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Abstract: In information theory, lossless compression of general data is based on an explicit as-
sumption of a stochastic generative model on target data. However, in lossless image compression,
researchers have mainly focused on the coding procedure that outputs the coded sequence from
the input image, and the assumption of the stochastic generative model is implicit. In these studies,
there is a difficulty in discussing the difference between the expected code length and the entropy of
the stochastic generative model. We solve this difficulty for a class of images, in which they have
non-stationarity among segments. In this paper, we propose a novel stochastic generative model of
images by redefining the implicit stochastic generative model in a previous coding procedure. Our
model is based on the quadtree so that it effectively represents the variable block size segmentation
of images. Then, we construct the Bayes code optimal for the proposed stochastic generative model.
It requires the summation of all possible quadtrees weighted by their posterior. In general, its
computational cost increases exponentially for the image size. However, we introduce an efficient
algorithm to calculate it in the polynomial order of the image size without loss of optimality. As a
result, the derived algorithm has a better average coding rate than that of JBIG.

Keywords: stochastic generative model; quadtree; bayes code; lossless image compression

1. Introduction
1.1. Lossless Data Compression in Information Theory

In information theory, lossless compression for general data (not only images) is
based on an explicit assumption of a stochastic generative model p(x) on target data x [1].
This assumption determines the theoretical limit, which is called entropy, of the expected
code length for p(x). When p(x) is known, entropy codes such as Huffman code [2]
and arithmetic code (see, e.g., [3]) achieve the theoretical limit. Then, researchers have
considered a setup in which p(x) is unknown. One method to describe the uncertainty
of p(x) is removing any specific assumption from the stochastic model p(x) (e.g., [4,5]).
Another is considering a class of parameterized stochastic generative models p(x|θ) and
assuming the class is known but the parameter θ is unknown. We focus on the latter
method in this paper. Even for this setup, researchers have proposed a variety of stochastic
generative model classes and coding algorithms achieving those theoretical limits, e.g., i.i.d.
model class, Markov model class, context tree model class, and so on (see, e.g., [6–10]).

In this setup, the variety of the stochastic generative model is described as that of
unknown parameters or model variables. For example, the i.i.d. model can be determined
by a vector θ whose elements are occurrence probabilities of each symbol and described as
p(x|θ). Markov model contains another variable c that represents the state or context, which
is a string of the most recent symbols at each time point, and the occurrence probability
vector θc is multiplied for each c. Then, the Markov model can be described as p(x|θc, c).
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Further, when the order of the Markov model is unknown, that contains another variable k
that represents the order and the occurrence probability θk

c , and the state variables ck are
multiplied for each k. Then, the Markov model with unknown order can be described as
p(x|θk

c , ck, k). Moreover, in the context tree model, the order depends on the context, and k
is replaced by an unknown model variable m that represents a set of contexts. Finally, the
context tree model can be described as p(x|θm

c , cm, m).
It should be noted that these parameters and model variables θ, k, and m are the statis-

tical parameters that govern the generation of the data x. Therefore, the coding algorithm
achieving the theoretical limit of these stochastic generative models inevitably contains
some kind of statistically optimal action, e.g. their statistical estimation θ̂(x), k̂(x), m̂(x) as
values, their estimation p(θ|x), p(k|x), p(m|x) as posteriors in a Bayesian setting, or model
weighting with their posteriors. The explicit assumption of the stochastic generative model
and the construction of the coding algorithm with the statistically optimal action have been
successful in text compression. In fact, various text coding algorithms have been derived
(e.g., [8–10]).

1.2. Lossless Image Compression as a Image Processing

However, in most cases of lossless “image” compression, the main focus is on the
construction of the coding procedure f (x) that just outputs the coded sequence from the
input pixel values x without the explicit assumption of a stochastic generative model. In
the usual case, the coding algorithm has a tuning parameter a and is represented as f (x; a).
This tuning parameter a is adaptively tuned to pixel values x, and we express this tuning
method as ã(x). Then, the coded sequence f (x; ã(x)) from x is uniquely determined.

Therefore, the variety of the coding procedures is described as that of the tuning
parameters and the tuning methods. More specifically, we give a brief review of a type of
lossless image coding called predictive coding. Most of the predictive coding procedures
have a form f (xt−1; a, b) with two parameters a and b. a is a parameter of the predictor,
which predicts the next pixel value xt from the already compressed pixels xt−1 at time t.
b is a parameter that determines an assignment of the code length to the predictive error
sequence. Note that the assignment of the code length can be represented by a vector
whose sum of the elements equals 1, and it is sometimes called “probability”. However,
it does not represent the occurrence probability of pixel value xt in an explicitly assumed
stochastic generative model. Therefore, in this paper, we call it code length assign vector to
distinguish them. Then, the predictive error sequence and the code length assign vector are
input to the entropy codes such as the arithmetic code [3]. For example, in JPEG-LS [11],
they use three predictors that are switched according to the neighboring pixels. This can be
regarded as a ∈ {1, 2, 3} corresponding to the index of the three predictors, and the rule to
switch them is represented by ã(xt−1). The code length assign vector of JPEG-LS [11] is
represented by a two-sided geometric distribution, which is tuned by the past sequence
xt−1. This can be regarded as b being a parameter of the two-sided geometric distribution
and b̃(xt−1) being its tuning method. In other studies [12–17], the authors proposed coding
procedures f (xt−1; a, b, ca) in which coefficients ca of each linear predictor are tuned by a
certain method c̃a(xt−1), e.g., the least squares method or weighted least squares method.
In [18,19], the authors proposed coding procedures f (xt−1; a, b, ca, w) in which multiple
predictors are combined according to another tuning parameter w that represents the
weights of each predictor. Regarding the code length assign vector, Matsuda et al. [20] dealt
with a procedure f (xt−1; a, b, ca, d) in which the code length assign vector is represented by
the generalized Gauss distribution that has another tuning parameter d. (This notation is
just for the explanation of the idea of the previous studies; it does not completely match
the notation of each paper, and it does not contain all of the tuning parameters of each
procedure.) One of the latest studies constructing a complicated coding procedure was
reported by Ulacha et al. [21], in which numerous tuning parameters are tuned through
careful experiments. Lossless image compression using deep learning (see, e.g., [22]) can
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be regarded as one of the coding procedures with a huge number of tuning parameters
that are pre-trained.

These studies have been practically successful. However, it should be noted that the
tuning parameters a and b are not the statistical parameters that govern the generation
of pixel values x since they are introduced just to add a degree of freedom to the coding
procedure. Even the parameter b, which superficially appears to be a parameter of a
probability distribution, does not directly govern the generation of pixel values x unless
the coding procedure is extremely simple; it is just used to represent the code length assign
vector with fewer variables. Therefore, the tuning of these parameters adaptive to x is not
theoretically grounded by the statistics nor information theory. If our task were not lossless
compression, e.g., lossy compression, image super-resolution, and so on, this parameter
tuning would be evaluated from various points of view, e.g., subjective evaluation. It is
because such tasks have difficulty in the performance measure itself. Besides, in lossless
image compression, it should be evaluated from an information-theoretical perspective.
These parameters should be tuned to decrease the difference between the expected code
length and the entropy of the assumed stochastic generative model, and we have to say any
other tuning methods are heuristic unless they pursue the added value except for the coding
rate. However, such an information-theoretical evaluation is impossible because there
is no explicit assumption of the stochastic generative model p(x), and the entropy—the
theoretical limit of the expected code length—itself is not defined. This is a critical problem
of the previous studies above. In addition, the more tuning parameters are introduced, the
more difficult the construction of the tuning method becomes since there is no confirmation
of the optimality of each tuning method.

1.3. Lossless Image Compression on an Explicitly Redefined the Stochastic Generative Model

However, there are some coding procedures f (x; a) [11–14,16–20,23] whose tuning
parameter a can be regarded as a statistical parameter of an implicitly assumed statistical
generative model p(x|a) by changing the viewpoint. (In some of these studies, the assump-
tion of the stochastic generative model is claimed, but the distinction between the stochastic
generative model and the code length assign vector is ambiguous, and the discussion about
the difference between the expected code length and the entropy of the stochastic genera-
tive model is insufficient.) Further, its parameter tuning method ã(x) could be regarded as
a heuristic approximation of a statistically optimal estimation â(x) ≈ ã(x). Then, explicitly
redefining the implicit stochastic generative model behind the previous coding procedures,
we can construct a statistical generative model supported by their practical achievements.
Moreover, if we derive the coding algorithm that minimizes the difference between the
expected code length and the entropy of the constructed stochastic generative model under
some kind of criterion, this algorithm inevitably contains a statistically optimal action that
is an improved version of ã(x). Further, such an action is not necessarily the estimation
â(x) as a value. We can also estimate its posterior p(a|x) or mix the coding procedures
weighted by the posterior p(a|x).

To derive such a coding algorithm, we can utilize the coding algorithms in text coding.
Although image data are different from the text data, their stochastic generative models
may contain a similar structure, and we may utilize the estimating algorithm in the text
coding. In fact, we utilize the efficient algorithm for the context tree model class [8–10] for
our stochastic generative model in this paper.

It is true that the coding algorithm constructed in this approach does not necessarily
work for real images, since the optimality is guaranteed only for the stochastic generative
model, and it is difficult to prove that the real images generated from the assumed stochastic
generative model. Therefore, the constructed coding algorithm might be inferior to the
existing one in the initial stage of this approach. However, we claim that this problem
should not be solved by a heuristic tuning of the parameter in the coding procedure but an
explicit extension of the stochastic generative model, as much as possible. Such parameter
tuning should be done in the final stage before implementation or standardization.
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We already adopted this approach in the previous studies [24,25]. In [24], we proposed
a two-dimensional autoregressive model and the optimal coding algorithm by interpret-
ing the basic procedure [11–13,16,23] of the predictive coding as a stochastic generative
model. In [25], we proposed a two-dimensional autoregressive hidden Markov model by
interpreting the predictor weighting procedure around a diagonal edge [18] as a stochas-
tic generative model. However, these stochastic generative models do not have enough
flexibility to represent the non-stationarity among segments of an image. Therefore, we
proposed a stochastic generative model for the non-stationarity in [26]. This paper is an
extended version of it.

1.4. The Contribution of This Paper

Then, our target data are the images in which the properties of pixel values are
different depending on the segments. In this paper, we achieve the following purposes.

1. We propose a stochastic generative model that effectively represents the non-stationarity
among the segments in an image.

2. We derive the optimal code that minimizes the difference between the expected code
length and the entropy of the proposed stochastic model under the Bayes criterion.

3. We derive an efficient algorithm for the implementation of the code without loss of
the optimality.

A trivial way to represent the non-stationarity as a stochastic generative model is to
divide the image into fixed-size blocks and assume different probability distributions for
each block. However, such a stochastic generative model is not flexible enough to represent
the smaller segments and inefficient to represent the larger segments than the block size.

On the other hand, one of the most efficient lossless image coding procedures [20]
contains preprocessing to determine a quadtree that represents a variable block size segmen-
tation. Then, different predictors are assigned to each block to mitigate the non-stationarity.
The quadtree is also used in various fields of image and video processing to represent
the variable block size segmentation, and its flexibility and computational efficiency are
reported by a number of studies, e.g., in H.265 [27]. However, the quadtree in these stud-
ies is a tuning parameter of a procedure. There are no studies that regard the quadtree
as a statistical model variable m of a stochastic generative model p(x|m) governing the
generation of pixel values x and construct the optimal code that minimizes the difference
between the expected code length and the entropy of it in the Bayes criterion, to the best of
our knowledge.

In this paper, we propose a novel stochastic generative model based on the quadtree, so
that our model effectively represents the non-stationarity among segments by the variable
block size segmentation. Then, we construct the optimal code that minimizes the difference
between the expected code length and the entropy of the proposed stochastic generative
model under the Bayes criterion. The optimal code is given by a weighted sum of all the
possible model quadtrees m, and the optimal weight is given by its posterior p(m|x). In
general, its computational cost increases exponentially for the image size. However, we
introduce a computationally efficient algorithm to implement our code without loss of
optimality, taking in the knowledge of the text coding [8–10]. A similar algorithm is also
used for decision tree weighting in machine learning [28]. It is in contrast to the previous
lossless image coding procedure [20] that fixes a single quadtree in the preprocessing,
which statistically corresponds to some kind of model selection.

Although the main theme of this paper is lossless image compression, the substantial
contribution of our results is the construction of the stochastic model. Therefore, the
proposed stochastic model contributes to not only lossless image compression but also any
other stochastic image processing such as recognition, generation, feature extraction, and
so on.

The organization of this paper is as follows. In Section 2, we describe the proposed
stochastic generative model. In Section 3, we derive the optimal code for the proposed
model. In Section 4, we derive an efficient algorithm to implement the derived code.



Entropy 2021, 23, 991 5 of 19

In Section 5, we perform some experiments to confirm the flexibility of our stochastic
generative model and the efficiency of our algorithm. In Section 6, we describe future
works. Section 7 is the conclusion of this paper.

2. The Proposed Stochastic Model

At first, we define some notations. Note that the following notations are independent
of those in Section 1. Let V denote a set of possible values of a pixel. For example, V = {0, 1}
for binary images, V = {0, 1, . . . , 255} for gray scale images, and V = {0, 1, . . . , 255}3 for
color images. Let N denote the set of natural numbers. Let h ∈ N and w ∈ N denote the
height and width of an image, respectively. Although our model is able to represent any
rectangular images and its block segmentation, we assume that h = w = 2dmax for dmax ∈ N
in the following for the simplicity of the notation. Then, let Vt denote the random variable
of the tth pixel value in order of the raster scan and vt ∈ V denote its realized value. Note
that Vt is at x(t)th row and y(t)th column, where t divided by w is x(t) with a reminder of
y(t). In addition, let Vt denote the sequence of pixel values V0, V1, . . . , Vt. Note that all the
indices start from zero in this paper.

We consider the pixel value Vt is generated from various probability distributions
depending on a model m ∈ M and parameters θm ∈ Θm. Therefore, they are represented
by p(vt|vt−1, θm, m) in general. Note that the model m and the parameters θm are unob-
servable and should be estimated in actual situations. The definitions of m and θm are
as follows.

Definition 1. Let s(x1y1)(x2y2)···(xdyd)
denote the following index set called “block”

s(x1y1)(x2y2)···(xdyd)
:=

{
(i, j) ∈ Z2

∣∣∣∣∣ d

∑
d′=1

xd′

2d′ ≤
i

2dmax
<

(
d

∑
d′=1

xd′

2d′ +
1
2d

)
,

d

∑
d′=1

yd′

2d′ ≤
j

2dmax
<

(
d

∑
d′=1

yd′

2d′ +
1
2d

)}
, (1)

where xd′ , yd′ ∈ {0, 1}, d ≤ dmax, and Z denotes the set of integers. In addition, let sλ be the set of
whole indices sλ := {0, 1, . . . h− 1} × {0, 1, . . . , w− 1}. Then, let S denote the set which consists
of all the above index sets, namely

S := {sλ, s(00), . . . , s(11), s(00)(00), . . . , s(11)(11), . . . , s(11)(11)···(11)}. (2)

Example 1. For dmax = 2,

s(01) = {(i, j) ∈ Z2 | 0 ≤ i < 2, 2 ≤ j < 4} = {(0, 2), (0, 3), (1, 2), (1, 3)}. (3)

Therefore, it represents the indices of the upper right region. In a similar manner, s(01)(11) =

{(i, j) ∈ Z2 | 1 ≤ i < 2, 3 ≤ j < 4} = {(1, 3)}. It should be noted that the cardinality |s| for
each s ∈ S represents the number of pixels in the block.

Definition 2. We define the model m as a full quadtree whose nodes are elements of S . Let Lm ⊂ S
and Im ⊂ S denote the set of the leaf nodes and the inner nodes of m, respectively. Then, Lm

corresponds to a pattern of variable block size segmentation, as shown in Figure 1. LetM denote
the set of full (i.e., every inner node has exactly four child nodes) quadtrees whose depth is smaller
than or equal to dmax.
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Figure 1. An example of node set S and models m.

Definition 3. Each leaf node s ∈ Lm of the model m has a parameter θm
s whose parameter space is

Θm
s . We define θm as a tuple of parameters {θm

s }s∈Lm , and let Θm denote the total parameter space
of them.

Under the model m ∈ M and the parameters θm ∈ Θm, we assume that the tth pixel
value vt ∈ V is generated as follows.

Assumption 1. We assume that

p(vt|vt−1, θm, m) = p(vt|vt−1, θm
s ), (4)

where s ∈ Lm satisfies (x(t), y(t)) ∈ s.

Thus, the pixel value Vt depends only on the parameter of the block s which contains
Vt under the past sequence Vt−1.

3. The Bayes Code for the Proposed Model

If we know the true model m and the parameters θm, we are able to compress the pixel
value vt up to the entropy of p(vt|vt−1, θm, m) by a well-known entropy code such as the
arithmetic code. However, the true m and θm are unobservable. One reasonable solution is
to estimate them and substitute the estimated ones m̂ and θ̂m into p(vt|vt−1, θm, m). Then,
we can use p(vt|vt−1, θ̂m, m̂) as a coding probability of the entropy code.

However, there is another powerful solution, in which we assume prior distribu-
tions p(m) and p(θm|m). Then, we estimate the true coding probability p(vt|vt−1, θm, m)
itself instead of m and θm by q(vt|vt−1) so that q(vt|vt−1) can minimize the Bayes risk func-
tion based on the loss function between the expected code length of entropy code using
p(vt|vt−1, θm, m) and that using q(vt|vt−1). The code constructed by such a method is
called the Bayes code (see, e.g., [29,30]).

It is known that the expected code length of the Bayes code converges to the en-
tropy of the true stochastic model for sufficiently large data length t, and its convergence
speed achieves the theoretical limits [30]. In fact, the Bayes code achieves remarkable
performances in text compression (e.g., [8]).

Therefore, we derive the Bayes code for the proposed stochastic model. According
to the general formula in [29], the optimal coding probability for vt in the scheme of the
Bayes code is derived as follows:

Proposition 1. The optimal coding probability q∗(vt|vt−1) which minimizes the Bayes risk func-
tion is

q∗(vt|vt−1) = p(vt|vt−1) = ∑
m∈M

p(m|vt−1)
∫

p(vt|vt−1, θm, m)p(θm|vt−1, m)dθm. (5)

We call q∗(vt|vt−1) the Bayes optimal coding probability.
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Proposition 1 implies that we should calculate the posterior distributions p(m|vt−1)
and p(θm|vt−1, m). Then, we should use the coding probability which is a weighted mixture
of p(vt|vt−1, θm, m) for every block segmentation pattern m and parameters θm according
to the posteriors p(m|vt−1) and p(θm|vt−1, m).

4. The Efficient Algorithm to Calculate the Coding Probability

Unfortunately, the Bayes optimal coding probability (5) contains computationally diffi-
cult calculations. As the depth dmax of full quadtree increases, the amount of calculation for
the sum with respect to m ∈ M increases exponentially. Moreover, the posterior p(m|vt−1)
does not have a closed-form expression in general. (Strictly speaking, a few problems are
also left. Both the integral with respect to θm and the posterior p(θm|m, vt−1) do not have
closed-form expressions in general. These problems can be solved in various methods
depending on the setting of p(vt|vt−1, θm, m) and p(θm|m) and almost independent of our
proposed model. Therefore, we describe an example of a feasible setting of p(vt|vt−1, θm, m)
and p(θm|m) in the next section. Other settings are described in Section 6 as future works.)

Similar problems are studied in text compression, and efficient algorithms to calculate
the coding probability have been constructed (see, e.g., [8–10]). In these algorithms, the
weighted sum of the context trees is calculated instead of the quadtrees. We apply it for
our proposed model. In this section, we focus to describe the procedure of the constructed
algorithm. Its validity is described in Appendix A.

First, we assume the following priors on m and θm.

Assumption 2. We assume that each node s ∈ S has a hyperparameter gs ∈ [0, 1], and the model
prior p(m) is represented by

p(m) = ∏
s∈Lm

(1− gs) ∏
s′∈Im

gs′ , (6)

where gs = 0 for s whose cardinality |s| equals 1, and the empty product equals 1.

The idea of this form is to represent p(m) as a product of the probability that the block
s is divided. Such a probability is denoted by gs in (6). Note that |s| = 1 means that the
block s consists of only 1 pixel and it cannot be divided. A proof that the above prior
satisfies the condition ∑m∈M p(m) = 1 is in Appendix A. Note that the above assumption
does not restrict the expressive capability of the general prior in the meaning that each
model m still has possibility to be assigned a non-zero probability p(m) > 0.

Assumption 3. For each model m ∈ M, we assume that

p(θm|m) = ∏
s∈Lm

p(θm
s |m). (7)

Moreover, for any m, m′ ∈ M, s ∈ Lm ∩ Lm′ , and θs ∈ Θs, we assume that

p(θs|m) = p(θs|m′) =: ps(θs). (8)

Therefore, each element θm
s of the parameters θm depends only on s and is independent

of both the other elements and the model m.
From Assumptions 1 and 3, the following lemma holds.

Lemma 1. For any m, m′ ∈ M, s ∈ Lm ∩ Lm′ , and vt ∈ V t, if (x(t), y(t)) ∈ s, then

p(vt|vt−1, m) = p(vt|vt−1, m′). (9)

Then, we represent it by q̃(vt|vt−1, s) because it does not depend on m but s.
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The proof of Lemma 1 is in Appendix A. Lemma 1 means that the optimal coding
probability for vt depends only on the leaf node block s which contains vt, and it can be
calculated as q(vt|vt−1, s) if s is known.

At last, the efficient algorithm to compute the Bayes optimal coding probability
q∗(vt|vt−1) is represented as an iteration of updating gs and summing the functions
q̃(vt|vt−1, s) weighted by gs for nodes on a path of the complete quadtree on S .

Definition 4. Let St denote the set of nodes which contain (x(t), y(t)). They construct a path
from the leaf node s(x1y1)(x2y2)···(xdmax ydmax )

= {(x(t), y(t))} to the root node sλ on the complete
quadtree whose depth is dmax on S , as shown in Figure 2. In addition, let schild ∈ St denote the
child node of s ∈ St on that path.

Figure 2. An example of a path constructed from St.

Definition 5. We define the following recursive function q(vt|vt−1, s) for s ∈ St.

q(vt|vt−1, s) :=

{
q̃(vt|vt−1, s), |s| = 1,
(1− gs|t−1)q̃(vt|vt−1, s) + gs|t−1q(vt|vt−1, schild), otherwise,

(10)

where gs|t is also recursively updated as follows.

gs|t :=


gs, t = −1
gs|t−1, t ≥ 0∧ (s /∈ St ∨ |s| = 1)
gs|t−1q(vt |vt−1,schild)

q(vt |vt−1,s) , t ≥ 0∧ s ∈ St ∧ |s| > 1.

(11)

Then, the following theorem holds.

Theorem 1. The Bayes optimal coding probability q∗(vt|vt−1) for the proposed model is calculated by

q∗(vt|vt−1) = q(vt|vt−1, sλ). (12)

The proof of Theorem 1 is in Appendix A. Theorem 1 means that the summation
with respect to m ∈ M in (5) is able to be replaced by the summation with respect to
s ∈ St and it costs only O(dmax). In a sense, (1− gs|t−1) can be regarded as the marginal
posterior probability that the true block division was stopped at s. Then, the proposed
algorithm takes a mixture of the coding probability q̃(vt|vt−1, s), weighting such a case
with (1− gs|t−1) and the other cases with gs|t−1.

5. Experiments

We performed three experiments. The purpose of the first experiment was to confirm
the Bayes optimality of q(vt|vt−1, sλ). Therefore, we used synthetic images randomly gener-
ated from the proposed model. The purpose of the second experiment was to demonstrate
the flexibility of our model. Therefore, we used a well-known benchmark image. We also
used the Bayes optimal code for fixed block size segmentation for comparison in these two
experiments. (Let 2d be the fixed block size. Such a model is derived by substituting gs = 1
for s whose depth is smaller than dmax − d and gs = 0 otherwise.) The purpose of the third
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experiment was to compare average coding rates of our proposed algorithm with a current
image coding procedure on real images.

5.1. Experiment 1

In Experiments 1 and 2, we assumed V = {0, 1}. In other words, we treated only
binary images. p(vt|vt−1, θm, m) was assumed to be the Bernoulli distribution Bern(vt|θm

s )
for s which satisfies (x(t), y(t)) ∈ s. Each element of θm was i.i.d. distributed with the beta
distribution Beta(θ|α, β), which is the conjugate distribution of the Bernoulli distribution.
Therefore, the integral in (5) had a closed-form. The hyperparameter gs of the model prior
was gs = 1/2 for every s ∈ S \ {sλ} and gsλ

= 1, and the hyperparameters of the Beta
distribution were α = β = 1/2.

The setting of Experiment 1 was as follows. The width and height of images were
w = h = 2dmax = 64. Then, we generated 1000 images according to the following procedure.

1. Generate m according to (6).
2. Generate θm

s according to p(θm
s |m) for s ∈ Lm.

3. Generate pixel value vt according to p(vt|vt−1, θm, m) for t ∈ {0, 1, . . . , hw− 1}.
4. Repeat Steps (1)–(3) 1000 times.

Examples of the generated images are shown in Figure 3. Then, we compressed these
1000 images. The size of the image was saved in the header of the compressed file using 4
bytes. The coding probability calculated by the proposed algorithm was quantized in 216

levels and substituted into the range coder [31].

Figure 3. Examples of the generated images in Experiment 1.

The coding rates (bit/pel) averaged over all the images are shown in Table 1. Our
proposed code has the minimum coding rate as expected by the Bayes optimality. Addi-
tionally, we compressed them by a standard lossless binary image coder called JBIG [32]. It
did not work for the generated images. It is probably because JBIG [32] is not designed for
synthetic images but mainly for real images such as faxes. A more detailed comparison
was done in Experiment 3.

Table 1. The average coding rates (bit/pel). The bold number shows the minimum coding rate.

Quadtree (Proposed) Fixed Size 4 Fixed Size 8 Fixed Size 16 JBIG [32]

0.619 0.705 0.659 0.679 1.826

5.2. Experiment 2

In Experiment 2, we compressed the binarized version of camera.tif from Wat [33],
where the threshold of binarization was 128. The settings of the header and the range coder
were the same as those of Experiment 1. Figure 4 visualizes the maximum a posteriori
(MAP) estimation mMAP = arg maxm p(m|vhw−1), which was calculated as a by-product
of the compression by the algorithm detailed in Appendix B. It shows that our proposed
model has the flexibility to represent the non-stationarity among the regions. The coding
rate for camera.tif is shown in Table 2. For this image, the proposed algorithm a showed
better coding rate than JBIG [32].
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Figure 4. The original image (left) and the MAP estimated model mMAP (right).

Table 2. The coding rates for the camera.tif from Wat [33] (bit/pel). The bold number shows the
minimum coding rate.

Quadtree (Proposed) Fixed Size 4 Fixed Size 8 Fixed Size 16 JBIG [32]

0.323 0.427 0.388 0.430 0.348

5.3. Experiment 3

In Experiment 3, we compared the proposed algorithm with JBIG [32] on real images
from Wat [33]. They were binarized in a similar manner to Experiment 2. The settings
of the header and the range coder were the same as those of Experiments 1 and 2. The
results are shown in Table 3. The algorithm labeled as Proposed 1 in Table 3 is the same
as that in Experiments 1 and 2. In the algorithm labeled as Proposed 2 in Table 3, we
assumed that p(vt|vt−1, θm, m) is the Bernoulli distribution Bern(vt|θm

s;vt−w−1vt−wvt−w+1vt−1
),

which depends on the neighboring four pixels. (If the indices go out of the image, we used
the nearest past pixel in Manhattan distance.) In other words, there were 16 parameters
θm

s;0000, θm
s;0001, . . . , θm

s;1111 for each block s of model m, and one of them was chosen by the
realized values vt−w−1, vt−w, vt−w+1, and vt−1 in the past. Each parameter was i.i.d.
distributed with the beta distribution whose parameters were α = β = 1/2.

Table 3. The coding rates for the images from Wat [33] (bit/pel). The bold number shows the
minimum coding rate.

Images JBIG [32] Proposed 1 Proposed 2

bird 0.149 0.121 0.099
bridge 0.386 0.390 0.373
camera 0.348 0.323 0.310
circles 0.102 0.100 0.060
crosses 0.083 0.140 0.110
goldhill1 0.359 0.371 0.353
horiz 0.078 0.075 0.022
lena1 0.217 0.254 0.216
montage 0.164 0.176 0.163
slope 0.096 0.091 0.056
squares 0.076 0.005 0.010
text 0.301 0.468 0.468

avg. 0.197 0.209 0.187

Proposed 2 outperforms JBIG [32] without any specialized tuning of the hyperparam-
eters from the perspective of average code rates. On the other hand, JBIG [32] outperforms
our algorithms for crosses and text. This is because JBIG [32] is designed for text images
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such as faxes and our stochastic generative model is for images with non-stationarity among
segments. The structure of the text images should not be represented by the proposed
quadtree-based stochastic generative model but the stochastic model p(vt|vt−1, θm, m) in
each block. Although refinement of p(vt|vt−1, θm, m) for target images is out of the scope
of this paper, it is an important problem in the future (see the next section).

6. Future Works

In this paper, we focus only on the stochastic representation of the non-stationarity
among the segments. The discussion about the stochastic model p(vt|vt−1, θm, m) and
the prior p(θm|m) to be assumed in each block is out of the scope. This is the first future
work. For example, our model also works on the pairs of categorical distribution and
Dirichlet distribution, normal distribution and normal-gamma distribution, and two-
dimensional autoregressive model and normal-gamma distribution [24]. Moreover, using
an approximative Bayesian estimation such as the variational Bayesian method, we expect
that more complicated stochastic models (e.g., [25]) can be assumed.

The second future work is to apply our model to other stochastic image processing:
image recognition, image generation, image inpainting, future extraction, etc. In particular,
image generation and image inpainting may be suitable because the whole structure of
stochastic image generation is described in our model and the parameters of the stochastic
model can be learned optimally.

7. Conclusions

We propose a novel stochastic model based on the quadtree so that our model effec-
tively represents the variable block size segmentation of images. Then, we construct a Bayes
code for the proposed stochastic model. Moreover, we introduce an efficient algorithm to
implement it in polynomial order of data size without loss of optimality. As a result, the
derived algorithm has a better average coding rate than that of JBIG [32].
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Appendix A. Validity of the Proposed Algorithm

Appendix A.1. The Property of the Model Prior p(m)

First, we prove the following lemma for a general case. Note that the empty product
equals 1 as usual.

http://links.uwaterloo.ca/Repository.html


Entropy 2021, 23, 991 12 of 19

Lemma A1. Consider the k-ary complete tree T̃ with its depth D, in which each node u has a
parameter gu ∈ [0, 1]. Let T denote the set of full subtrees which contain the root node λ of T̃.
Then, the following holds.

∑
T∈T

(
∏

u∈LT

(1− gu) ∏
u′∈IT

gu′

)
= 1, (A1)

where LT and IT denote the set of leaf nodes and inner nodes of T, respectively, and gu = 0 for u
whose depth is D.

Proof. Lemma A1 is proved by induction with respect to the depth D. Let [λ] denote the
tree which consists of only the root node λ of T̃. When D = 0,

∑
T∈T

(
∏

u∈LT

(1− gu) ∏
u′∈IT

gu′

)
= ∏

u∈L[λ]
(1− gu) ∏

u′∈I [λ]
gu′ (A2)

= 1− gλ (A3)

= 1, (A4)

where (A2) is because T = {[λ]}; (A3) is because L[λ] = {λ}, I [λ] = ∅, and the empty
product equals to 1; (A4) is because the assumption of the statement, that is gu = 0 for u
whose depth is D.

If we assume (A1) for D = d ≥ 0 as the induction hypothesis, then the following holds
for D = d + 1.

∑
T∈T

(
∏

u∈LT

(1− gu) ∏
u′∈IT

gu′

)
= (1− gλ) + ∑

T∈T \{[λ]}

(
∏

u∈LT

(1− gu) ∏
u′∈IT

gu′

)
(A5)

= (1− gλ) + gλ ∑
T∈T \{[λ]}

 ∏
u∈LT

(1− gu) ∏
u′∈IT\{λ}

gu′

. (A6)

Since each subtree T ∈ T \ {[λ]} is identified by k sub-subtrees whose root nodes are
the child nodes of λ, let λchild,i denote the ith child node of λ for 0 ≤ i ≤ k− 1 and T λchild,i

denote the set of sub-subtrees whose root node is λchild,i. Then, the summation in (A6) are
factorized as follows.

∑
T∈T \{[λ]}

 ∏
u∈LT

(1− gu) ∏
u′∈IT\{λ}

gu′

 (A7)

= ∑
T0∈T

λchild,0

· · · ∑
Tk−1∈T

λchild,k−1
(

∏
u∈LT0

(1− gu) ∏
u′∈IT0

gu′

)
× · · · ×

 ∏
u∈LTk−1

(1− gu) ∏
u′∈ITk−1

gu′

 (A8)

=

 ∑
T0∈T

λchild,0

(
∏

u∈LT0

(1− gu) ∏
u′∈IT0

gu′

)
× · · · ×

 ∑
Tk−1∈T

λchild,k−1

 ∏
u∈LTk−1

(1− gu) ∏
u′∈ITk−1

gu′

. (A9)
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Using (A1) for D = d as the induction hypothesis,

∑
Ti∈T

λchild,i

(
∏

u∈LTi

(1− gu) ∏
u′∈ITi

gu′

)
= 1 (A10)

for 0 ≤ i ≤ k− 1. Then,

(A6) = (1− gλ) + gλ · 1k = 1. (A11)

Therefore, Lemma A1 holds for any D.

Using this lemma, the following corollaries hold for our model.

Corollary A1. The prior assumed in Assumption 2 satisfies ∑m∈M p(m) = 1.

Corollary A2. Under Assumption 2 and for any s ∈ S ,

∑
m∈{m′∈M|s∈Lm′}

p(m) = (1− gs) ∏
s′∈As

gs′ , (A12)

where As denotes the set of the ancestor nodes of s. (Let Asλ
be the empty set.)

Proof of Corollary 2: Since each m ∈ {m′ ∈ M | s ∈ Lm′} has the right-hand side of (A12)
as the factor in its prior,

∑
m∈{m′∈M|s∈Lm′}

p(m)

= (1− gs) ∏
s′∈As

gs′ ∑
m∈{m′∈M|s∈Lm′}

 ∏
s′∈Lm\{s}

(1− gs′) ∏
s′′∈Im\{As}

gs′′

. (A13)

Then, factorizing the sum in a similar manner from (A7)–(A9) and using Lemma A1 for the
subtrees whose root nodes are out of As, Corollary A2 is proved.

Figure A1. The example for the proof of Corollary A2.
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As an example, Figure A1 shows the case where dmax = 2, s = s(01), As(01) = {sλ}.
LetMs denote a set of full quadtrees whose root node is s. In this case, we can factorize
the sum in (A13) as follows.

∑
m∈{m′∈M|s(01)∈Lm′}

 ∏
s∈Lm\{s(01)}

(1− gs) ∏
s′∈Im\{As(01)

}
gs′


= ∑

m00∈M
s(00)

∑
m10∈M

s(10)
∑

m11∈M
s(11)

{(
∏

s∈Lm00

(1− gs) ∏
s′∈Im00

gs′

)

×
(

∏
s∈Lm10

(1− gs) ∏
s′∈Im10

gs′

)(
∏

s∈Lm11

(1− gs) ∏
s′∈Im11

gs′

)}
(A14)

=

 ∑
m00∈M

s(00)

(
∏

s∈Lm00

(1− gs) ∏
s′∈Im00

gs′

)
×

 ∑
m10∈M

s(10)

(
∏

s∈Lm10

(1− gs) ∏
s′∈Im10

gs′

)
×

 ∑
m11∈M

s(11)

(
∏

s∈Lm11

(1− gs) ∏
s′∈Im11

gs′

) (A15)

=
{
(1− gs(00)) + gs(00)(1− gs(00)(00))(1− gs(00)(01))(1− gs(00)(10))(1− gs(00)(11))

}
×
{
(1− gs(10)) + gs(10)(1− gs(10)(00))(1− gs(10)(01))(1− gs(10)(10))(1− gs(10)(11))

}
×
{
(1− gs(11)) + gs(11)(1− gs(11)(00))(1− gs(11)(01))(1− gs(11)(10))(1− gs(11)(11))

}
(A16)

= 1 · 1 · 1 = 1. (A17)

The last equation is because gs = 0 for s whose depth is dmax.

Appendix A.2. Proof of Lemma 1

Proof of Lemma 1.

p(vt|vt−1, m) =
∫

p(vt|vt−1, θm, m)p(θm|vt−1, m)dθm (A18)

∝
∫

p(vt|vt−1, θm, m)p(vt−1|θm, m)p(θm|m)dθm (A19)

=
∫

p(vt|vt−1, θm
s )
∫

p(vt−1|θm, m)p(θm|m)dθm
\sdθm

s (A20)

∝
∫

p(vt|vt−1, θm
s )ps(θ

m
s ) ∏

i∈{i′≤t|(x(i′),y(i′))∈s}
p(vi|vi−1, θm

s )dθm
s , (A21)

where ∝ means that the left-hand side is proportional to the right-hand side, regarding the
variables except vt as constant, and θm

\s denotes the parameters θm except θm
s . Here, we use

Assumptions 1 and 3. As a result, Formula (A21) is independent of m.

Appendix A.3. Proof of Theorem 1

Proof of Theorem 1. We prove the following two equations simultaneously.

p(m|vt−1) = ∏
s∈Lm

(1− gs|t−1) ∏
s′∈Im

gs′ |t−1, (A22)

q∗(vt|vt−1) = q(vt|vt−1, sλ). (A23)
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(A22) means that the posterior distribution of the model m has the same form as the prior.
(A23) is equivalent to Theorem 1.

They are proved by induction with respect to t. Therefore, the proof consists of the
following four steps.

Step 1 We prove (A22) for t = 0.

Step 2 We prove (A23) for t = 0.

Step 3 We prove (A22) for t = k + 1 under the assumptions of (A22) and (A23) for t = k.

Step 4 We prove (A23) for t = k + 1 under the assumptions of (A22) for t = k + 1 and
(A23) for t = k.

Step 1: (A22) holds for t = 0 because it is Assumption 2 itself.
Step 2: For t = 0, (A23) can be proved as follows:

q∗(v0) = ∑
m∈M

p(m)
∫

p(v0|θm, m)p(θm|m)dθm (A24)

= ∑
s∈S0

∑
m∈{m′∈M|s∈Lm′}

p(m)
∫

p(v0|θm, m)p(θm|m)dθm (A25)

= ∑
s∈S0

∑
m∈{m′∈M|s∈Lm′}

p(m)q̃(v0|s) (A26)

= ∑
s∈S0

q̃(v0|s) ∑
m∈{m′∈M|s∈Lm′}

p(m) (A27)

= ∑
s∈S0

q̃(v0|s)(1− gs) ∏
s′∈As

gs′ (A28)

= (1− gsλ
)q̃(v0|sλ) + ∑

s∈S0\{sλ}
q̃(v0|s)(1− gs) ∏

s′∈As

gs′ (A29)

= (1− gsλ
)q̃(v0|sλ) + gsλ ∑

s∈S0\{sλ}
q̃(v0|s)(1− gs) ∏

s′∈As\{sλ}
gs′ . (A30)

Note that S0 is defined in Definition 4. Here, we use Lemma 1 and Corollary A2 in (A26)
and (A28), respectively. The recursive structure in (A28) and (A30) coincides with q(v0|sλ).
Step 3: In the following, we assume (A22) and (A23) for t = k as the induction hypotheses.
Let r ∈ Lm satisfy (x(k), y(k)) ∈ r and Sk be the same one defined in Definition 4. Then,
for t = k + 1,

∏
s∈Lm

(1− gs|k) ∏
s′∈Im

gs′ |k

= ∏
s∈Lm∩Sk

(1− gs|k) ∏
s′∈Im∩Sk

gs′ |k ∏
s′′∈Lm\Sk

(1− gs′′ |k) ∏
s′′′∈Im\Sk

gs′′′ |k (A31)

= (1− gr|k) ∏
s∈Ar

gs|k ∏
s′∈Lm\Sk

(1− gs′ |k) ∏
s′′∈Im\Sk

gs′′ |k. (A32)

When |r| = 1, substituting (11) and (10) in this order,

(1− gr|k) ∏
s∈Ar

gs|k = (1− gr|k−1) ∏
s∈Ar

q(vk|vk−1, schild)

q(vk|vk−1, s)
gs|k−1 (A33)

=
q̃(vk|vk−1, r)

q(vk|vk−1, sλ)
(1− gr|k−1) ∏

s∈Ar

gs|k−1. (A34)

Here, (A34) is given by the cancellation of the telescoping product.
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When |r| > 1, substituting (11) and (10) in this order,

(1− gr|k) ∏
s∈Ar

gs|k

=

(
1− q(vk|vk−1, rchild)

q(vk|vk−1, r)
gr|k−1

)
∏

s∈Ar

q(vk|vk−1, schild)

q(vk|vk−1, s)
gs|k−1 (A35)

=

(
q(vk|vk−1, r)− q(vk|vk−1, rchild)gr|k−1

q(vk|vk−1, r)

)
∏

s∈Ar

q(vk|vk−1, schild)

q(vk|vk−1, s)
gs|k−1 (A36)

=

(
(1− gr|k−1)q̃(vk|vk−1, r) + q(vk|vk−1, rchild)gr|k−1 − q(vk|vk−1, rchild)gr|k−1

q(vk|vk−1, r)

)

× ∏
s∈Ar

q(vk|vk−1, schild)

q(vk|vk−1, s)
gs|k−1 (A37)

=

(
(1− gr|k−1)q̃(vk|vk−1, r)

q(vk|vk−1, r)

)
∏

s∈Ar

q(vk|vk−1, schild)

q(vk|vk−1, s)
gs|k−1 (A38)

=
q̃(vk|vk−1, r)

q(vk|vk−1, sλ)
(1− gr|k−1) ∏

s∈Ar

gs|k−1. (A39)

Here, (A39) is again given by the cancellation of the telescoping product. As a result, (A34)
and (A39) have the same form.

On the other hand, applying the updating rule (11),

∏
s′∈Lm\Sk

(1− gs′ |k) ∏
s′′∈Im\Sk

gs′′ |k = ∏
s′∈Lm\Sk

(1− gs′ |k−1) ∏
s′′∈Im\Sk

gs′′ |k−1. (A40)

Therefore, the right-hand side of (A32) is transformed as follows.

q̃(vk|vk−1, r)
q(vk|vk−1, sλ)

(1− gr|k−1) ∏
s∈Ar

gs|k−1 ∏
s′∈Lm\Sk

(1− gs′ |k−1) ∏
s′′∈Im\Sk

gs′′ |k−1 (A41)

=
q̃(vk|vk−1, r)

q(vk|vk−1, sλ)
∏

s∈Lm
(1− gs|k−1) ∏

s′∈Im
gs′ |k−1 (A42)

=
q̃(vk|vk−1, r)
q∗(vk|vk−1)

p(m|vk−1) (A43)

=
p(vk|vk−1, m)

p(vk|vk−1)
p(m|vk−1) (A44)

= p(m|vk). (A45)

In (A43), we use (A22) and (A23) as the induction hypothesis. In (A44), we use Lemma 1
and Proposition 1. Thus, (A22) holds for t = k + 1.

In addition, it holds that

∑
m∈{m′∈M|s∈Lm′}

p(m|vk) = (1− gs|k) ∏
s′∈As

gs′ |k, (A46)

since the posterior p(m|vk) has the same form as the prior p(m) and can be applied
Corollary A2.
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Step 4: (A23) can be proved for t = k + 1 in a similar manner to the case where t = 0.

q∗(vk+1|vk) = ∑
s∈Sk+1

q̃(vk+1|vk, s) ∑
m∈{m′∈M|s∈Lm′}

p(m|vk) (A47)

= ∑
s∈Sk+1

q̃(vt|vk, s)(1− gs|k) ∏
s′∈As

gs′ |k (A48)

= (1− gsλ |k)q̃(vk+1|vk, sλ)

+ gsλ |k ∑
s∈Sk+1\{sλ}

q̃(vk+1|vk, s)(1− gs|k) ∏
s′∈As\{sλ}

gs′ |k. (A49)

In (A48), we use (A46). The recursive structure in (A48) and (A49) coincides with
q(vk+1|vk, sλ).

Appendix B. The Algorithm to Calculate mMAP

In this appendix, we derive the algorithm to calculate arg maxm p(m|vt). At first,
maxm p(m|vt) can be decomposed in a similar manner to the proof of Lemma A1 by
replacing the sum for the max.

max
m∈M

p(m|vt) = max

{
1− gsλ |t, gsλ |t max

m00∈M
s(00)

{
∏

s∈Lm00

(1− gs|t) ∏
s′∈Im00\{sλ}

gs′ |t

}

× max
m01∈M

s(01)

{
∏

s∈Lm01

(1− gs|t) ∏
s′∈Im01\{sλ}

gs′ |t

}

× max
m10∈M

s(10)

{
∏

s∈Lm10

(1− gs|t) ∏
s′∈Im10\{sλ}

gs′ |t

}

× max
m11∈M

s(11)

{
∏

s∈Lm11

(1− gs|t) ∏
s′∈Im11\{sλ}

gs′ |t

}}
. (A50)

We define a recursive function φt : S → R as follows.

Definition A1.

φt(s) :=

{
1, |s| = 1

max
{

1− gs|t, gs|tφt(schild00 )φt(schild01
)φt(schild10

)φt(schild11
)
}

, otherwise.
(A51)

Here, schild00 , schild01 , schild10 , and schild11 are child nodes of s of the complete quadtree on S

Then, maxm p(m|vt) can be calculated by φt(sλ).
Next, we define the following flag variable hs|t ∈ {0, 1}.

Definition A2.

hs|t :=

{
0, 1− gs|t ≥ gs|tφt(schild00)φt(schild01)φt(schild10)φt(schild11)

1, otherwise.
(A52)

We can calculate hs|t and φt(s) simultaneously. Then, arg maxm p(m|vt) is identified
as the model which satisfies

s ∈ Im ⇒ hs|t = 1, (A53)

s ∈ Lm ⇒ hs|t = 0. (A54)

Such a model can be searched by backtracking from sλ after the calculation of φt(sλ) and
hsλ |t.
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