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Abstract: A complex fuzzy set is a vigorous framework to characterize novel machine learning
algorithms. This set is more suitable and flexible compared to fuzzy sets, intuitionistic fuzzy sets,
and bipolar fuzzy sets. On the aspects of complex fuzzy sets, we initiate the abstraction of (α, β)-
complex fuzzy sets and then define (α, β)-complex fuzzy subgroups. Furthermore, we prove that
every complex fuzzy subgroup is an (α, β)-complex fuzzy subgroup and define (α, β)-complex fuzzy
normal subgroups of given group. We extend this ideology to define (α, β)-complex fuzzy cosets
and analyze some of their algebraic characteristics. Furthermore, we prove that (α, β)-complex
fuzzy normal subgroup is constant in the conjugate classes of group. We present an alternative
conceptualization of (α, β)-complex fuzzy normal subgroup in the sense of the commutator of
groups. We establish the (α, β)-complex fuzzy subgroup of the classical quotient group and show
that the set of all (α, β)-complex fuzzy cosets of this specific complex fuzzy normal subgroup form
a group. Additionally, we expound the index of (α, β)-complex fuzzy subgroups and investigate
the (α, β)-complex fuzzification of Lagrange’s theorem analog to Lagrange’ theorem of classical
group theory.

Keywords: complex fuzzy set; (α, β)-complex fuzzy set; (α, β)-complex fuzzy subgroup; (α, β)-
complex fuzzy normal subgroup

1. Introduction

In 1965, Zadeh [1] presented the theory of fuzzy sets and discussed their initiatory
results. The action of fuzzy set theory is a decisive structure to deal vagueness and un-
certainty in real life problems. Thus, crisp sets commonly do not have suitable response
and feedback for actual worldly conditions of happening issues. In addition, this par-
ticular set plays a remarkable role in various scientific fields with wide applications in
topological spaces, medical diagnosis determination, coding theory, computer sciences,
and module theory.

The idea of fuzzy subgroups was introduced by Rosenfeld [2] in 1971. The abstraction
of fuzzy subrings was proposed by Liu [3]. Later, these notions were discussed in [4–6].
Atanassov [7] initiated the theory of intuitionistic fuzzy sets and established the basic
algebraic properties of intuitionistic fuzzy sets. The complex numbers with fuzzy sets were
combined by Buckley [8]. Kim [9] presented the idea of the fuzzy order of elements of a
group. Ajmal [10] established the fuzzy homomorphism theorems of fuzzy subgroups. He
also discussed the fuzzy quotient group and correspondence theorem.

Ray [11] initiated the notion of Cartesian product of fuzzy subgroup. Moreover, the
volume and intricacy which exist in the collected information of our daily life are devel-
oping rapidly with the phase shift of data. Then, there is regularly existing various sorts
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of uncertainty in that information is represented with complicated problems in different
disciplines, such as biology, economics, social science, computer science, mathematics,
and environmental science. With the development of science and technology, the decision
making problems are becoming increasingly difficult.

To overcome this drawback, Ramot et al. [12,13] presented the generalized form of
fuzzy set by combining a phase term, called a complex fuzzy set. The efficiency of complex
fuzzy logic in the respect of membership has a powerful role to deal with concrete problems.
It is highly valuable for calculating unevenness, and also it is very useful way to address
ambiguous ideas. Despite its efficacy, we have serious problems about physical features on
complex membership related function.

Thus, it is highly essential to formulate extra theories of complicated fuzzy set re-
lating intricate set members. This reasoning is a direct version of traditional fuzzy logic,
which results in problem related fuzzy reasoning. Thus, it is not favorable for superficial
membership function. This set has a very specific role in wide variety of applications in
modern commanding systems especially those that forecast periodic events in which a
number of variables are interconnected in complex ways and fuzzy operations cannot run
it effectively.

The fundamental set theoretic operations of complex fuzzy sets were presented by
Zhang et al. [14]. Recently, the possible applications, which explain the novel ideas,
including complex fuzzy sets in forecasting issues, solar activity, and time series were
investigated by Thirunavukarasu et al. [15]. The complex fuzzy sets have wide applications
in decision making, image restoration, and reasoning schemes. Ameri et al. [16] invented
the of Engel fuzzy subgroups in 2015. The notion of complex vague soft sets were defined by
Selvachandran [17]. Al-Husban and Salleh [18] developed a connection between complex
fuzzy sets and group theory in 2016.

Singh et al. [19] discussed the link between complex fuzzy set and metric spaces.
In 2016, Thirunavukarasu et al. [20] depicted the abstraction of complex fuzzy graph
and find energy of this newly defined graph. In 2017, Alsarahead and Ahmed [21–23]
presented a new abstraction of complex fuzzy subgroup. They also introduced novel
conception complex fuzzy subring and complex fuzzy soft subgroups. These abstractions
are completely different from Rosenfeld fuzzy subgroups [2] and Liu fuzzy subring [3]. The
parabolic fuzzy subgroups were introduced by Makamba and Murali [24]. Then, certain
algebraic properties of Engel fuzzy subgroups were discussed in [25].

Moreover, the Mohamadzahed et al. [26] established the novel concept of nilpotent
fuzzy subgroup. The fuzzy homomorphism structures on fuzzy subgroups was discussed
by Addis [27]. The algebraic structure between fuzzy sets and normed rings were proposed
in [28]. Gulistan et al. [29] presented the notion of (α, β)-complex fuzzy hyper-ideal and
investigated many algebraic properties of this phenomena. Liu and Shi [30] presented
a novel framework to fuzzification of lattice, which is known as an M-hazy lattice. The
complex fuzzy sub-algebra commenced in [31].

Currently, the novel environment of complex fuzzy set in decision making problems
has been used frequently [32–38], owing to the existence of complex fuzzy information
in several practical situations. Gulzar et al. [39] published a inventive theory of complex
fuzzy subfields. The new development about Q-complex fuzzy subring was introduced
in [40]. For other useful results of fuzzy subgroups not mentioned in the article, readers
are referred to [41–47].

The motivation of the proposed concept is explained as follows: (1) To present a more
generalized concept, i.e., (α, β)-complex fuzzy sets. (2) Note that for α = 1 and β = 2π, our
proposed definition can be converted into a classical complex fuzzy set. The purpose of
this paper is to present the study of (α, β)-complex fuzzy sets and (α, β)-complex fuzzy
subgroups as a powerful extension of complex fuzzy sets and complex fuzzy subgroups.

We organized this article as follows: Section 2 contains the basic notions of complex
fuzzy sets (CFSs), complex fuzzy subgroups (CFSGs), and associated results, which are
important for our paper. In Section 3, we expound the abstraction of (α, β)-complex fuzzy
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set (CFS) and (α, β)-complex fuzzy subgroup ((α, β)-CFSG). We prove that every complex
fuzzy subgroup (CFSG) is also an (α, β)-complex fuzzy subgroup ((α, β)-CFSG) and discuss
fundamental properties of this newly defined CFSG. In Section 4, we explicate the (α, β)-
complex fuzzy cosets and (α, β)-complex fuzzy normal subgroups ((α, β)-CFNSGs) and
investigate many algebraic characteristics of these specific groups. Moreover, we find the
quotient group with respect to (α, β)-complex fuzzy cosets and prove the (α, β)-complex
fuzzy quotient group. We initiate the definition of the index of (α, β)-CFSG and develop
the (α, β)-complex fuzzification of Lagrange’s Theorem.

2. Preliminaries

In this section, we describe the CFSs and CFSGs, and then we discuss the basic
operations of complex fuzzy sets.

Definition 1 ([1]). A fuzzy subset is mapping from universe of discourse to [0, 1] .

Definition 2 ([12]). A CFS A of nonempty set Z is function from nonempty set to unit disk and
is derived as θA : Z → {z ∈ C : |z| ≤ 1}. The θA(p) = µA(p)eiϕA(p) is membership function
of CFS A, where i =

√
−1 both µA(p) and ϕA(p) are real valued such that µA(p) ∈ [0, 1] and

ϕA(p) ∈ [0, 2π], for all p ∈ Z.

Definition 3 ([21]). Let A = {(p, A(p)) : p ∈ G} be a fuzzy subset. Then, the set

Aπ = {(p, Aπ(p)) : Aπ(p) = 2πA(p), p ∈ G}

is called a π-fuzzy subset.

Definition 4 ([21]). A π-fuzzy set Aπ of group G is called a π-fuzzy subgroup of G if

1. Aπ(pq) ≥ min{Aπ(p), Aπ(q)}, for all p, q ∈ G,
2. Aπ(p−1) ≥ Aπ(p), for all p ∈ G.

Definition 5 ([21]). Let A = {(p, µA(p)eiϕA(p)) : p ∈ G} and B = {(p, µB(p)eiϕB(p)) : p ∈
G} be two CFSs of G. Then,

1. A CFS A is homogeneous CFS if ∀ p, q ∈ G, we have µA(p) ≤ µA(q) if and only if
ϕA(p) ≤ ϕA(q).

2. A CFS A is homogeneous CFS with B if ∀ p, q ∈ G, we have µA(p) ≤ µB(p) if and only if
ϕA(p) ≤ ϕB(p).

Definition 6 ([14]). Let A = {(p, µA(p)eiϕA(p)) : p ∈ G} and B = {(p, µB(p)eiϕB(p)) : p ∈
G} be a CFSs of set P. Then, the operation of intersection and union is defined as:

(A ∩ B)(p) = µA∩B(p)eiϕA∩B(p) = min
{

µA(p)eiϕA(p), µB(p)eiϕB(p)
}

, ∀ p ∈ G.

(A ∪ B)(p) = µA∪B(p)eiϕA∪B(p) = max
{

µA(p)eiϕA(p), µB(p)eiϕB(p)
}

, ∀ p ∈ G.

Definition 7 ([21]). Let A = {(p, µA(p)eiϕA(p)) : p ∈ G} be a homogeneous CFS of group G.
Then, A is called CFSG of group G if the following conditions hold.

1. µA(pq)eiϕA(pq) ≥ min
{

µA(p)eiϕA(p), µA(q)eiϕA(q)
}

,

2. µA
(

p−1)eiϕA(p−1) ≥ µA(p)eiϕA(p), for all p, q ∈ G.
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Definition 8 ([21]). A homogeneous CFS A = {(p, µA(p)eiϕA(p)) : p ∈ G} of group G is said
to be CFNSG of group G if: µA(pq)eiϕA(pq) = µA(qp)eiϕA(qp), for all p, q ∈ G.

3. Algebraic Properties of (α, β)-Complex Fuzzy Subgroups

In this section, we define the hybrid models of (α, β)-CFSs and (α, β)-CFSGs. We
prove that every CFSG is also (α, β)-CFSG but the converse may not be true generally, and
we discuss some basic characterization of this phenomenon.

Definition 9. Let A = {(p, µA(p)eiϕA(p)) : p ∈ G} be CFS of group G, for any α ∈ [0, 1] and
β ∈ [0, 2π], such that µA(p) ≤ α and ϕA(p) ≤ β or (µA(p) ≥ α and ϕA(p) ≥ β). Then, the
set A(α,β) is called an (α, β)-CFS and is defined as:

µAα
(p)eiϕA β(p) = min{µA(p)eiϕA β(p), αeiβ} = min{µA(p), α}eimin{ϕA(p), β} ,

where µAα
(p) = min{µA(p), α} and ϕAβ

(p) = min{ϕA(p), β} .

In this paper, we shall use µAα
(p)eiϕA β(p) and µBα(p)eiϕB β(p), as a membership function of

(α, β)-CFSs A(α,β) and B(α,β), respectively.

Definition 10. Let A(α,β) and B(α,β) be a two (α, β)-CFSs of G. Then,

1. A (α, β)-CFS A(α,β) is homogeneous (α, β)-CFS if, for all p, q ∈ G, we have µAα
(p) ≤

µAα
(q) if and only if ϕAβ

(p) ≤ ϕAβ
(q).

2. A (α, β)-CFS A(α,β) is homogeneous (α, β)-CFS with B(α,β) if, for all p, q ∈ G, we have
µAα

(p) ≤ µBα(p) if and only if ϕAβ
(p) ≤ ϕBβ

(p).

In this article, we take (α, β)-CFS as homogeneous (α, β)-CFS.

Remark 1. It is an interesting that we obtain classical CFS A by taking the value of α = 1 and
β = 2π in the above definition.

Remark 2. Let M(α,β) and N(α,β) be two (α, β)-CFSs of group G. Then, (M∩N)(α,β) = M(α,β) ∩
N(α,β).

Definition 11. Let A(α,β) be an (α, β)-CFS of group G for α ∈ [0, 1] and β ∈ [0, 2π]. Then,
A(α,β) is called (α, β)-complex fuzzy subgroupoid of group G if it satisfies the following axiom:

µAα
(pq)e

iϕAβ
(pq) ≥ min{ µAα

(p)e
iϕAβ

(p)
, µAα

(q)e
iϕAβ

(q)} .

Definition 12. Let A(α,β) be an (α, β)-CFS of group G for α ∈ [0, 1] and β ∈ [0, 2π]. Then,
A(α,β) is called (α, β)-CFSG of group G if it satisfies the following axioms:

1. µAα
(pq)e

iϕAβ
(pq) ≥ min{ µAα

(p)e
iϕAβ

(p)
, µAα

(q)e
iϕAβ

(q)} ,

2. µAα
(p−1)e

iϕAβ
(p−1) ≥ µAα

(p)e
iϕAβ

(p)
for all p, q ∈ G.

Remark 3. If A(α,β) is (α, β)-CFSG of group G for α ∈ [0, 1]. Then,

µAα
(p−1q)e

iϕAβ
(p−1q) ≥ min{ µAα

(p)e
iϕAβ

(p)
, µAα

(q)e
iϕAβ

(q)} .
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Theorem 1. If A(α,β) is an (α, β)-CFSG of group G, for all p, q ∈ G. Then,

1. µAα
(q)e

iϕAβ
(q) ≤ µAα

(e)e
iϕAβ

(e)
,

2. µAα
(pq−1)e

iϕAβ
(pq−1)

= µAα
(e)e

iϕAβ
(e)

,

which implies that µAα
(p)e

iϕAβ
(p)

= µAα
(q)e

iϕAβ
(q)

.

Proof. Obviously.

Theorem 2. Let A(α,β) be an (α, β)-complex fuzzy subgroupoid of a finite group, and then A(α,β)
is (α, β)-CFSG of finite group.

Proof. Assume that p ∈ G. Given that G is a finite group; therefore, p has finite order n.
pn = e, where e is the natural element of group G. Then, we have p−1 = pn−1. Now, we
apply the Definition 11 repeatedly. Then, we obtain

µAα
(p−1)eiϕA β(p−1) = µAα

(pn−1)eiϕA β(pn−1)

= µAα
(pn−2 p)eiϕA β(pn−2 p)

≥ µAα
(p)eiϕA β(p).

Hence, we proved the claim.

Theorem 3. If A(α,β) is an (α, β)-CFSG of a group G, let p ∈ G and µAα
(p)eiϕA β(p) =

µAα
(e)eiϕA β(e), and then µAα

(pq)eiϕA β(pq) = µAα
(q)eiϕA β(q), for all q ∈ G.

Proof. Given that µAα
(p)eiϕA β(p) = µAα

(e)eiϕA β(e). Then, from Theorem 2, we have

µAα
(q)eiϕA β(q) ≤ µAα

(p)eiϕA β(p), ∀ q ∈ G.

Consider

µAα
(pq)eiϕA β(pq) ≥ min{µAα

(p)eiϕA β(p), µAα
(q)eiϕA β(q)}

µAα
(pq)eiϕA β(pq) ≥ µAα

(q)eiϕA β(q). From Theorem 2. (1)

Now, assume that

µAα
(q)eiϕA β(q) = µAα

(p−1 pq)eiϕA β(p−1 pq)

≥ min{µAα
(p)eiϕA β(p), µAα

(pq)eiϕA β(pq)}.
Again, from Theorem 2, we have

min{µAα
(p)eiϕA β(p), µAα

(pq)eiϕA β(pq)} = µAα
(pq)eiϕA β(pq).

Therefore, we obtain

µAα
(q)eiϕA β(q) ≥ µAα

(pq)eiϕA β(pq), for all q ∈ G, (2)

From Equations (1) and (2), we have

µAα
(q)eiϕA β(q) = µAα

(pq)eiϕA β(pq), for all q ∈ G.

This establishes the proof.
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Theorem 4. Every CFSG of group G is also (α, β)-CFSG of G.

Proof. Let A be CFSG of group G, for any p, q ∈ G. Consider

µAα
(pq)e

iϕAβ
(pq)

= min{µA(pq)eiϕA(pq), αeiβ}
≥ min{min{µA(p)eiϕA(p), µA(q)eiϕA(q)} , αeiβ}
= min{min{µA(p)eiϕA(p), αeiβ} , min{µA(q)eiϕA(q), αeiβ} }

= min{µAα
(p)e

iϕAβ
(p)

, µAα
(q)e

iϕAβ
(q)} .

Further, we assume that

µAα
(p−1)e

iϕAβ
(p−1)

= min{ µA(p−1)eiϕA(p−1), αeiβ }
≥ min{ µA(p)eiϕA(p), αeiβ }

= µAα
(p)e

iϕAβ
(p)

.

This establishes the proof.

Remark 4. If A(α,β)-CFSG then it is not necessary A is CFSG.

Example 1. Let G = {e, r, s, rs} be the Klein four group. One can see that
A = {< e, 0.1ei π

9 >,< s, 0.3ei π
3 >,< r, 0.3ei π

3 >, < rs, 0.2ei π
6 >} is not CFSG of

G. Take α = 0.01 and β = π
10 then easily we can see that µA(p)eiϕA(p) > αeiβ, for all

y ∈ G. Then, we obtain µAα
(p)e

iϕAβ
(p)

= αeiβ, ∀ p ∈ G. Therefore, µAα
(pq)e

iϕAβ
(pq) ≥

min{µAα
(p)e

iϕAβ
(p)

, µAα
(q)e

iϕAβ
(q)}, for all p, q ∈ G. Moreover, r−1 = r, s−1 = s, (rs)−1 =

rs.
Thus, µAα

(p−1)e
iϕAβ

(p−1) ≥ µAα
(p)e

iϕAβ
(p)

. Hence, A(α,β) is (α, β)-CFSG.

Theorem 5. Let A be a CFS of group G such that µA(p−1)eiϕA(p−1) = µA(p)eiϕA(p), ∀ p ∈ G.
Let αeiβ ≤ reiω such that α ≤ r and β ≤ ω, where reiω = min{µA(p)eiϕA(p) : p ∈ G} and
α, r ∈ [0, 1] and β, ω ∈ [0, 2π]. Then, A(α,β) is an (α, β)-CFSG of G.

Proof. Note that αeiβ ≤ reiω implies that min{µA(p)eiϕA(p) : p ∈ G} ≥ αeiβ, which im-

plies that min{µA(p)eiϕA(p), αeiβ} = αeiβ, for all p ∈ G, which implies that µAα
(p)e

iϕAβ
(p)

=
αeiβ.

µAα
(pq)e

iϕAβ
(pq) ≥ min{µAα

(p)e
iϕAβ

(q)
, µAα

(q)e
iϕAβ

(q)}.

Moreover, µA(p−1)eiϕA(p−1) = µA(p)eiϕA(p), ∀ p ∈ G.

This implies that µAα
(p−1)e

iϕAβ
(p−1)

= µAα
(p)e

iϕAβ
(p)

.

Hence, A(α,β) is (α, β)-CFSG of G.

Theorem 6. If M(α,β) and N(α,β) are two (α, β)-CFSGs of G, then M(α,β) ∩ N(α,β) is also (α, β)-
CFSG of G.
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Proof. Given that M(α,β) and N(α,β) are two (α, β)-CFSGs of G, for any p, q ∈ G.

Consider,

µ(M∩N)α
(pq)e

ϕ(M∩N)β
(pq)

= µMα∩Nα(pq)e
iϕMβ∩Nβ

(pq)

= min{µMα(pq)e
iϕMβ

(pq)
, µNα(pq)e

iϕNβ
(pq)}

≥ min

{
min{µMα(p)e

iϕMβ
(p)

, µMα(q)e
iϕMβ

(q)} ,

min{µNα(p )e
iϕNβ

(p)
µNα(q)e

iϕNβ
(q)} .

}

= min

{
min{µMα(p)e

iϕMβ
(p)

, µNα(p)e
iϕNβ

(p)} ,

min{µMα(q)e
iϕMβ

(q)
, µNα(q)e

iϕNβ
(q)}.

}

= min{µMα∩Nα(p)e
iϕNβ∩Mβ

(p)
, µNα∩Mα(q)e

iϕMβ∩Nβ
(q)}

= min{µ(M∩N)α
(p)e

iϕ(M∩N)β
(p)

, µ(M∩N)α
(q)e

iϕ(M∩N)β
(q)} .

Further,

µ(M∩N)α
(p−1)e

ϕ(M∩N)β
(p−1)

= µMα∩Nα(p−1)e
iϕMβ∩Nβ

(p−1)

= min{µMα(p−1)e
iϕMβ

(p−1)
, µNα(p−1)e

iϕNβ
(p−1)}

≥ min{µMα(p)e
iϕMβ

(p)
, µNα(p)e

iϕNβ
(p)}

= µ(M∩N)α
(p)e

ϕ(M∩N)β
(p)

.

Consequently, M(α,β) ∩ N(α,β) is (α, β)-CFSG of G.

Remark 5. The union of two (α, β)-CFSGs may not be (α, β)-CFSG.

Example 2. Consider a symmetric group S4 of all permutation of four elements. Define two
(α, β)-CFSGs A(0.6,π) and B(0.6,π) of S4 for the value αeiβ = 0.6eπ given as:

A(0.6,π)(p) =
{

0.5eπ/2, if p ∈< (1 3) >
0.4eπ/4, otherwise

and B(0.6,π)(p) =
{

0.6eπ , if p ∈< (1 3 2 4) >
0.3eπ/5, otherwise

This implies that

(A(0.6,π) ∪ B(0.6,π))(p) =


0.6eπ , if p∈ < (1 32 4) >

0.5eπ/2, if p ∈< (1 3) > − < (1 3 2 4) >
0.4eπ/4, otherwise

Take p = (1 2)(3 4), q = (1 3) and pq = (1 2 3 4). Therefore, (A(0.6,π) ∪ B(0.6,π))(p) = 0.6eπ .
(A(0.6,π) ∪ B(0.6,π))(q) = 0.5eπ/2 and (A(0.6,π) ∪ B(0.6,π))(pq) = 0.4eπ/4.

Clearly, we can see that(
A(0.6,π) ∪ B(0.6,π)

)
(pq) � min

{(
A(0.6,π) ∪ B(0.6,π)

)
(p),

(
A(0.6,π) ∪ B(0.6,π)

)
(y)
}

Hence, this proves the claim.

4. (α, β)-Complex Fuzzification of Lagrange’s Theorem

In this section, we investigate the algebraic attributions of (α, β)-CFNSGs. We start the
study of the concept of (α, β)-complex fuzzy cosets of (α, β)-CFSG and develop a quotient
group induced by this particular CFNSGs. We also establish (α, β)-CFSG of classical
quotient group and prove some important properties of these CFNSGs. Moreover, we
discuss (α, β)-complex fuzzification of Lagrange’s heorem.
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Definition 13. Let A(α,β) be an (α, β)-CFSG of group G, where α ∈ [0, 1] and β ∈ [0, 2π]. Then,

the (α, β)-CFS pA(α,β)(x) = {(x, µpAα
(x)e

iϕ
pAβ

(x)
), x ∈ G} of G is called a (α, β)-complex

fuzzy left coset of G determined by A(α,β) and p and is described as:

µpAα
(x)e

iϕpAβ
(x)

= µAα
(p−1x)e

iϕAβ
(p−1x)

= min{µA(p−1x)eiϕA(p−1x), αeiβ} , for all x, p ∈ G.

Similarly we can define (α, β)-complex fuzzy right coset A(α,β)p(x) = {(x, µAα p(x)e
iϕAβ p(x)

), }
x ∈ G of of G determined by A(α,β) and p and is described as:

µA
αx)e

iϕAβ p(x)
= µAα

(xp−1)e
iϕAβ

(xp−1)
= min{µA(xp−1)eiϕA(xp−1), αeiβ} , for all x , p ∈ G.

The following example illustrates the notion of (α, β)-complex fuzzy cosets of A(α,β).

Example 3. Take G = {(1), (2 4), (1 3), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 2 3 4), (1 4 3 2)}
a permutation group of order 8. Define (α, β)-CFSG of G for the value of α = 0.6 and β = π/2
as follows:

A(0.6,π/2)(x) =


0.6eπ/2 if x ∈ {(1), (1 3)(2 4)},
0.5eπ/4, if x ∈ {(1 4)(2 3), (1 2)(3 4)},
0.4eπ/6, otherwise

From Definition 13, we have µpA(0.6,π/2)
(x)e

ϕpA(0.6,π/2)
(x)

= µA(0.6,π/2)
(p−1x)e

ϕA(0.6,π/2)
(p−1x)

.
Hence, the (0.6, π/2)-complex fuzzy left coset of A(0.6,π/2)(x) in G for p = (2 4) is as

follows:

pA(0.6,π/2)(x) =


0.6eπ/2 if x ∈ {(1 3), (2 4)},
0.5eπ/4, if x ∈ {(1 4 3 2), (1 2 3 4)},
0.4eπ/6, otherwise

Similarly, one can find (0.6, π/2)-complex fuzzy left coset of A(0.6,π/2)(x), for each p ∈ G.

Definition 14. Let A(α,β) be an (α, β)-CFSG of group G, where α ∈ [0, 1] and β ∈ [0, 2π]. Then,
A(α,β) is called a (α, β)-CFNSG if A(α,β)(pq) = A(α,β)(qp). Equivalently (α, β)-CFSG A(α,β) is
(α, β)-CFNSG of group G if: A(α,β)p(q) = pA(α,β)(q), for all p, q ∈ G.

Note that (1, 2π)-CFNSG is classical CFNSG of G.

Remark 6. Let A(α,β) be an (α, β)-CFNSG of group G. Then, A(α,β)(q−1 pq) = A(α,β)(p), for all
p, q ∈ G.

Theorem 7. If A is CFNSG of group G, then A(α,β) is an (α, β)-CFNSG of G.

Proof. Let x , p be any elements of G. Therefore, we have

µA(p−1x)eiϕA(p−1x) = µA(xp−1)eiϕA(xp−1).

This implies that {µA(p−1x)eiϕA(p−1x), αeiβ} = min{µA(xp−1)eiϕA(xp−1), αeiβ} ,

which implies that µpAα
(x)e

iϕpAβ
(x)

= µAα p(x)e
iϕAβ p(x)

.

This implies that pA(α,β)(x) = A(α,β)p(x).

Consequently, A(α,β) is (α, β)-CFNSG of G.

The converse of the above result does not hold generally. In the following example,
we explain this fact.
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Example 4. Let G = D3 =< r, s : r3 = s2 = e, sr = r2s > be the dihedral group.
Let A be a CFS of G and described as:

A =

{
0.8eπ/3 if x ∈< s >,
0.7eπ/6, otherwise

Note that A is not a CFNSG of group G. For µA(r2(rs))eiϕA(r2(rs))= 0.8e
π/3
6= 0.7eπ/6 =

µA((rs)r2)eiϕA((rs)r2). Now, we take αeiβ = 0.5eiπ/9
, and we obtain

µpA0.5(x)eiϕpAπ/9
(x)

= min{µA(p−1x)eiϕA(p−1x), 0.5eiπ/9} = 0.5e
iπ
9

= min{µA(xp−1)eiϕA(xp−1), 0.5eiπ/9} = µA0.5 p(x)eiϕAπ/9 p(x).

Next, we prove that every (α, β)-CFSG of group G will be (α, β)-CFNSG of group G, for
some specific values of α and β. In this direction, we prove the following results.

Theorem 8. Let A(α,β) be (α, β)-CFSG of group G such that αeiβ < reiω such that α ≤ r and
β ≤ ω, where reiω = min{µA(x)eiϕA(x), ∀ x ∈ G } and α, r ∈ [0, 1] and β, ω ∈ [0, 2π]. Then,
A(α,β) is a (α, β)-complex fuzzy normal subgroup of group G.

Proof. Given that αeiβ ≤ reiω implies that min{µA(x)eiϕA(x) : for all x ∈ G} ≥ αeiβ,
which implies that µA(x)eiϕA(x) ≥ αeiβ, for all x ∈ G.

Thus, µpAα
(x)e

iϕpAβ
(x)

= min{µA(p−1x)eiϕA(p−1x), αeiβ} = αeiβ, for any x ∈ G.

Similarly, µAα p(x)e
iϕAβ p(x)

= min{µA(xp−1)eiϕA(xp−1), αeiβ} = αeiβ.

This implies that µpAα
(x)e

iϕpAβ
(x)

= µAα p(x)e
iϕAβ p(x)

. Hence, we proved the re-
sult.

Theorem 9. Let A(α,β) be an (α, β)-CFSG of a group G, then A(α,β) is an (α, β)-complex fuzzy
normal subgroup if and only if A(α,β) is constant in the in the conjugacy class of group G.

Proof. Assume that A(α,β) is an (α, β)-complex fuzzy normal subgroup of group G. Then,
we have

µAα
(q−1 pq)eiϕA β(q

−1 pq) = µAα
(pqq−1)eiϕA β(pqq−1).

= µAα
(p)eiϕA β(p), ∀ p, q ∈ G.

Conversely, suppose that A(α,β) is constant in all conjugate classes of group G. Then,

µAα
(pq)eiϕA β(pq) = µAα

(pqpp−1)eiϕA β(pqpp−1).

= µAα
(p(qp)p−1)eiϕA β(p(qp)p−1).

= µAα
(qp)eiϕA β(qp), ∀ p, q ∈ G.

Hence, we prove the claim.

Theorem 10. If A(α,β) is an (α, β)-CFSG of a group G, then A(α,β) is an (α, β)-complex fuzzy

normal subgroup if and only if µAα
([p, q])eiϕA β([p,q]) ≥ µAα

(p)eiϕA β(p), ∀ p, q ∈ G.
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Proof. Suppose that A(α,β) is an (α, β)-complex fuzzy normal subgroup of group G. Let
x, y ∈ G be element of group. Consider

µAα
(p−1q−1 pq)eiϕA β(p−1q−1 pq) ≥ min{µAα

(q−1 pq)eiϕA β(q
−1 pq), µAα

(p−1)eiϕA β(p−1)}

= min{µAα
(p)eiϕA β(p), µAα

(p)eiϕA β(p)}

µAα
([p, q])eiϕA β([p,q]) ≥ µAα

(p)eiϕA β(p).

Conversely, suppose that µAα
([p, q])eiϕA β([p,q]) ≥ µAα

(p)eiϕA β(p). Let p, r ∈ G be an ele-
ment.

Consider µAα
(p−1rp)eiϕA β(p−1rp) = µAα

(rr−1 p−1rp)eiϕA β(rr−1 p−1rp)

≥ min{µAα
(r)eiϕA β(r), µAα

([r, p])eiϕA β([r,p])}

= µAα
(r)eiϕA β(r) (3)

Thus , µAα
(p−1rp)eiϕA β(p−1rp) ≥ µAα

(r)eiϕA β(r), ∀ r, p ∈ G. (4)

Now, µAα
(r)eiϕA β(r) = µAα

(pp−1rpp−1)eiϕA β(pp−1rpp−1)

≥ min{µAα
(p)eiϕA β(p), µAα

(p−1rp)eiϕA β(p−1rp)}. (5)

Now, we expound two possible cases.

Case 1

If min{µAα
(p)eiϕA β(p), µAα

(p−1rp)eiϕA β(p−1rp)} = µAα
(p)eiϕA β(p).

Then, we obtain µAα
(r)eiϕA β(r) ≥ µAα

(p)eiϕA β(p), ∀ r, p ∈ G.

This implies that A(α,β) is a constant mapping and, in this case, the result holds
obviously.

Case 2

If min{µAα
(p)eiϕA β(p), µAα

(p−1rp)eiϕA β(p−1rp)} = µAα
(p−1rp)eiϕA β(p−1rp).

Then, from Equation (5) we have

µAα
(r)eiϕA β(r)} ≥ µAα

(p−1rp)eiϕA β(p−1rp). (6)

In the view of Equations (4) and (6) we have

µAα
(r)eiϕA β(r)} = µAα

(p−1rp)eiϕA β(p−1rp).

Hence, A(α,β) is constant.

Theorem 11. Let A(α,β) be (α, β)-CFNSG of group G. Then, the set Ae
(α,β) = { x ∈ G :

A(α,β)(x−1) = A(α,β)(e) } is a normal subgroup of group G.

Proof. We know that Ae
(α,β) 6= ϕ because e ∈ G. Let x, y ∈ Ae

(α,β) be any elements.
Consider

µAα
(xy)e

iϕAβ
(xy) ≥ min{µAα

(x)e
iϕAβ

(x)
, µAα

(y)e
iϕAβ

(y) } = min{µAα
(e)e

iϕAβ
(e)

, µAα
(e)e

iϕAβ
(e)} .

This implies that µAα
(xy)e

iϕAβ
(xy) ≥ µAα

(e)e
iϕAβ

(e)
. However, µAα

(xy)e
iϕAβ

(xy) ≤
µAα

(e)e
iϕAβ

(e)
. Therefore, µAα

(xy)e
iϕAβ

(xy)
= µAα

(e)e
iϕAβ

(e)
. This implies that A(α,β)(x−1) =

A(α,β)(e), which implies that xy ∈ Ae
(α,β). Further, µAα

(y−1)e
iϕAβ

(y−1) ≥ µAα
(y)e

iϕAβ
(y)

=
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µAα
(e)e

iϕAβ
(e)

. However, µAα
(x)e

iϕAβ
(x) ≤ µAα

(e)e
iϕAβ

(e)
. Thus, Ae

(α,β) is subgroup of

group G. Moreover, let x ∈ Ae
(α,β)and y ∈ G. We have µA(α,β)

(y−1xy)e
iϕA(α,β)

(y−1xy)
=

µA(α,β)
(x)e

iϕA(α,β)
(x)

. This implies that y−1xy ∈ Ae
(α,β). Hence, Ae

(α,β) is a normal sub-
group.

Theorem 12. Let A(α,β) be an (α, β)-CFNSG of group G. Then,

1. pA(α,β) = qA(α,β) if and if only p−1q ∈ Ae
(α,β)

2. A(α,β)p = A(α,β) q if and if only pq−1 ∈ Ae
(α,β)

Proof. (i) For any p, q ∈ G, we have pA(α,β) = qA(α,β).
Consider,

µAα
(p−1q)e

iϕAβ
(p−1q)

= min{µA(p−1q)eiϕA(p−1q), αeiβ}
= min{µpA(q)e

iϕpA(q), αeiβ}

= µpAα
(q)e

iϕpAβ
(q)

= µqAα
(q)e

iϕqAβ
(q)

= min{µA(q−1q)eiϕβ(q−1q), αeiβ}
= min{µA(e)eiϕA(e), αeiβ}

= µAα
(e)e

iϕAβ
(e)

.

Therefore, p− 1q ∈ Ae
(α,β).

Conversely, let p−1q ∈ Ae
(α,β) implies that µAα

(p−1q)e
iϕAβ

(p−1q)
= µAα

(e)e
iϕAβ

(e)
.

Consider, µpAα
(a)e

iϕpAβ
(a)

= min{µA(p−1a)eiϕA(p−1a), αeiβ}

= µAα
(p−1a)eiϕA(p−1a)

= µAα
(p−1q)(q−1a)e

iϕAβ
(p−1q)(q−1a)

≥ min{µAα
(p−1q)e

iϕAβ
(p−1q)

, µAα
(q−1a)e

iϕAβ
(q−1a)}

= min{µAα
(e)e

iϕAβ
(e)

, µAα
(q−1a)e

iϕAβ
(q−1a)}

= µAα
(q−1a)e

iϕAβ
(q−1a)

= µqAα
(a)e

iϕqAβ
(a)

.

Interchange the role of p and q, and we obtain µqAα
(a)e

iϕqAβ
(a)≥µpAα

(a)e
iϕpAβ

(a)
. Therefore,

µpAα
(a)e

iϕpAβ
(a)

= µqAα
(a)e

iϕqAβ
(a)

.
(ii) Similarly one can prove that as part (i).

Theorem 13. Let A(α,β) be an (α, β)-CFNSG of group G and p, q, a, and b be any elements in G.
If pA(α,β) = aA(α,β) and qA(α,β) = bA(α,β), then pqA(α,β) = abA(α,β).

Proof. Given that pA(α,β) = aA(α,β) and qA(α,β) = bA(α,β). This implies that p−1a, q−1b ∈
Ae
(α,β).

Consider, (pq)−1(ab) = q−1(p−1a)b = q−1(p−1a)(qq−1)b = [q−1(p−1a)(q)](q−1b).
As Ae

(α,β) is normal subgroup of G. Thus, (pq)−1(ab) ∈ Ae
(α,β). Consequently, pqA(α,β) =

abA(α,β).



Entropy 2021, 23, 992 12 of 16

In the following result, we establish (α, β)-complex fuzzy quotient group analog to
the classical quotient group.

Theorem 14. Let G/A(α,β) = {pA(α,β) : p ∈ G} be the collection of all (α, β)-complex fuzzy
cosets of (α, β)-CFNSG A(α,β) of G. Then, the binary operator ? is a well-defined operation of set
G/A(α,β) and is defined as pA(α,β) ? qA(α,β) = pqA(α,β) for all p, q ∈ G.

Proof. We have pA(α,β) = qA(α,β) and aA(α,β) = bA(α,β), for any a , b, p, q ∈ G. Let g ∈ G
be any element, then

[pA(α,β) ? aA(α,β)] (g) = (paA(α,β)(g)) = (g, µpaAα
(g)e

iϕpaAβ
(g)

)

Consider, µpaAα
(g)e

iϕpaAβ
(g)

= min{µpaA(g)eiϕpaA(g), αeiβ}

= min{µA((pa)−1g)eiϕA((pa)−1g), αeiβ}

= min{µA(a−1(p−1g))eiϕA(a−1(p−1g)), αeiβ}

= µaAα
(p−1g)e

iϕaAβ
(p−1g)

= µbAα
(p−1g)e

iϕbAβ
(p−1g)

= min{µA(b−1(p−1g))eIϕA(b
−1(p−1g)), αeiβ}

= min{µA(p−1(gb−1)), αeiβ}

= µpAα
(gb−1)e

iϕpAβ
(gb−1)

= µqAα
(gb−1)e

iϕqAβ
(gb−1)

= min{µA(q−1(gb−1))eiϕA(q
−1(gb−1)), αeiβ}

= min{µA(q−1g)b−1eiϕA(q
−1g)b−1

, αeiβ}

= min{µA(b−1q−1(g))eIϕA(b
−1q−1(g)), αeiβ}

= min{µA((qb)−1(g))eIϕA((qb)−1(g)), αeiβ}

= µqbAα
(g)e

iϕqbAβ
(g)

.

Thus, ? is well-defined operation on G/A(α,β). Note that the set G/A(α,β) fulfills the
closure and associative axioms with respect to the well-defined binary operation ?. Further,

µAα
e

iϕAβ ? µpAα
e

iϕpAβ = µeAα
e

iϕeAβ ? µpAα
e

iϕpAβ = µpAα
e

iϕpAβ = µpAα
e

iϕpAβ =⇒ µAα
eiϕA

is neutral element of G/A(α,β). Clearly the inverse of every element of G/A(α,β) exist if

µpAα
e

iϕpAβ ∈ G/A(α,β), and then there exists an element, µp−1 Aα
e

iϕp−1 Aβ ∈ G/A(α,β) such

that µp−1 pAα
e

iϕp−1 pAβ = µAα
e

iϕAβ . As a result, G/A(α,β) is a group. The group G/A(α,β) is
called the quotient group of the G by A(α,β).

Lemma 1. Let h : G → G/A(α,β) be natural homomorphism from group G onto G/A(α,β) and
defined by the rule, h(p) = pA(α,β) with the kernel h =Ae

(α,β).

Proof. Let p, q be any elements of group G, and then

h(pq) = pqA(α,β) = µpqAα
e

iϕpqAβ = µpAα
e

iϕpAβ ? µqAα
e

iϕqAβ = pA(α,β) ? qA(α,β) = h(p) ? h(q).
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Thus, h is homomorphism. Further, f is as well

Now, Kerh = {p ∈ G : f (p) = eA(α,β)}
= {p ∈ G : pA(α,β) = eA(α,β) }

= {p ∈ G : pe−1 ∈ Ae
(α,β)}

= {p ∈ G : p ∈ Ae
(α,β)}

= Ae
(α,β).

In the following result, we establish (α, β)-CFSG of the quotient group induced by the
normal subgroup Ae

α,β.

Theorem 15. Let Ae
α,β be a normal subgroup of G. If A(α,β) = {(p, µAα

(p)e
iϕAβ

(p)
) : p ∈

G} is (α, β)-CFSG, then, the (α, β)-CFS A(α,β) = {(pAe
(α,β), µAα

(pAe
(α,β))e

iϕAβ
(pAe

(α,β))) :

p ∈ G} of G/Ae
(α,β) is also a (α, β)-CFSG of G/Ae

α,β, where µAα
(pAe

(α,β))e
iϕAβ

(pAe
(α,β)) =

max{µAα
(pa)e

iϕAβ
(pa)

: a ∈ Ae
(α,β)} .

Proof. First, we shall prove that µAα
(pAe

(α,β))e
iϕAβ

(pAe
(α,β)) is well-defined. Let pAe

α,β =

qAe
α,β then q = pa, for some a ∈ Ae

(α,β).

Now, µAα
(qAe

(α,β))e
iϕAβ

(qAe
α,β) = max{µAα

(qb)e
iϕAβ

(qb)
: b ∈ Ae

(α,β)}

= max{µAα
(pab)e

iϕAβ
(pab)

: c = ab ∈ Ae
(α,β)}

= max{µAα
(pc)e

iϕAβ
(pc)

: c ∈ Ae
(α,β)}

= µAα
(pAe

(α,β)) e
iϕAβ

(pAe
(α,β))

Therefore, µAα
(pAe

(α,β))e
iϕAβ

(pAe
(α,β)) is well-defined.

Consider µAα
{(pAe

(α,β))(qAe
(α,β))}e

iϕAβ
{(pAe

(α,β))(qAe
(α,β))}

= µAα
(pqAe

(α,β))e
iϕAβ

(pqAe
(α,β))

= max{µAα
(pqa)e

iϕAβ
(pqa)

: a ∈ Ae
(α,β)}

≥ max{min{µAα
(pb)e

iϕA(α,β)
(pb)

, µAα
(qc)e

iϕAβ
(qc)
} : b, c ∈ Ae

α,β}

= min{max{µAα
(pb)e

iϕAβ
(pb)
} : b ∈ Ae

α,β, max{µAα
(qc)e

iϕAβ
(qc)
} : c ∈ Ae

α,β }

= min{µAα
(pAe

(α,β))e
iϕAβ

(pAe
(α,β)), µAα

(qAe
(α,β))e

iϕAβ
(qAe

(α,β))} .

µAα
((pAe

(α,β))
−1)e

iϕAβ
((pAe

(α,β))
−1)

= µAα
(p−1 Ae

α,β)e
iϕAβ

(p−1 Ae
α,β)

= max{µAα
(p−1a)e

iϕAβ
(p−1a)

: a ∈ Ae
α,β}

≥ max{µAα
(pa)e

iϕAβ
(pa)

: a ∈ Ae
α,β}

= µAα
(pAe

(α,β))e
iϕAβ

(pAe
(α,β)).

This concludes the proof.
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Remark 7. If A(α,β) is an (α, β)-CFSG of a group G, let p ∈ G and µAα
(pq)eiϕA β(pq) =

µAα
(p)eiϕA β(p), for all q ∈ G then µAα

(p)eiϕA β(p) = µAα
(e)eiϕA β(e).

Definition 15. Let A(α,β) be a (α, β)-complex fuzzy subgroup of finite group G. Then, the cardi-
nality of the set G/A(α,β) of all (α, β)-complex fuzzy left cosets of G by A(α,β) is called the index of
(α, β)-complex fuzzy subgroup and is denoted by [G : A(α,β)].

Theorem 16. ((α, β)-Complex Fuzzification of Lagrange’s Theorem): Let us assume that there
exists a (α, β)-complex fuzzy subgroup A(α,β) of finite group G. Then, the index of (α, β)-complex
fuzzy subgroup of G divides the order of G.

Proof. By Lemma 1, we have a natural homomorphism h from G to G/A(α,β).
Define a subgroup H = {x ∈ G : xA(α,β) = eA(α,β)}. By applying the Definition 13

x ∈ H and g ∈ G, we have xA(α,β)(g) = eA(α,β)(g). This implies that A(α,β)(x−1g) =

A(α,β)(g), by Remark 7, which shows that x ∈ Ae
(α,β). Therefore, H is contained in Ae

(α,β).
Now, we take any element x ∈ Ae

(α,β) and using the fact Ae
(α,β) is subgroup of G, we have

A(α,β)(x−1) = A(α,β)(e). From Theorem 13, the elements x−1, g ∈ Ae
(α,β), which means that

xA(α,β) = eA(α,β), which implies that x ∈ H. Hence, Ae
(α,β) is contained in H. From this

discussion, we can say that H = Ae
(α,β).

Now, we define the partition of the group G into the disjoint union of right cosets, and
this is defined as G = m1H

∪m2H ∪ · · · ∪mk H. (i)

where m1H = H. Now, we prove that, to each coset mj H in relation (i), there exists an
(α, β)-complex fuzzy coset mj A(α,β) in G/Ae

(α,β), and this corresponding is injective.
Consider any coset mj Ae

(α,β). Let x ∈ Ae
(α,β), then

h(mjx) = mjxA(α,β) = mj A(α,β)xA(α,β)

= mj A(α,β)eA(α,β)

= mj A(α,β).

Thus, h maps each element of mj Ae
(α,β) into the (α, β)-complex fuzzy coset mj A(α,β).

Now, we establish a natural correspondence h between the set {mj Ae
(α,β) : 1 ≤ j ≤ k }

and the set G/Ae
(α,β) defined by

h(mj Ae
(α,β)) = mj A(α,β), 1 ≤ j ≤ k.

The correspondence h is injective.
For this, let mi A(α,β) = ml A(α,β), then m−1

l mi A(α,β) = eA(α,β). By using (A), we have
m−1

l mi ∈ H, which means that mi Ae
(α,β) = mi Ae

(α,β), and hence h is injective. It is quite clear
from the above discussion that [G : Ae

(α,β)] and [G : A(α,β)] are equal. Hence, [G : Ae
(α,β)]

divides O(G).

Example 5. Consider G = {< u, v : u3 = v2 = e, uv = vu2} as a finite permutation group
of order 6. The (α, β)-complex fuzzy subgroup A(α,β) of G corresponding to the value α = 1 and
β = 2π is defined as

A(α,β)(x) =


0.9e

3πi
2 if x = e,

0.7eπi, if x = u, u2,
0.6e3πi4, otherwise.
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The set of all (α, β)-complex fuzzy left cosets of G by A(α,β) is given by:

G/A(α,β) = {eA(α,β), uA(α,β), vA(α,β)}.

This means that [G : A(α,β)] = Card(G/A(α,β)) = 3.

5. Conclusions

The concept of (α, β)-CFSs is a valuable extension of classical CFSs. In this article,
we defined (α, β)-CFSGs and proved fundamental algebraic attributions of these newly
defined CFSGs. We presented (α, β)-complex fuzzy cosets and used these concepts to
develop the (α, β)-CFNSGs. Moreover, we established an (α, β)-complex fuzzy quotient
ring induced by (α, β)-CFNSG. We derived the (α, β)-complex fuzzification of Lagrange’s
Theorem. In the future, we shall use the concept of the (α, β)-complex fuzzy set in algebraic
structures [48,49] and decision-making problems [50]. Moreover, with the help of this
newly defined complex fuzzy set, we shall propose novel (α, β)-complex fuzzy machine
learning algorithms.
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