

)ς

=

(
1

(
η(M−1)−1

M )r(L) + 1

)logη(M−1)(M)

(A72)

=

(
1

(
η(M−1)−1

M )r(L) + 1

) log(M)
log η(M−1)

(A73)

Noting that:
1

MML−1 =
1

ML = p̃i(L− 1) (A74)

1
MML =

1
ML+1 = p̃i(L) (A75)
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then (A69) can be multiplied by 1/M to give probabilistic bounds, and hence we have:

1
M

(
1

(
η(M−1)−1

M )r(L) + 1

)α̃

=

1
M ( M

η(M−1)−1)
α̃(

r(L) + M
η(M−1)−1

)α̃
(A76)

=

Mα̃−1

(η(M−1)−1)α̃(
r(L) + M

η(M−1)−1

)α̃
(A77)

=
γ̃(

r(L) + β̃
)α̃

(A78)

where:

α̃ =
log(M)

log η(M− 1)
(A79)

β̃ =
M

η(M− 1)− 1
(A80)

γ̃ =
Mα̃−1

(η(M− 1)− 1)α̃
(A81)

which leads to:

p̃i(L− 1) <
γ̃(

r(L) + β̃
)α̃
≤ p̃i(L) (A82)

which can be considered as a further linguistically constrained form of the Zipf–Mandelbrot–
Li law, which includes the specified linguistic constraints such that the constants originally
computed according to (12)–(16) are now computed according to (A79)–(A81).

Note that as before, as the alphabet size M increases, the parameter given by (A79)
converges to that of (12) in the original formulation:

lim
M→∞

α̃

α
= 1 (A83)

and the effect of the parametrization due to the constraints is similar to the first case.
Following the same approach as before, a formulation of the model using a maxi-

mum word length Lmax can now be introduced. It follows that a new value for γ̃ can be
determined from the word frequency normalization condition via the summation of all
probabilities as before, hence:

Lmax

∑
L=1

Ñw(L) p̃i(L) = 1

=
Lmax

∑
L=1

γ̃(M− 1)L−1

(M + 1)ML (A84)

=
Lmax

∑
L=1

γ̃η−2M−L(M− 1)L−1

(M + 1)
(A85)



Entropy 2021, 23, 1100 24 of 26

which can be shown to reduce to:

γ̃

M + 1
−

γ̃M(M−1
M )

(Lmax+1)

(M + 1)(M− 1)
= 1 (A86)

γ̃
(

1− (M−1
M )

L max
)

η2(M + 1)
= 1 (A87)

and hence:

γ̃ =
η2(M + 1)

1− (M−1
M )

Lmax
(A88)

This ZML model introduces further synthetic linguistic constraints based on having
no adjacent repeating symbols.
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