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Abstract: In the machine learning literature we can find numerous methods to solve classification
problems. We propose two new performance measures to analyze such methods. These measures are
defined by using the concept of proportional reduction of classification error with respect to three
benchmark classifiers, the random and two intuitive classifiers which are based on how a non-expert
person could realize classification simply by applying a frequentist approach. We show that these
three simple methods are closely related to different aspects of the entropy of the dataset. Therefore,
these measures account somewhat for entropy in the dataset when evaluating the performance of
classifiers. This allows us to measure the improvement in the classification results compared to
simple methods, and at the same time how entropy affects classification capacity. To illustrate how
these new performance measures can be used to analyze classifiers taking into account the entropy
of the dataset, we carry out an intensive experiment in which we use the well-known J48 algorithm,
and a UCI repository dataset on which we have previously selected a subset of the most relevant
attributes. Then we carry out an extensive experiment in which we consider four heuristic classifiers,
and 11 datasets.

Keywords: entropy; classification methods; intuitive classification method; performance measures;
benchmarking

1. Introduction

Classification is one of the most relevant topics in machine learning [1–4]. In general,
the purpose of supervised classification is to predict the correct class , among a set of
known classes, of a new observation given, based on the knowledge provided by a dataset,
known as “training data”. In addition, the classification problem is very important in
decision-making in many different fields, so it is not difficult to find applications in fields
such as medicine, biotechnology, marketing, security in communication networks, robotics,
image and text recognition... Three issues in classification problems are the attribute subset
selection, the design and implementation of classifiers, and the performance evaluation of
classifiers [1–4]. In this paper, we will focus mainly on the latter.

On the other hand, entropy appears in statistics or information theory as a measure
of diversity, uncertainty, randomness or even complexity. For this reason, we can find the
use of entropy in the feature selection problem and the design of classifiers. Shannon [5]
introduced entropy in the context of communication and information theory. This concept
has been used frequently in information-based learning models [2]. Two extensions of the
Shannon entropy measure, which are also frequently used, are the Renyi’s entropy [6] and
the Tsallis’ entropy [7]. In [8], a review on generalized entropies can be found.

One of the most frequent difficulties found in the analysis of a dataset is that of high
dimensionality, since when there are too many variables the analysis is more difficult and
computationally expensive, there may be correlated variables, redundant variables or even
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noisy variables. All of these problems can lead to poorer performance of classifiers. Thus,
to solve these difficulties, one of two alternatives is commonly used: (1) reducing the
dimension by transforming data, or (2) selecting a subset of characteristics while keeping
most of the information in the dataset; this approach is known as feature selection. For
example, in [9] the linear discriminant analysis and the RBS feature selection method are
compared. An advantage of the feature selection approach is that the original meaning of
the variables is kept. In classification problems, where there is a nominal target variable
(the consequent), the selection of the most relevant variables is not a trivial matter. The
issue of feature selection has already been addressed in many studies in the field of
machine learning by using different approaches including information entropy [10–34].
Liu and Yu [35] reviewed feature selection algorithms for classification and clustering, and
categorize them to facilitate the choice of the most suitable algorithm for the analysis of a
particular dataset.

Many of the feature selection procedures incorporate the use of their own classifier to
measure the quality of the selection, therefore, on many occasions it is possible to identify
the feature selection method with the classifier itself, as can happen in wrapper and em-
bedded methods of feature selection. There are different types of classification algorithms
depending on its structure or the principles behind them. Thus, we can find classification
algorithms (1) based on induction of decision tree algorithms such as ID3 [36] and its
extension C4.5 [37], the classification and regression tree algorithm CART [38], and their
extensions to random forest algorithms [39–41]; (2) based on similarities such as K-nearest
neighbor algorithms [42,43] and their extensions to instance-based algorithms such as
IBL [44]; (3) based on separation methods in vector spaces such as support vector machine
algorithms [45,46]; or (4) based on probabilistic or statistical concepts and methods such
as linear discriminant analysis [47], logistic regression or naïve Bayes algorithms [48,49];
among others. For details on classification and learning problems and their algorithms
see [1]. Moreover, we can find in the machine learning literature many papers in which
different concepts and methods from information entropy are used together with learning
classification algorithms to design new classifiers to be applied in different contexts [50–60].

Given the same dataset, not all classifiers are equally accurate in their predictions.
The accuracy achieved by a classification model depends on several factors such as the
algorithm’s own implementation, the heuristics of pruning and built-in boosting, the
dataset used, and even the set of variables finally chosen for the construction of the
model. Therefore, the analysis of the performance of classifiers is relevant in order to
determine which works better. It is known that there is a lower bound on the error rate
that can be achieved by classifiers: the Bayes error [61]. This error is associated with
the Bayes classifier, which assigns an observation to the class with the highest posterior
probability [61]. Therefore, this classifier and its associated error can be considered as
benchmarks to evaluate the performance of a given classifier. However, the Bayes error
can be computed only for a few number of problems. Therefore, different approximations
and bounds of this error can be found in the literature (see, for example, Kumer and
Ghosh [62] and the references herein). In the machine learning literature, there are different
measures of the performance of a classifier and we can find various works that analyze
the performance of different classifiers according to them. Costa et al. [63] showed that
the most usual evaluation measures in practice were inadequate for hierarchical classifiers
and reviewed the main evaluation measures for hierarchical classifiers. Sokolova and
Lapalme [64] analyzed how different types of changes in the confusion matrix affected
performance measures of classifiers. In particular, they studied the invariance properties of
24 performance measures for binary, multi-class, multi-labeled and hierarchical classifiers.
Ferri et al. [65] carried out a experiment to analyze 18 different performance measures of
classifiers. They also studied the relationships between the measures and their sensitivity
from different approaches. Parker [66] analyzed the incoherences of seven performance
measures for binary classifiers from both a theoretical and an empirical point of view
in order to determine which measures were better. Labatut and Cherifi [67] studied
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properties and the behavior of 12 performance measures for flat multi-class classifiers.
Jiao and Du [68] reviewed the most common performance measures used in bioinformatics
predictors for classifications. Valverde-Albacete and Peláez-Moreno [69–72] analyzed
classification performance with information-theoretic methods. In particular, they proposed
to analyze classifiers by means of entropic measures on their confusion matrices. To do this,
they used the de Finetti entropy diagram or entropy triangle and a suitable decomposition
of a Shannon-type entropy, and then defined two performance measures for classifiers: the
entropy-modified accuracy (EMA) and the normalized information transfer (NIT) factor.
The EMA is the expected proportion of times the classifier will guess the output class
correctly, and the NIT factor is the proportion of available information transferred from
input to output. The quotient of these two measures provides information on how much
information is available for learning.

In this paper, we focus on the definition of performance measures. In particular,
following the ideas on agreement coefficients from statistics, the Cohen’s κ [73] and the
Scott’s π [74], which have also been used as performance measures of classifiers [75],
we consider three performance measures closely related to them. Those statistics were
originally defined to measure the concordance level between the classifications made by
two evaluators. The mathematical formula is the following:

Concordance level =
P0 − Pe

1− Pe
, (1)

where P0 represents the observed proportion of classifications on which the two evaluators
agree when classifying the same data independently; and Pe is the proportion of agreement
to be expected on the basis of chance. Depending on how Pe is defined the Cohen’s κ or
the Scott’s π are obtained. In machine learning, these statistics are used as performance
measures by considering the classifier to be evaluated and a random classifier, where P0 is
the accuracy of the classifier. In this paper, we look at these performance measures from
another point of view and define two new performance measures based on the Scott’s π. In
particular, we use the interpretation given in Goodman and Kruskal [76] for the λ statistics.
Thus, we consider three benchmark classifiers, the random classifier and two intuitive
classifiers. The three classifiers assign classes to new observations by using the information
of the frequency distribution of all attributes in the training data. To be more specific, the
random classifier, X , predicts by random with the frequency distribution of the classes at
hand, while the first intuitive classifier, V , predicts the most likely outcome for each possible
observation with the frequency distribution of the classes in the training data, and the
second intuitive classifier, I , predicts the most likely outcome for each possible observation
with the joint frequency distribution of all attributes in the training data. The two described
intuitive classifiers were postulated, built, and analyzed but rejected in favor of more
modern classifier technologies before 2000. However, they could still be useful to define
other performance measures in the style of the Cohen’s κ or the Scott’s π. Thus, in order to
evaluate a classifier we determine the proportional reduction of classification error when
we use the classifier to be evaluated with respect to using one of the benchmark classifiers.
In this sense, P0 is the accuracy of the classifier to be evaluated and Pe is the (expected)
accuracy of the benchmark classifier. In the case where the benchmark classifier is the
random classifier we obtain a performance measure like the Scott’s π, but the interpretation
given is different from the usual one in the machine learning literature. This is also an
interesting approach of performance evaluation of classifiers because we can measure how
advantageous a new classifier is with respect to three simple benchmark classifiers which
can be seen as the best common sense options for non-expert (but sufficiently intelligent
and with common sense) people, and whose error rates are simpler to determine than the
Bayes error.

On the other hand, we analyze the relationship between the three benchmark classifiers
and different aspects of the entropy of the dataset. Thus, the random classifier X and the
intuitive classifier V are directly related to the entropy of the target attribute, while the
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intuitive classifier I is closely related to the entropy of the target attribute when all dataset
is considered, i.e., to the conditional entropy of the target attribute given the remaining
variables in the dataset. With this relationships in mind, we can analyze the performance
of classifiers taking into account the entropy of the dataset [77]. This is an interesting
approach because it allows us to identify under what conditions of information uncertainty
(measured by means of entropy) a classifier works better.

To the best of our knowledge, the main contributions of the paper to the machine
learning literature are the following:

1. We consider the random classifier and two intuitive classifiers as benchmark classifiers.
These classifiers can be considered as simple, intuitive and natural for common sense
non-expert decision-makers.

2. We define three new performance measures of classifiers based on the Scott’s π, the
accuracy of classifiers, and the benchmark classifiers.

3. We interpret our performance measures of classifiers in terms of proportional reduc-
tion of classification error. Therefore, we measure how much a classifier improves
the classification made by the benchmark classifiers. This interpretation is interesting
because it is easy to understand and, at the same time, we determine the gain in
accuracy related to three simple classifiers. In a sense, they provide information on
whether the design of the classifier has been worth the effort.

4. The three performance measures of classifiers lie in the interval [−1, 1], where −1
means that the classifier in evaluation worsens by 100% the correct classification
made by the corresponding benchmark classifier, this corresponds to the classifier
assigns incorrectly all observations, and 1 means that the classifier reduces by 100%
the incorrect classification made by the corresponding benchmark classifier, this
corresponds to the classifier assigns correctly all observations.

5. The benchmark classifiers catch the entropy of the dataset. The random classifier
X and the intuitive classifier V measure the entropy of the target attribute, and the
intuitive classifier I reflects the conditional entropy of the target attribute given the
remaining variables in the dataset. Therefore, they allow us to analyze the perfor-
mance of a classifier taking into account the entropy in the dataset. These measures,
particularly that based on the intuitive classifiers, offer different information than
other performance measures of the classifiers, which we consider to be interesting.
The aim, therefore, is not to substitute for any known performance measure, but to
provide a measure of a different aspect of the performance of a classifier.

6. We carry out an intensive experiment to illustrate how the proposed performance
measures works and how the entropy can affect the performance of a classifier. For
that we consider a particular dataset and the classification algorithm J48 [78–80], an
implementation provided by Weka [75,81–83], of the classic C4.5 algorithm presented
by Quinlan [36,37].

7. In order to validate what was observed in the previous experiment, we carried out an
extensive experiment using four classifiers implemented in Weka and 11 datasets.

The rest of the paper is organized as follows. In Section 2, we provide the methodology
and materials used in the paper. In particular, the method of feature selection, the algorithm
of the intuitive classifier I , the description of several heuristic classifiers implemented in
Weka [75,81–83], and the definition and theoretical analysis of the performance measures
introduced in this paper. In Section 3, we carry out the experiment to illustrate how
the performance measures work and how they can be used to analyze the classifiers’
performance in terms of entropy. In Section 4, we discuss the results obtained and conclude.
Tables are included in Appendix A.

2. Materials and Methods
2.1. Method and Software Used for Feature Selection

The method used to perform the selection and ranking of the most influential variables
is Gain Ratio Attribute Evaluation [25] (implemented in Weka [75,81–83]). This measure,
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GR(att) on Equation (2), provides an objective criterion for sorting explanatory variables
by importance versus the target variable. Gain Ratio by its own design penalizes the
proliferation of nodes and meliorates the variables that are distributed so uniformly. The
gain ratio of each attribute is calculated using the following formula:

GR(att) =
IG(att)
H(att)

, (2)

where (IG) is a measure to evaluate the informational gain provided by each attribute,
which is considered to be a popular measure to evaluate attributes. In particular, it is the
difference between the entropy of the consequent attribute and the entropy when att is
known, H(att). Thus, the feature selection method calculates the informational gain for
each attribute att [25].

2.2. Methodology and Software for the Intuitive Classification Method I
The basic idea of the intuitive classifier I is to generate classification rules from a

dataset where all values are discrete (text tags). Dataset data will have C columns or
attributes (A1, . . . , AC). One of the attributes (AC in the Figure 1) is the target variable,
used to classify instances. The remaining attributes (A1, . . . , AC−1) are the explanatory
variables of the problem or antecedents.

rule : < A1 = V1 >, . . . ,< AC−1 = VC−1 >︸ ︷︷ ︸
left side

→ < AC = VC >︸ ︷︷ ︸
right side

(3)

A classification rule will consist of an antecedent (left side of the rule) and a con-
sequent (right side of the rule), as illustrated in Equation (3). The antecedent will be
composed of C− 1 attribute/value pairs (< Ai = Vi >), where attributes are the explana-
tory variables. The consequent will consist of an attribute pair (target variable/value) in
the form < AC = VC >.

Figure 1. Experiment for each data scenario.

The intuitive classifier I counts the more repeated values within the data sample. In
our opinion this could be what any non-expert person would do to try to identify the most
likely patterns of a data sample by applying common sense. The algorithm of the intuitive
classifier I (see Algorithm 1) performs a scan comprehensive by all records in the dataset
and counts how many times each combination of values is given in the left side of the rule
(antecedent), to that amount of what we will call rule support (R. supp). Analogously, given
an antecedent, for each classification rule, the algorithm counts the number of times each
of the its possible consequences or right part of the rule. We call it rule confidence (R. conf).
(see Algorithm 1).
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Algorithm 1 Pseudo-code of the algorithm of the intuitive classifier I .
1: INPUT:
2: S: training data sample with C columns and N rows
3: C− 1 attributes are the antecedent
4: 1 class variable is the consequent
5: START ALGORITHM
6: CRS← ∅ {/*initialized as void set*/}
7: for each row in S do
8: if there exists a rule Rj in CRS such that Antecedent(Rj) = Antecedent(row) and

Consequent(Rj) = Consequent(row) then
9: for all Ri in CRS such that Antecedent(Ri) = Antecedent(row) do

10: Ri.supp← Ri.supp + 1
11: end for
12: Rj.conf← Rj.conf + 1
13: else
14: R← New Rule
15: R.antecedent← Antecedent(row)
16: R.consequent← Consequent(row)
17: R.supp← 1
18: R.conf← 1
19: for all Ri in CRS such that Antecedent(Ri) = Antecedent(row) do
20: Ri.supp← Ri.supp + 1
21: end for
22: CRS← CRS + R {/*add R to CRS*/}
23: end if
24: end for
25: return CRS: Classification Rule Set {/*OUTPUT*/}
26: END ALGORITHM

Note that each rule (R) of the set of rules (CRS), generated according to Algorithm 1,
has associated both support and confidence values (R. supp, R. conf). These values are,
as indicated above, the number of times the antecedent is repeated in the sample of data
and, the number of times that, given a particular antecedent, its class of the consequent
is repeated in the data sample. These two counters allow us to determine which patterns
are the most repeated. This model, formed by the whole of CRS rules, predicts the class
variable of an instance “s” by applying Algorithm 2.

Algorithm 2 infers the value of instance class “s”, using the set rule CRS whose
antecedent most closely resembles the antecedent of “s” (matching a greater number of
attributes). In the case where there are multiple rules with the same number of matches,
that which has a larger support is selected. If there are several rules with equal support,
the most trusted is chosen. Once that rule is identified, the predicted class is the value of
the consequent of the selected rule.
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Algorithm 2 Pseudo-code of the algorithm to predict with a CRS model.
1: INPUT:
2: s: test row with C− 1 antecedent attributes
3: CRS: Classification Rule Set
4: USE: RSS: Rule subset
5: START ALGORITHM
6: for c = C− 1 to 1 do
7: RSS← {Ri ∈ CRS / c attributes of s are equal to c attributes of Ri}
8: if RSS 6= ∅ then
9: R← R1 {/* R1 is the first rule of RSS */}

10: for j = 2 to |RSS| do
11: if R.supp < Rj.supp then
12: R← Rj
13: else if R.supp = Rj.supp and R.conf < Rj.conf then
14: R← Rj
15: end if
16: return R.consequent
17: end for
18: end if
19: end for
20: return The resulting predicted class for row s (the consequent of a rule of CRS)

{/*OUTPUT*/}
21: END ALGORITHM

2.3. Methodology and Software for the Heuristic Classifiers

For the generation of predictive models from the heuristic approach, we consider
several heuristic classifiers: J48, Naïve Bayes, SMO, and Random Forest.

The decision tree learner J48 [78–80] is an implementation provided by Weka of the
classic C4.5 algorithm [36,37]. J48 extends some of the functionalities of C4.5 such as
allowing the post-pruning process of the tree to be carried out by a method based on error
reduction or that the divisions over discrete variables are always binary, among others [75].
These decision trees are considered supervised classification methods. There is a dependent
or class variable (variable of a discrete nature), and the classifier, from a training sample,
determines the value of that class for new cases. The tree construction process begins with
the root node, which has all training examples or cases associated. First, the variable or
attribute from which to divide the original training sample (root node) is chosen, seeking
that in the generated subsets there is minimal variability with respect to the class. This
process is recursive, i.e., once the variable with the highest homogeneity is obtained with
respect to the class in the child nodes, the analysis is performed again for each of the child
nodes. This recursive process stops when all leaf nodes contain cases of the same class,
and then over-adjustment should be avoided, for which the methods of pre-pruning and
post-pruning of trees are implemented.

We also consider the Naïve Bayes algorithm implemented in Weka [75,81–83] which
is a well-known classifier [48,49] based on the Bayes Theorem. Details on Naïve Bayes
classifiers can be found almost in any data science or machine learning book. On the other
hand, Ref. [81] is an excellent reference for the Weka software.

The SMO is an implementation in Weka [75,81–83] of the Platt’s sequential minimal
optimization algorithm [84–86] for training a support vector machine classifier [45]. SMO
is a simple algorithm to quickly solve the support vector machine quadratic problems
by means of the decomposition of the overall quadratic problem into smaller quadratic
sub-problems which are easier and faster to be solved.

Finally, we will also use the random forest classifier implemented in the Weka
software [75,81–83]. Random forests classifiers [41] consist of ensembles of decision trees
which are built from randomly selected subset of training set, and the final classification is
the result of the aggregation of the classification provided by each tree.
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2.4. Evaluation Measures

The evaluation of classifiers or models to predict is very important because it allows
us (1) to compare different classifiers or models to make the best choice, (2) to estimate
how the classifier or model will perform in practice, and (3) to convince the decision maker
that the classifier or model will be suitable for its purpose (see [1,2]). The simplest way
to evaluate a classifier for a particular problem given by a dataset is to consider the ratio
of correct classification. If we denote by Z the classifier and by D the dataset, then the
performance of Z classifying a particular attribute (the consequent) in D is given by

acc(Z(D)) = number of correct predictions
total predictions

. (4)

This measure is known as accuracy. There are other evaluation measures [1,2], but
we focus in this paper on defining new measures based in some way on the concepts of
proportional reduction of the classification error [76] and entropy [5].

Our approach for defining evaluation measures based on entropy is by considering
simple classifiers that capture the entropy of the problem. These classifiers play the role of
benchmark when evaluating other classifiers.

Let us consider a dataset D with N instances (rows) and C attributes (columns) such
that attributes A1, A2, . . . , AC−1 are considered the explanatory variables (antecedents) and
AC is the attribute to be explained (consequent) or predicted. Let aC1, aC2, . . . , aCK be the
categories or classes of variable AC, and let pC1, pC2, . . . , pCK be the relative frequencies of
those categories in D. Associated with this problem, we can consider a random variable X
from the sample space Ω = {aC1, aC2, . . . , aCK} to R, such that X(aCj) = j, and Prob(X =
j) = pCj. Therefore X has the non-uniform discrete distribution D(pC1, pC2, . . . , pCK), i.e.,
X ∼ D(pC1, pC2, . . . , pCK). This X can be considered the random classifier for the consequent
AC in the dataset D, defined as

X (AC,D)(i) = X(i), (5)

where i is an observation or instance. Furthermore, we can define another simple and
intuitive classifier for the consequent AC in the dataset D as follows

V(AC,D)(i) = arg max{pC1, pC2, . . . , pCK}, (6)

where i is an observation or instance, i.e., this intuitive classifier predicts the most likely out-
come for each possible observation with the frequency distribution of the consequent AC.

If we take the N instances of the dataset, then the classification of each instance i by
the random classifier X has a categorical, generalized Bernoulli or multinoulli distribution
with parameter pi, where pi is the frequency associated with the category that attribute AC
takes for the instance i, i.e., X(i) ∼ B(pi). Therefore, the expected number of success in the
classification of the N instances is given by

E(
N

∑
i=1

X(i)) =
N

∑
i=1

E(X(i)) =
N

∑
i=1

pi =
K

∑
j=1

pCjNpCj = N
K

∑
j=1

p2
Cj. (7)

Assuming that the classification of each instance is made independently, the variance
of the number of success in the classification of the N instances is given by

V(
N

∑
i=1

X(i)) =
N

∑
i=1

V(X(i)) =
N

∑
i=1

pi(1− pi) =
K

∑
j=1

pCjNpCj(1− pCj) = N
K

∑
j=1

p2
Cj(1− pCj). (8)

Note that if we consider a set of instances different from dataset D then Equations (7)
and (8) would be given by
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E(
N′

∑
i=1

X(i)) =
K

∑
j=1

N′Cj pCj and V(
N′

∑
i=1

X(i)) =
K

∑
j=1

N′Cj pCj(1− pCj), (9)

where N′Cj is the number of instances for which attribute AC takes the value aCj.
Likewise, if we are interested in the ratio of success in the classification, then Equation (7)

simply becomes

E(
N

∑
i=1

X(i)) =
K

∑
j=1

p2
Cj. (10)

Thus, Equation (10) provides the expected accuracy of the random classifier X , i.e.,

E(
N

∑
i=1

X(i)) = E(acc(X (AC,D))). (11)

In the same way, we can arrive at the accuracy of the classifier V is

acc(V(AC,D)) = max{pC1, pC2, . . . , pCK}. (12)

On the other hand, the Shannon entropy [5] of attribute AC in dataset D is given by

HS(AC,D) = −
K

∑
j=1

pCj log2 pCj. (13)

Shannon entropy can be seen as a Renyi’s entropy measure [6] or a Tsallis’ entropy mea-
sure [7], which have the following mathematical expressions for attribute AC in dataset D,

HR,α(AC,D) = 1
1− α

log2

(
K

∑
j=1

pα
Cj

)
, and (14)

HT,α(AC,D) = 1
α− 1

(
1−

K

∑
j=1

pα
Cj

)
, (15)

respectively.
Renyi’s and Tsallis’ entropy measures coincide with the Shannon entropy when α goes

to 1, therefore Shannon’s measure of entropy is seen as a Renyi’s entropy measure or a
Tsallis’ entropy measure of order α = 1. If we consider the Renyi’s entropy measure and
the Tsallis’ entropy measure of order α = 2, we obtain

HR,2(AC,D) = − log2

(
K

∑
j=1

p2
Cj

)
, and (16)

HT,2(AC,D) =
(

1−
K

∑
j=1

p2
Cj

)
. (17)

The entropy measures given in Equations (16) and (17) are very closely related to
Equation (10), which measures the expected ratio of success in the classification of the
random classifier X .

Now, we have the following result which relates the expected ratio of success of the
random classifier X and the different entropy measures above of consequent AC when
it is binary.

Theorem 1. Let D, and D∗ be two datasets with the same attributes and AC a binary attribute
which is considered the consequent. Then, the following statement holds

1. HS(AC,D) > HS(AC,D∗)⇔ HR,2(AC,D) > HR,2(AC,D∗).
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2. HS(AC,D) > HS(AC,D∗)⇔ HT,2(AC,D) > HT,2(AC,D∗).
3. HS(AC,D) > HS(AC,D∗)⇔ ∑2

j=1 p2
Cj < ∑2

j=1 p∗2Cj.

Proof of Theorem 1. In order to prove the theorem all you need is to prove statement 3,
because the other two statements follow from the mathematical expressions of HR,2, and
HT,2 and statement 3. Let pC1, pC2 and p∗C1, p∗C2 be two frequency distributions of AC such
that the entropy associated with the first is greater than the entropy associated with the
second. Consider that pC1 6= p∗C1 , then pC2 6= p∗C2. Otherwise, the result immediately
follows. Since the entropy of the first frequency distribution is greater than the entropy of
the second frequency distribution, we know that |pC1− pC2| < |p∗C1− p∗C2|. Let us suppose
without loss of generality that pC1 > p∗C1. Since pC1 + pC2 = p∗C1 + p∗C2 = 1, pC2 < p∗C2.

On the other hand, we have that

p2
C1 + p2

C2 −
(

p∗2C1 + p∗2C2

)
= p2

C1 + (1− pC1)
2 −

(
p∗2C1 + (1− p∗C1)

2
)

. (18)

After some calculations, we have that

p2
C1 + p2

C2 −
(

p∗2C1 + p∗2C2

)
= −2pC1 + 2p∗C1 < 0. (19)

Therefore, ∑2
j=1 p2

Cj < ∑2
j=1 p∗2Cj.

The proof of the converse follows similarly.

Theorem 1 cannot be extended to attributes with more than 2 possible values, as the
following example shows.

Example 1. Consider two datasets D and D′, and a common attribute A for both with three
possible values {a, b, c}, such that pa = 0.54, pb = 0.0.01, pc = 0.45, and p′a = 0.25, p′b = 0.05,
p′c = 0.70. In this situation, we have that HS(A,D) = 1.065 < 1.076 = HS(A,D′), but
HT,2(A,D) = 0.506 > 0.445 = HT,2(A,D′).

On the other hand, if we consider the Renyi’s entropy measure when α goes to ∞,
we obtain

HR,∞(AC,D) = − log2(max{pC1, pC2, . . . , pCK}), (20)

and results similar to the above can be proved.
However, all Renyi’s entropy measures are correlated, therefore HS, HR,2, and HR,∞

are also correlated.
In view of the analysis above, the entropy of attribute AC is somehow caught by

the random classifier X and the intuitive classifier V , in the sense that the higher the
entropy, the lower the (expected) number of successes in the classification, and conversely.
Therefore, the random classifier X and the intuitive classifier V can be used as benchmarks
when evaluating other classifiers, taking into account the entropy of the consequent. Next
we define an evaluation measure based on the analysis above.

Definition 1. Let Z be a classifier. Given a dataset D, and a consequent AC, the performance of
Z with respect to the random classifier X is given by

γX (Z(D)) =


µ(Z ,D)−µ(X ,D)

1−µ(X ,D) if µ(Z ,D)− µ(X ,D) ≥ 0

µ(Z ,D)−µ(X ,D)
µ(X ,D) if µ(Z ,D)− µ(X ,D) < 0

, (21)

where µ(X,D) = E(∑M
i=1 X(i))

M , such that M is the total number of predictions, and µ(Z ,D) is the
ratio of correct classifications using classifier (Z).
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Note that the first case of the definition of the performance measure γX coincides
with the Scott’s π. If we use the intuitive classifier V instead of X as benchmark classifier,
we obtain the performance measure γV . The evaluation measure γX (resp. γV ) runs
between −1 and 1, where −1 is the worst case, and is achieved when the classifier does
not predict correctly any instance; 0 means that performance is as the random classifier X
(resp. γV ); and 1 is the best case, and is achieved when the classifier correctly classifies all
instances. The intermediate values measure in which proportion the classifier performs
better (positive values) or worse (negative values) than the random classifier (resp. V).

On the other hand, we can interpret the performance measure γX (resp. γV ) in terms
of proportional reduction of classification error with respect to the random classifier (resp.
V). Indeed, if we predict M instances, we can write Equation (21) as follows:

γX (Z(D)) =


Mµ(Z ,D)−Mµ(X ,D)

M−Mµ(X ,D) if Mµ(Z ,D)−Mµ(X ,D) ≥ 0

Mµ(Z ,D)−Mµ(X ,D)
Mµ(X ,D) if Mµ(Z ,D)−Mµ(X ,D) < 0

. (22)

Now, we can write Equation (22) in the following way:

γX (Z(D)) =


(M−Mµ(X ,D))−(M−Mµ(Z ,D))

M−Mµ(X ,D) if Mµ(Z ,D)−Mµ(X ,D) ≥ 0

Mµ(Z ,D)−Mµ(X ,D)
Mµ(X ,D) if Mµ(Z ,D)−Mµ(X ,D) < 0

. (23)

Finally, Equation (23) can be interpreted as follows:

γX (Z(D)) =


Expected # errors by using X−# errors by using Z

Expected # errors by using X , if Mµ(Z ,D)−Mµ(X ,D) ≥ 0

# successes by using Z−Expected # successes by using X
Expected # successes by using X if Mµ(Z ,D)−Mµ(X ,D) < 0

. (24)

Thus, the first case of γX measures the proportional reduction of classification error
when we use classifier Z with respect to using the random classifier X . The second case of
γX measures the proportional reduction of classification success when we use classifier
Z with respect to using the random classifier X . The same can be said when using the
intutitive classifier V as benchmark.

Therefore, γX gives us information about how much a classifier Z improves or
worsens the classification with respect to a classifier that decides the class randomly taking
into account the frequency distribution of the classes. Furthermore, γX gives us information
about how much a classifier Z improves or worsens the classification with respect to a
classifier that simply predicts the most likely class according to the frequency distribution
of the classes. Since the previous two classifiers only use information related to the classes,
these two measures provide information on whether it is relevant to use more sophisticated
classifiers that incorporate information from other attributes.

On the other hand, the measure γX and γV incorporate in a way the information
on the entropy of the consequent to the evaluation of a classifier, but do not take into
account the rest of the attributes (the antecedents). Nevertheless, a similar analysis can be
carried out by considering all possible different strings of attributes, obtaining analogous
results. On the other hand, the intuitive classification method described in Section 2.2 can
be another way of taking into account all the attributes and the entropy of the dataset, since
its definition is based on the repetition of instances which is related to the entropy of the
dataset. In particular, it is related to the conditional entropy of the attribute AC given the
remaining variables in the dataset. Thus, another measure of evaluation of the classifiers
related to entropy could be to use this intuitive classification method as a benchmark,
its definition being analogous to those previously given. Below we formally outline the
definition of this measure.
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Definition 2. Let Z be a classifier. Given a dataset D, and a consequent AC, the performance of
Z with respect to the intuitive classifier I is given by

Γ(Z(D)) =


µ(Z ,D)−µ(I ,D)

1−µ(I ,D) if µ(Z ,D)− µ(I ,D) ≥ 0

µ(Z ,D)−µ(I ,D)
µ(I ,D) if µ(Z ,D)− µ(I ,D) < 0

, (25)

where µ(I ,D) is the ratio of correct classifications using classifier (I), and µ(Z ,D) is the ratio of
correct classifications using classifier (Z).

The interpretation of Γ is completely analogous to that of γ above, only changing
the random classifier X and the intuitive classifier V for the intuitive classifier I . How-
ever, it gives some extra information about classifiers, in the sense that since it uses all
information in the dataset, it provides information on how much relevant is to use more
sophisticated classifiers.

3. Computer-Based Experiments: Design and Results

In this section, we illustrate how the evaluation measures introduced in Section 2 work.
For that end, we design an experiment in which we consider five scenarios of entropy for a
binary attribute (the consequent), and for each of those scenarios we study 31 combinations
of explanatory attributes (the antecedents). Thus, we can give a better idea about how
these evaluation measures work and how they measure the performance of classifiers in
different entropy situations. We then go further and carry out an extensive comparison for
four classifiers by using 11 different datasets whose results are concisely presented.

3.1. Datasets and Scenarios

We start from the hypothesis of working in a classification context where the target to
be predicted is discrete and more specifically binary, but another multi-class target variable
could be considered. A well-known dataset from UCI Machine Learning Repository [87]
named “thyroid0387.data” [88] has been chosen for the most intensive experiment.

This dataset has been widely used in the literature in problems related to the field of
classification. Since it is only used in this paper as an example and we are not interested
in the clinical topic itself that the data collect, in order to facilitate the experiment of this
study and make it exhaustive, that dataset has been minimally preprocessed as follows:

• Headers have been added and renamed.
• The numeric attributes have been removed and we have left only those which

are nominal.
• The class variable has been recoded in positive and negative cases (the original sample

has several types of positive instances).

Finally, the dataset used to perform the experiment has the following features:

• Number of rows: 9173
• Number of attributes/columns: 23 (all nominal)

– 22 explanatory variables (antecedents)
– 1 target variable (consequent)

* 2401 positive cases
* 6772 negative cases

The target variable used to classify which corresponds to a clinical diagnosis, is
unbalanced, as it has a positive value in 2401 tuples and a negative value in 6772. From
these data we will consider five types of possible scenarios with different ratios between
positive and negative values (see Table 1).
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Table 1. The five data scenarios.

Scenario Positive Negative Total Ratio Positive/Negative Consequent’s Entropy

S1 2400 800 3200 3:1 0.811
S2 2400 1200 3600 2:1 0.918
S3 2400 2400 4800 1:1 1.000
S4 2000 4000 6000 1:2 0.918
S5 2000 6000 8000 1:3 0.811

The remaining 10 datasets used in the most extensive experiment are also from UCI
Machine Learning Repository [87]. The following modifications have been made, common
to all of them.

1. In all the datasets that did not have a row with the header, it has been added, taking
into account the specifications of the “Attribute Information” section of each of these
UCI repository datasets.

2. The configuration in Weka to discretize has been with the parameter “bins” = 5 (to
obtain 5 groups) and the parameter “UseEqualFrecuency” = true (so that the groups
of data obtained were equitable).

3. When discretizing in Weka (filter→unsupervised→discretized) the results obtained
were numerical intervals, so they were later renamed.

In particular, apart from the dataset already mentioned, we have used the following datasets:

• “Healthy_Older_People.data” [89,90];
• “Avila.data” [91,92];
• “Adult.data” [93];
• “nursery.data” [94];
• “Bank marketing” [95,96];
• “HTRU2.data” [97–99];
• “connect-4.data” [100];
• “tic-tac-toe.data” [101];
• “Credit approval.data” [102];
• “Mushroom.data” [103].

The main features of these datasets are summarized in Table 2.

Table 2. Main features of the datasets. # rows means the number of rows of the dataset; # attributes
means the number of attributes including the consequent, and below the type of variables; # classes
is the number of classes of the consequent; and Distribution of the classes is the number of cases of
each class in the dataset.

Dataset # Rows # Attributes # Classes Distribution of the Classes

Thyroid 9173 23 2 2401, 6772
2 categorical

21 binary

Healthy 75,128 10 4 16406, 4911, 51520, 2291
8 real

1 binary
1 categorical

Avila 20,867 11 12 8572, 10, 206, 705,
10 real 2190, 3923, 893, 1039,

1 categorical 1663, 89, 1044, 533
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Table 2. Cont.

Dataset # Rows # Attributes # Classes Distribution of the Classes

Adult 32,561 12 2 7841, 24720
3 real

1 integer
6 categorical

2 binary

Nursery 12,960 9 5 4320, 4266,
8 categorical 24044, 328

1 binary

Bank 45,211 11 2 39922, 5289
1 real

1 integer
5 categorical

4 binary

HTRU2 17,898 9 2 16259, 1639
8 real

1 binary

Connect-4 67,557 43 3 6449, 16635, 44473
43 categorical

Tic-tac-toe 958 10 2 332, 626
9 categorical

1 binary

Credit 690 10 2 383, 307
5 categorical

5 binary

Mushroom 8124 23 2 4208, 3916
17 categorical

6 binary

In addition, some specific preprocessing of the data were carried out in the datasets
“Adult.data” [93] and “Bank marketing” [95,96]. In “Adult.data”, the rows with miss-
ing values were removed, and three attributes were discarded (capital-gain, capital-loss,
native-country); and in “Bank marketing”, the selected dataset was “bank-full.csv”, and
6 attributes were discarded (balance, day, duration, campaign, pdays, and previous).

3.2. Experimental Design

The experiment consists of determining the accuracy of an heuristic classifier, the
already mentioned J48, in comparison with three benchmark classifiers: the random
classifier and two intuitive classifiers. These three classifiers to certain extent contain
information about the entropy present in the dataset as explained in the previous section.
Therefore, we provide evaluation measures of that classifier taking into account the entropy
of the system. In this sense, we try to evaluate how this classifier performs in terms of
the improvement (or deterioration) obtained with respect to three classifiers that can be
considered as benchmarks and that are based on the simple distribution of data from the
dataset, and then on the entropy of the data.

On the other hand, we are also interested in observing the differences between the
three evaluation measures of the classifiers introduced in the previous section, and what
effect, considering more or less information from the dataset, this has when making
classifications of instances. To do this, we consider the five scenarios described in Table 1,
which have different level of Shannon’s entropy in the consequent. For each of these
scenarios, we follow the process depicted in Figure 1.
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First, starting from original sample of data and fixing the consequent variable (or
target variable) AC to be studied, the five variables (attributes) more correlated with the
target variable are selected. Then they are sorted (A1, A2, A3, A4, A5), that is, we determine
which is more correlated with the consequent and which less, for which we use the gain
ratio attribute method described in Section 2.1. In Table 3, we show the gain ratio scores
observed for each of the five scenarios (S1,S2, S3,S4, S5) considered.

Table 3. Results of gain ratio attribute evaluation in the five scenarios.

Attributes S1 S2 S3 S4 S5

A1 0.036 0.050 0.083 0.122 0.102
A2 0.037 0.037 0.082 0.076 0.134
A3 0.033 0.034 0.028 0.020 0.016
A4 0.034 0.032 0.028 0.015 0.013
A5 0.029 0.022 0.026 0.013 0.010

At this point, we would like to emphasize once again that it is not our purpose
to analyze a particular problem, but only to use a dataset for analyzing the evaluation
measures introduced in this paper and also show an analysis of heuristic classifiers when
considering entropy characteristics of the dataset. For this reason, attributes A1, . . . , A5 are
not necessarily the same nor they are in the same order in the five scenarios. We simply
call generically A1 to the attribute best correlated with the target variable in each scenario,
even if it is not the same variable in each of them. Accordingly, the other attributes occupy
second to fifth positions in the correlation ranking with the consecutive attribute in each
scenario, always according to the gain ratio attribute evaluation. In each of the scenarios,
these five attributes will be used as predictor or explanatory variables (antecedents) to
generate the classification models. It is not an objective of this work to delve into the
different methods of features (attributes) subset selection, but we simply use one of them,
always the same (gain ratio attribute), in order to work only with those attributes that in
each case are really significant. Reducing the size of the problem from 22 to 5 explanatory
variables will allow a comprehensive experiment with which to illustrate and analyze the
two introduced evaluation measures, and to show a way to analyze the performance of
an heuristic classifier when we consider different degrees of entropy in the dataset. In
order to select the five best attributes, we use the software Weka [75,82,83], in particular, its
Select attributes function, with GainRatioAttributeEval as the attribute evaluator, ranker as the
search method, and cross-validation as attribution selection mode. Note that Weka gives two
measures of the relevance of the (antecedent) attributes. The average merit and its standard
deviation, and the average rank and its standard deviation. The first refers to the mean of
the correlations measured with GainRatioAttributeEval in 10 cycles (although with 5 cycles
would have been sufficient, since only the first 5 attributes are wanted) of validation fold.
The average rank refers to the average order in which each attribute remained in each of
the ten cycles. See [75,82] for details about Weka.

Once the five best attributed are chosen, the next step is to establish the 31 possi-
ble combinations of the set of predictor variables. These 31 combinations will be the
background to consider in a set of classification rules or in a decision tree. That is, 31 classi-
fication studies will be carried out to predict the consequent attribute AC based on each of
these combinations of explanatory variables (see Table 4).

For each of these attribute combinations we generate 100 subsamples to avoid possible
biases in the selection of records.

Third, for each of the scenarios described (Table 1), for each of the 31 combinations of
antecedent attributes (Table 4), and for each of the 100 random subsamples, classification
models are generated, both with the two intuitive classifiers and with the heuristic method
J48. Thus, we have carried out 15,500 heuristic classification models with the J48 method
as well as with our own implementation of the intuitive classifier I .
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Finally, for both classifiers we calculate their accuracies, from their corresponding con-
fusion matrices by using cross-validation. Therefore, to calculate the success ratio µ(X ,D)
of the random classifier X , we directly use the theoretical result given by Equation (7), and
the same for the intuitive classifier V using Equation (12), while to calculate the success
ratio µ(I ,D) of the intuitive classifier I , we use the confusion matrix obtained by cross-
validation. Likewise, the success ratio µ(Z ,D) of the heuristic classifier, in our case J48, is
also calculated by the confusion matrix obtained by cross-validation. From these results,
the evaluation measures introduced in Section 2.4 can already be calculated.

Table 4. The 31 combinations of the best five attributes A1, A2, A3, A4, and A5 for predicting
consequent AC.

Comb. Antecedents Comb. Antecedents Comb. Antecedents

#1 A5 #12 A2, A3 #23 A1, A3, A4, A5
#2 A4 #13 A2, A3, A5 #24 A1, A2
#3 A4, A5 #14 A2, A3, A4 #25 A1, A2, A5
#4 A3 #15 A2, A3, A4, A5 #26 A1, A2, A4
#5 A3, A5 #16 A1 #27 A1, A2, A4, A5
#6 A3, A4 #17 A1, A5 #28 A1, A2, A3
#7 A3, A4, A5 #18 A1, A4 #29 A1, A2, A3, A5
#8 A2 #19 A1, A4, A5 #30 A1, A2, A3, A4
#9 A2, A5 #20 A1, A3 #31 A1, A2, A3, A4, A5

#10 A2, A4 #21 A1, A3, A5
#11 A2, A4, A5 #22 A1, A3, A4

Therefore, we have an experimental design with two factors (entropy scenarios and
attribute combinations) with 100 replications for each cross combination of factors. This
allows us to analyze in depth how an heuristic classifier performs when we consider both
the entropy of the consequent variable and the number of attributes used as antecedents.

Therefore, the experiment illustrates both how the evaluation measures work and
how to analyze the effects of entropy and the number of selected attributes to predict the
consequent variable in the performance of an heuristic classifier.

3.3. Results

After performing all the classification models described in the previous section for
each of the five scenarios, each model is subjected to a cross-validation test, and confu-
sion matrices are determined. With this information we can calculate some performance
measures for the heuristic classifier J48. The simplest performance measure is accuracy,
which measures the success rate in the prediction. Table 5 shows the accuracy of J48 and
the intuitive classifier I for each of the five scenarios considered.

Table 5. Accuracy measures for the random classifier X , the intuitive classifier V , J48 and the intuitive
classifier I when using combination of attributes A31 for each scenario. The accuracy and the mean
absolute error are calculated as the average accuracy and the average mean absolute error of the
100 subsamples. Results are presented as accuracy ± mean absolute error.

Scenario E(acc(X (D))) acc(V(D)) acc(J48(D)) acc(I(D))

S1 0.6250 0.7500 ± 0.2500 0.7489 ± 0.3739 0.7481 ± 0.2519
S2 0.5556 0.6667 ± 0.3333 0.6724 ± 0.4358 0.6729 ± 0.3271
S3 0.5000 0.5000 ± 0.5000 0.5241 ± 0.4856 0.4835 ± 0.5165
S4 0.5556 0.6667 ± 0.3333 0.6751 ± 0.4366 0.6766 ± 0.3234
S5 0.6250 0.7465 ± 0.2535 0.7543 ± 0.3734 0.7537 ± 0.2487

In Table 5, we observe that, for this dataset, the performance of J48 is on average
slightly better than the performance of the intuitive classifier I , but the mean absolute
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errors for J48 are worse than the mean absolute errors of the intuitive classifier I except for
S5. However, this comparison could be analyzed in more detail considering other aspects
such as the number of times that one method beats the other or the entropy. Likewise, the
improvements with respect to the intuitive classifier V are not too great, which would mean
that either the model is not very good, or that in this specific case the use of information
from other attributes and/or classifiers more sophisticated do not provide noticeable
improvements over the intuitive classifier V .

We now consider that a classifier beats another classifier each time that the first
correctly classifies a number of items from the test set higher than the items correctly
classified by second. When the reverse occurs, we will say that the second classifier beats
the first. When the difference between the items well classified by both methods is 0, we
will say that a draw has occurred. The number of times that J48 and the intuitive classifier
I win for each scenario and each combination of the best five attributes are shown in
Tables A1–A5 in Appendix A. Table 6 summarizes the percentage of times each method
wins for each scenario.

Table 6. Percentage of times each method wins in each of the 3100 instances considered (100 subsam-
ples for each of the 31 combinations of the best five attributes) for each scenario given in Table 1.

Scenario J48 wins V wins J48 wins I wins I wins V wins

S1 10.42 41.71 46.03 23.94 18.39 58.13
S2 67.65 15.65 24.48 37.39 74.90 13.29
S3 97.55 0.16 73.48 4.45 32.52 66.90
S4 78.13 0.26 16.52 42.19 84.52 0.00
S5 98.03 1.23 76.90 15.16 97.29 2.00

Average % 70.36 11.80 47.48 24.63 61.52 28.06

In Table 6, we observe that J48 classifies better than the intuitive method I in 47.48%
of the instances, while the intuitive method I classifies better than J48 in 24.63% of the
instances. J48 classifies particularly better in scenarios S5 and S3, while the intuitive method
I classifies better in scenarios S2 and S4. Moreover, J48 clearly beats the intuitive classifier
V in all scenarios except in S1, while the intuitive method I classifies better than the
intuitive classifier V in scenarios S2, S4 and S5. Therefore, in absolute terms we can say
that J48 performs reasonably well with respect to the dataset used. However, in addition to
knowing whether one method classifies better than another, it is even more relevant to know
how much better it classifies in relative terms as mentioned above. In this sense, having
a benchmark is important to assess how much improvement there is when compared to
it. In Tables A1–A5 in Appendix A, we can find the evaluation measures introduced in
Section 2.4 applied to the average of the results obtained for the 100 subsamples for each
combination of the best attributes when J48 and the intuitive classifier are used. Table 7
summarizes these measures for each of the five scenarios considered.

Table 7. Intervals of values of evaluation measure γX for J48 and the intuitive method I , and intervals of values of
evaluation measure Γ for J48 for each scenario.

Scenario γX (J48) γX (I) γV(J48) γV(I) Γ(J48)

S1 0.3303–0.3333 0.3282–0.3333 −0.0015–0.0000 −0.0025–0.0000 0.0000–0.0032
S2 0.2499–0.2636 0.2498–0.2650 −0.0001–0.0182 −0.0001–0.0200 −0.0009–0.0001
S3 0.0004–0.0492 −0.0903–0.0419 0.0004–0.0492 −0.0903–0.0419 0.0049–0.0844
S4 0.2500–0.2693 0.2500–0.2729 0.0000–0.0257 0.0000–0.0306 −0.0026–0.0004
S5 0.3134–0.3635 0.3125–0.3627 −0.0087–0.0524 −0.0091–0.0512 0.0010–0.0027
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First note that in this case the measure γX coincides in all scenarios with the Scott’s
π. On the other hand, beyond that which was analyzed when we evaluate which method
best classifies simply in terms of the number of successes, in Table 7 we observe that the
performance of J48 and the intuitive classifier I are very similar when compared with
the random classifier X and the intuitive classifier V for each of the scenarios (columns
corresponding to evaluation measures γX and γV ). This is clearly reflected in the evaluation
measure Γ of J48, which is the result of comparison with the intuitive method I (see
Definition 2). We also observe that, for the dataset used in the experiment, the performance
of the classifiers improves with the decrease in the entropy of the consequent, i.e., the lower
the entropy, the higher the performance of both classifiers with respect to the random
classifier X .

Moreover, if we look, for example, at scenario S3, γV (J48) tells us that J48 improves
the performance of the intuitive classifier V , which only uses the information provided by
the frequency distribution of the target attribute, by as much as 5% using the information
provided by attributes other than the target attribute. Therefore, this percentage can be
interpreted as the exploitation that J48 makes of this additional information. If we now
look at Γ(J48), then we see that this improvement reaches almost 8.5% with respect to the
intuitive classifier I . This percentage can be interpreted as the better exploitation that J48
makes of the information than the intuitive classifier I . At this point, one could already
assess, taking into account the practical implications of better performance, whether the
use of a more sophisticated classifier than the two intuitive classifiers is worth it.

Therefore, comparison with a benchmark is important because performance measures
often do not reflect what is actually gained with respect to a simple, even random, way
of classifying. Therefore, the use of measures based on simple benchmark classifiers that
somehow capture the entropy of the dataset seems appropriate and provides relevant
information on the performance of the classifiers. In particular, the use of both intuitive
classifiers as benchmark seems reasonable, because although as classifiers they have been
discarded in favor of other classifiers that use more modern and elaborate technologies,
they are still easy enough to understand and intuitive as to at least consider them as
benchmark classifiers when measuring the performance of classifiers, as the random
classifier is commonly used in machine learning.

3.4. Extensive Experiment

In this subsection we present the results of an extensive experiment in which we
consider four heuristic classifiers besides the intuitive classifier I , and 11 datasets. In
particular, we consider four classification algorithms implemented in Weka [75,81–83], J48,
Naïve Bayes, SMO, and Random Forest, which have been briefly described in Section 2.3;
and 11 datasets from UCI Machine Learning Repository [87] which have been described
in Section 3.1.

The purpose of this extensive analysis is to check whether the results obtained in the
previous experiment are repeated for other classifiers and other datasets. The first step in
all cases is to select the 5 most relevant attributes by using the feature selection method
described in Section 2.1. The results are shown in Table 8.

Then the five classifiers are applied with the selection of attributes in Table 8. We
calculate their accuracies, from their corresponding confusion matrices by using cross-
validation. The resulting accuracies for each classifier and dataset are shown in Table 9.
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Table 8. The five most relevant attributes of each dataset according to Gain Ratio Attribute Evaluation (see Section 2.1).

# Dataset 1st 2nd 3rd 4th 5th

1 Thyroid hypopit. pregnant psych goitre referral_
source

2 Healthy C4 C3 C6 C5 C7
3 Avila F5 F1 F9 F3 F7
4 Adult Mar.Sta. Relat. Sex Age Educ
5 Nursery F2 F1 F7 F5 F4
6 Bank poutcome contact housing month loan
7 HTRU2 A3 A1 A4 A6 A5
8 Connect-4 g6 d3 f6 d2 b6
9 Tic-tac-toe m-m-s b-l-s t-l-s t-r-s b-r-s

10 Credit A9 A10 A4 A5 A6
11 Mushroom odor gill-size stalk-surface- spore-print- ring-type

above-ring color

Table 9. Accuracies and mean absolute errors for the five classifiers and the 11 datasets. Results are presented as accuracy ±
mean absolute error.

# Dataset I J48 SMO Naïve Bayes Random Forest

1 Thyroid 0.743 ± 0.257 0.744 ± 0.381 0.743 ± 0.257 0.741 ± 0.373 0.743 ± 0.374
2 Healthy 0.953 ± 0.024 0.963 ± 0.030 0.949 ± 0.255 0.935 ± 0.042 0.963 ± 0.028
3 Avila 0.653 ± 0.058 0.666 ± 0.074 0.600 ± 0.141 0.610 ± 0.087 0.657 ± 0.069
4 Adult 0.825 ± 0.175 0.824 ± 0.250 0.818 ± 0.182 0.763 ± 0.240 0.824 ± 0.236
5 Nursery 0.508 ± 0.197 0.548 ± 0.224 0.508 ± 0.265 0.531 ± 0.233 0.508 ± 0.224
6 Bank 0.885 ± 0.115 0.894 ± 0.186 0.893 ± 0.107 0.890 ± 0.175 0.893 ± 0.167
7 HTRU2 0.971 ± 0.029 0.971 ± 0.049 0.969 ± 0.031 0.969 ± 0.050 0.971 ± 0.048
8 Connect-4 0.658 ± 0.228 0.665 ± 0.313 0.665 ± 0.318 0.663 ± 0.318 0.665 ± 0.311
9 Tic-tac-toe 0.801 ± 0.193 0.794 ± 0.258 0.753 ± 0.247 0.753 ± 0.374 0.840 ± 0.209
10 Credit 0.859 ± 0.141 0.862 ± 0.220 0.858 ± 0.142 0.861 ± 0.193 0.848 ± 0.199
11 Mushroom 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.001 0.999 ± 0.020 1.000 ± 0.000

In Tables 10 and 11, we present the results obtained when γX and γX are used as
evaluation performance measure.

As we mentioned before, we know that the γX measure is close related to the κ and π
measures. In Tables 10 and 11, we observe that a higher entropy in the consequent attribute
does not mean a worse performance of the classifiers [70]. This is not surprising since all
classifiers use not only the frequency distribution information of the consequent attribute,
but also the information provided about it by the remaining attributes in the dataset.
Therefore, it seems appropriate to use the entropy of the entire dataset as a reference when
assessing the performance of the classifiers. This entropy is somehow captured by the
intuitive classifier I as explained earlier. In Table 12, we present the results obtained when
Γ is used as evaluation performance measure.

The intuitive classifier I will have better accuracy the lower the conditional entropy
of the target attribute given the entire dataset (or the subset of selected attributes if a
selection feature is previously carried out), therefore, it will be more difficult for a classifier
to significantly improve the classification results of this intuitive classifier. On the other
hand, it is necessary to emphasize that the selection of the best subset of attributes has
been relevant throughout the classification process, since the method used is based on the
reduction of entropy. In this sense, Γ would measure how much a classifier contributes to
the complete classification procedure with respect to what is contributed by the attribute
selection process. Therefore, Γ offers different information than other performance mea-
sures of the classifiers, which we consider to be interesting. The aim, therefore, is not to
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substitute for any known performance measure, but to provide a measure of a different
aspect of the performance of a classifier.

Table 10. Evaluation measure γX for the five classifiers and the 11 datasets, and [0, 1]-normalized
Shannon entropy of the consequent attribute for each dataset.

# Dataset Entropy γX (I) γX (J48) γX (SMO) γX (NB) γX (RF)

1 Thyroid 0.829 0.335 0.338 0.335 0.330 0.335
2 Healthy 0.632 0.901 0.922 0.893 0.864 0.922
3 Avila 0.737 0.549 0.566 0.480 0.493 0.554
4 Adult 0.796 0.521 0.519 0.502 0.352 0.519
5 Nursery 0.739 0.279 0.338 0.279 0.313 0.279
6 Bank 0.521 0.443 0.487 0.482 0.468 0.482
7 HTRU2 0.442 0.826 0.826 0.814 0.814 0.826
8 Connect-4 0.769 0.312 0.326 0.326 0.322 0.326
9 Tic-tac-toe 0.931 0.561 0.545 0.455 0.455 0.647

10 Credit 0.991 0.715 0.721 0.713 0.719 0.692
11 Mushroom 0.999 1.000 1.000 0.998 0.998 1.000

Table 11. Evaluation measure γV for the five classifiers and the 11 datasets, and the accuracy of the
intuitive classifier X .

# Dataset acc(V ) γV(I) γV(J48) γV(SMO) γV(NB) γV(RF)

1 Thyroid 0.738 0.018 0.022 0.018 0.011 0.018
2 Healthy 0.686 0.850 0.882 0.838 0.793 0.882
3 Avila 0.411 0.411 0.433 0.321 0.338 0.418
4 Adult 0.759 0.273 0.269 0.244 0.016 0.269
5 Nursery 0.333 0.262 0.322 0.262 0.297 0.262
6 Bank 0.883 0.017 0.094 0.085 0.060 0.085
7 HTRU2 0.908 0.683 0.683 0.661 0.661 0.683
8 Connect-4 0.658 0.000 0.020 0.020 0.014 0.020
9 Tic-tac-toe 0.653 0.426 0.406 0.287 0.287 0.538

10 Credit 0.555 0.683 0.690 0.681 0.688 0.658
11 Mushroom 0.518 1.000 1.000 0.998 0.998 1.000

Table 12. Evaluation measure Γ for the four heuristic classifiers and the 11 datasets.

# Dataset Γ(J48) Γ(SMO) Γ(NB) Γ(RF)

1 Thyroid 0.004 0.000 −0.003 0.000
2 Healthy 0.213 −0.004 −0.019 0.213
3 Avila 0.037 −0.081 −0.066 0.012
4 Adult −0.001 −0.008 −0.075 −0.001
5 Nursery 0.081 0.000 0.047 0.000
6 Bank 0.078 0.070 0.043 0.070
7 HTRU2 0.000 −0.002 −0.002 0.000
8 Connect-4 0.020 0.020 0.015 0.020
9 Tic-tac-toe −0.009 −0.060 −0.060 0.196

10 Credit 0.021 −0.001 0.014 −0.013
11 Mushroom 0.000 −0.001 −0.001 0.000

Finally, in Tables 11 and 12, we observe that performance measures γV and Γ provide
complementary information about classifiers. In Table 11, we can observe how each
classifier takes advantage of the information provided by the attributes in the dataset to
better classify the target attribute, while in Table 12 we can observe how much better than
the intuitive classifier I are classifiers capable of using the information in the dataset to
correctly predict the classes of the target attribute.
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4. Discussion and Conclusions

In the experiment we have shown that both feature selection and the entropy of
the consequent attribute may be relevant to the performance result of an algorithm of
classification. Therefore, it would appear to be of interest to consider the diversity of the
response variable or the dataset when evaluating a classifier. In addition, the effect of
entropy is observed, in the sense that the lower the entropy, the higher the success rate
in the classifications, which seems intuitively reasonable. On the other hand, we observe
in the experiment that choosing a greater number of features does not always provide a
better performance of the classification algorithm, so this kind of analysis is relevant when
selecting an adequate number of features, above all when the feature selection algorithm
has not used the classifier algorithm for optimal selection. A rigorous analysis of the latter
can be found in [104].

The performance measures of classifiers which only use the results of the classification
algorithm itself, such as the ratio of successes (accuracy), do not really provide information
on how it is really capable of classifying correctly with respect to unsophisticated methods.
For this reason, the use of relative measures when compared with simple benchmark
classifiers is important, because they give us information about the relationship between
the gain in the correct classification of instances and the effort made in the design of new
classifiers with respect to the use of simple and intuitive classifiers, i.e., we can better assess
the real improvement provided by the classification algorithm. Moreover, if the benchmark
classifier incorporates some type of additional information, such as different aspects of
the entropy of all the dataset or the consequent attribute, the information provided by the
performance measure will be even more relevant.

In this paper, three simple classifiers have been used, the random classifier X , the
intuitive classifier V , and the intuitive classifier I . The first two simply use the distribution
of the consequent attribute to classify and we have shown that they are closely related to
the entropy of that attribute, while the third uses the entire distribution of the whole data
set to classify and its performance is close to the conditional entropy of the consequent
attribute given the remaining attributes (or a subset of attributes if feature selection is
previously applied) in the dataset . These three classifiers have been used as references
to introduce three measures of the performance of classifiers. These measure how much
a classifier improves (or worsens) over these simple classifiers that are related to certain
aspects of the entropy of the consequent attribute within the dataset. Therefore, they are
measures that reflect on the performance of the heuristic classifiers, taking into account
entropy in some way, and this is important, because the greater the entropy, the greater
the difficulty to classify correctly, as has been seen in the experiment, which gives a better
idea of the true performance of a classifier. Likewise, the three performance measures
of classifiers can be interpreted in terms of proportional reduction of the classification
error, which makes these measures easily understandable. In particular, γX is closely
related to the well-known κ and π measures, and provides information on how much
a classifier improves the classification results relative to a random classifier that it only
takes into account the information contained in the frequency distribution of the target
attribute classes. γV gives information on how a classifier is capable to use the information
contained in the whole dataset (or a subset of the dataset) to improve the classification
results relative to a classifier that it only uses the information of the frequency distribution
of the target attribute classes and always predicts the most likely class. Last, Γ provides
information on how much a classifier improves the classification results when using a more
elaborate technology of managing data than the intuitive classifier I which simply predicts
the most likely class given a particular profile of attributes in the dataset.

To conclude, although the two intuitive classifiers used in this paper were already
discarded in favor of more modern and sophisticated classifiers, we believe that they are
still useful as benchmark classifiers, as the random classifier is commonly used in machine
learning, and then to design performance measures based on them which we have shown
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throughout this work that provide relevant information about the performance of classifiers
different from other performance measures.
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Appendix A. Tables

Table A1. Scenario S1, 3.200 rows, 3:1 ratio of positive/negative values for target variable, 100 subsamples per combination,
and the gain ratio attribute evaluations of the five best variables are 0.036, 0.037, 0.033, 0.034, and 0.029 (from most to
least relevant).

Comb. Antecedents J48 wins I wins γX (J48) Γ(J48) γX (I) γV (J48) γV (I)

#1 5 45 10 0.3328 0.0019 0.3316 −0.0003 −0.0009
#2 4 39 33 0.3326 0.0003 0.3324 −0.0004 −0.0005
#3 45 56 28 0.3320 0.0022 0.3306 −0.0007 −0.0014
#4 3 39 16 0.3318 0.0024 0.3301 −0.0008 −0.0016
#5 35 55 33 0.3314 0.0031 0.3294 −0.0010 −0.0020
#6 34 57 30 0.3311 0.0029 0.3291 −0.0011 −0.0021
#7 345 56 34 0.3305 0.0032 0.3284 −0.0014 −0.0025
#8 2 0 0 0.3333 0.0000 0.3333 0.0000 0.0000
#9 25 45 10 0.3328 0.0019 0.3316 −0.0003 −0.0009

#10 24 44 28 0.3326 0.0005 0.3322 −0.0004 −0.0006
#11 245 61 26 0.3321 0.0025 0.3304 −0.0006 −0.0015
#12 23 47 24 0.3316 0.0021 0.3302 −0.0009 −0.0016
#13 235 55 36 0.3312 0.0027 0.3294 −0.0011 −0.0020
#14 231 56 32 0.3307 0.0024 0.3291 −0.0013 −0.0021
#15 2345 58 33 0.3303 0.0030 0.3282 −0.0015 −0.0025
#16 1 0 0 0.3333 0.0000 0.3333 0.0000 0.0000
#17 15 45 10 0.3328 0.0019 0.3316 −0.0002 −0.0009
#18 14 40 32 0.3326 0.0004 0.3324 −0.0004 −0.0005
#19 145 57 27 0.3321 0.0023 0.3306 −0.0006 −0.0014
#20 13 39 16 0.3318 0.0024 0.3301 −0.0008 −0.0016
#21 135 53 33 0.3312 0.0028 0.3294 −0.0011 −0.0020
#22 134 55 31 0.3310 0.0028 0.3291 −0.0012 −0.0021
#23 1345 58 33 0.3305 0.0032 0.3284 −0.0014 −0.0025
#24 12 0 0 0.3333 0.0000 0.3333 0.0000 0.0000
#25 125 45 10 0.3328 0.0019 0.3316 −0.0003 −0.0009
#26 124 44 28 0.3327 0.0007 0.3322 −0.0003 −0.0006
#27 1245 62 25 0.3321 0.0025 0.3304 −0.0006 −0.0015
#28 123 47 24 0.3316 0.0022 0.3302 −0.0009 −0.0016
#29 1235 55 35 0.3311 0.0026 0.3294 −0.0011 −0.0020
#30 1234 57 31 0.3308 0.0026 0.3291 −0.0013 −0.0021
#31 12345 57 34 0.3303 0.0031 0.3282 −0.0015 −0.0025

Total 1427 742
% 46.03 23.94

https://archive.ics.uci.edu/ml/index.php
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Table A2. Scenario S2, 3.600 rows, 2:1 ratio of positive/negative values for target variable, 100 subsamples per combination,
and the gain ratio attribute evaluations of the five best variables are 0.050, 0.037, 0.034, 0.032, and 0.022 (from most to
least relevant).

Comb. Antecedents J48 wins I wins γX (J48) Γ(J48) γX (I) γV(J48) γV(I)
#1 5 38 35 0.2499 0.0000 0.2498 −0.0001 −0.0001
#2 4 7 34 0.2526 −0.0004 0.2532 0.0034 0.0043
#3 45 35 45 0.2525 −0.0003 0.2530 0.0034 0.0041
#4 3 1 12 0.2611 −0.0004 0.2617 0.0148 0.0156
#5 35 43 34 0.2604 −0.0002 0.2607 0.0139 0.0143
#6 34 6 41 0.2636 −0.0008 0.2649 0.0182 0.0198
#7 345 33 54 0.2625 −0.0008 0.2638 0.0167 0.0184
#8 2 1 0 0.2500 0.0000 0.2500 0.0000 0.0000
#9 25 38 35 0.2499 0.0000 0.2498 −0.0001 −0.0001

#10 24 31 34 0.2524 −0.0003 0.2529 0.0032 0.0038
#11 245 41 46 0.2523 −0.0003 0.2527 0.0030 0.0036
#12 23 9 46 0.2612 −0.0007 0.2623 0.0150 0.0163
#13 235 37 48 0.2605 −0.0005 0.2612 0.0140 0.0150
#14 231 26 59 0.2636 −0.0009 0.2650 0.0181 0.0200
#15 2345 34 57 0.2628 −0.0008 0.2640 0.0171 0.0187
#16 1 0 0 0.2500 0.0000 0.2500 0.0000 0.0000
#17 15 38 35 0.2499 0.0000 0.2498 −0.0001 −0.0001
#18 14 7 34 0.2525 −0.0004 0.2532 0.0034 0.0043
#19 145 33 47 0.2524 −0.0004 0.2530 0.0032 0.0041
#20 13 1 12 0.2612 −0.0004 0.2617 0.0149 0.0156
#21 135 43 34 0.2605 −0.0002 0.2607 0.0140 0.0143
#22 134 6 41 0.2636 −0.0008 0.2649 0.0182 0.0198
#23 1345 36 51 0.2628 −0.0007 0.2638 0.0170 0.0184
#24 12 0 0 0.2500 0.0000 0.2500 0.0000 0.0000
#25 125 38 35 0.2499 0.0001 0.2498 −0.0001 −0.0001
#26 124 31 34 0.2524 −0.0003 0.2529 0.0032 0.0038
#27 1245 41 46 0.2523 −0.0002 0.2527 0.0031 0.0036
#28 123 9 45 0.2612 −0.0007 0.2623 0.0150 0.0163
#29 1235 37 48 0.2605 −0.0005 0.2612 0.0140 0.0150
#30 1234 25 60 0.2636 −0.0009 0.2650 0.0182 0.0200
#31 12345 34 57 0.2628 −0.0008 0.2640 0.0170 0.0187

Total 759 1159
% 24.48 37.39

Table A3. Scenario S3, 4.800 rows, 1:1 ratio of positive/negative values for target variable, 100 subsamples per combination,
and the gain ratio attribute evaluations of the five best variables are 0.083, 0.082, 0.028, 0.028, and 0.026 (from most to
least relevant).

Comb. Antecedents J48 wins I wins γX (J48) Γ(J48) γX (I) γV(J48) γV(I)
#1 5 72 1 0.0365 0.0390 −0.0026 0.0365 −0.0026
#2 4 100 0 0.0076 0.0839 −0.0833 0.0076 −0.0833
#3 45 33 0 0.0448 0.0173 0.0279 0.0448 0.0279
#4 3 100 0 0.0067 0.0842 −0.0846 0.0067 −0.0846
#5 35 49 4 0.0417 0.0259 0.0161 0.0417 0.0161
#6 34 100 0 0.0140 0.0833 −0.0756 0.0140 −0.0756
#7 345 18 5 0.0492 0.0076 0.0419 0.0492 0.0419
#8 2 18 0 0.0323 0.0070 0.0255 0.0323 0.0255
#9 25 100 0 0.0343 0.0797 −0.0493 0.0343 −0.0493

#10 24 60 11 0.0324 0.0253 0.0074 0.0324 0.0074
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Table A3. Cont.

Comb. Antecedents J48 wins I wins γX (J48) Γ(J48) γX (I) γV(J48) γV(I)
#11 245 100 0 0.0436 0.0806 −0.0402 0.0436 −0.0402
#12 23 57 0 0.0323 0.0235 0.0090 0.0323 0.0090
#13 235 100 0 0.0399 0.0805 −0.0441 0.0399 −0.0441
#14 231 86 2 0.0324 0.0470 −0.0153 0.0324 −0.0153
#15 2345 99 0 0.0487 0.0781 −0.0319 0.0487 −0.0319
#16 1 100 0 0.0004 0.0832 −0.0903 0.0004 −0.0903
#17 15 77 0 0.0372 0.0433 −0.0064 0.0372 −0.0064
#18 14 100 0 0.0075 0.0838 −0.0832 0.0075 −0.0832
#19 145 37 0 0.0448 0.0190 0.0262 0.0448 0.0262
#20 13 100 0 0.0071 0.0844 −0.0845 0.0071 −0.0845
#21 135 50 4 0.0417 0.0274 0.0147 0.0417 0.0147
#22 134 100 0 0.0140 0.0832 −0.0755 0.0140 −0.0755
#23 1345 19 5 0.0492 0.0081 0.0414 0.0492 0.0414
#24 12 15 45 0.0325 0.0049 0.0277 0.0325 0.0277
#25 125 100 0 0.0345 0.0795 −0.0489 0.0345 −0.0489
#26 124 55 28 0.0328 0.0216 0.0115 0.0328 0.0115
#27 1245 100 0 0.0436 0.0811 −0.0407 0.0436 −0.0407
#28 123 49 23 0.0327 0.0192 0.0138 0.0327 0.0138
#29 1235 100 0 0.0399 0.0807 −0.0443 0.0399 −0.0443
#30 1234 84 10 0.0325 0.0437 −0.0117 0.0325 −0.0117
#31 12345 100 0 0.0482 0.0786 −0.0331 0.0482 −0.0331

Total 2278 138
% 73.48 4.45

Table A4. Scenario S4, 6.000 rows, 1:2 ratio of positive/negative values for target variable, 100 subsamples per combination,
and the gain ratio attribute evaluations of the five best variables are 0.122, 0.076, 0.02, 0.015, and 0.013 (from most to
least relevant).

Comb. Antecedents J48 wins I wins γX (J48) Γ(J48) γX (I) γV(J48) γV(I)
#1 5 10 19 0.2652 −0.0004 0.2659 0.0203 0.0212
#2 4 0 0 0.2500 0.0000 0.2500 0.0000 0.0000
#3 45 13 20 0.2653 −0.0004 0.2658 0.0204 0.0211
#4 3 0 0 0.2500 0.0000 0.2500 0.0000 0.0000
#5 35 28 18 0.2651 −0.0003 0.2655 0.0202 0.0207
#6 34 0 0 0.2500 0.0000 0.2500 0.0000 0.0000
#7 345 30 20 0.2651 −0.0002 0.2655 0.0201 0.0206
#8 2 0 0 0.2686 0.0000 0.2686 0.0248 0.0248
#9 25 23 76 0.2686 −0.0022 0.2720 0.0248 0.0293

#10 24 0 38 0.2692 −0.0002 0.2695 0.0256 0.0260
#11 245 21 78 0.2691 −0.0025 0.2728 0.0254 0.0305
#12 23 76 8 0.2686 0.0004 0.2684 0.0248 0.0245
#13 235 23 76 0.2685 −0.0020 0.2715 0.0247 0.0287
#14 231 46 40 0.2692 0.0000 0.2692 0.0256 0.0256
#15 2345 24 76 0.2690 −0.0022 0.2723 0.0254 0.0298
#16 1 0 47 0.2501 −0.0002 0.2505 0.0001 0.0006
#17 15 8 28 0.2653 −0.0004 0.2660 0.0204 0.0213
#18 14 0 47 0.2501 −0.0002 0.2505 0.0001 0.0006
#19 145 11 30 0.2653 −0.0004 0.2659 0.0204 0.0212
#20 13 0 47 0.2501 −0.0002 0.2505 0.0001 0.0006
#21 135 24 25 0.2651 −0.0003 0.2656 0.0202 0.0208
#22 134 0 47 0.2501 −0.0002 0.2505 0.0001 0.0006
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Table A4. Cont.

Comb. Antecedents J48 wins I wins γX (J48) Γ(J48) γX (I) γV(J48) γV(I)
#23 1345 27 27 0.2651 −0.0003 0.2656 0.0202 0.0207
#24 12 0 47 0.2687 −0.0002 0.2691 0.0250 0.0254
#25 125 21 76 0.2686 −0.0023 0.2721 0.0247 0.0295
#26 124 0 69 0.2693 −0.0004 0.2699 0.0257 0.0266
#27 1245 18 80 0.2689 −0.0026 0.2729 0.0253 0.0306
#28 123 41 47 0.2687 −0.0001 0.2688 0.0250 0.0251
#29 1235 22 76 0.2685 −0.0020 0.2716 0.0247 0.0288
#30 1234 24 69 0.2693 −0.0002 0.2697 0.0257 0.0262
#31 12345 22 77 0.2691 −0.0022 0.2724 0.0254 0.0299

Total 512 1308
% 16.52 42.19

Table A5. Scenario S5, between 7820 and 7940 rows, 1:3 ratio of positive/negative values for target variable, 100 subsamples
per combination, and the gain ratio attribute evaluations of the five best variables are 0.102, 0.134, 0.016, 0.013, and 0.010
(from most to least relevant).

Comb. Antecedents J48 wins I wins γX (J48) Γ(J48) γX (I) γV(J48) γV(I)
#1 5 59 41 0.3336 0.0013 0.3327 0.0191 0.0179
#2 4 81 0 0.3339 0.0016 0.3328 0.0181 0.0165
#3 45 59 41 0.3234 0.0012 0.3226 −0.0003 −0.0007
#4 3 81 0 0.3288 0.0016 0.3277 0.0090 0.0074
#5 35 59 41 0.3209 0.0012 0.3201 −0.0022 −0.0026
#6 34 81 0 0.3187 0.0016 0.3176 −0.0037 −0.0043
#7 345 59 41 0.3310 0.0012 0.3302 0.0141 0.0129
#8 2 73 10 0.3187 0.0012 0.3179 −0.0039 −0.0043
#9 25 59 41 0.3234 0.0012 0.3226 −0.0003 −0.0007

#10 24 73 10 0.3338 0.0012 0.3330 0.0190 0.0178
#11 245 59 41 0.3209 0.0012 0.3201 −0.0020 −0.0024
#12 23 74 9 0.3263 0.0012 0.3254 0.0041 0.0028
#13 235 59 41 0.3109 0.0012 0.3101 −0.0087 −0.0091
#14 231 74 9 0.3313 0.0013 0.3305 0.0146 0.0133
#15 2345 59 41 0.3234 0.0012 0.3226 −0.0006 −0.0010
#16 1 80 1 0.3462 0.0015 0.3452 0.0377 0.0363
#17 15 89 10 0.3331 0.0023 0.3316 0.0112 0.0089
#18 14 93 1 0.3438 0.0020 0.3425 0.0319 0.0300
#19 145 89 9 0.3384 0.0026 0.3366 0.0220 0.0194
#20 13 75 4 0.3424 0.0014 0.3414 0.0291 0.0277
#21 135 93 5 0.3397 0.0026 0.3380 0.0239 0.0214
#22 134 89 4 0.3246 0.0016 0.3235 −0.0018 −0.0024
#23 1345 95 3 0.3398 0.0027 0.3380 0.0240 0.0214
#24 12 74 9 0.3541 0.0013 0.3532 0.0524 0.0512
#25 125 89 8 0.3232 0.0024 0.3215 −0.0026 −0.0034
#26 124 84 9 0.3336 0.0015 0.3326 0.0124 0.0109
#27 1245 89 8 0.3308 0.0026 0.3290 0.0070 0.0044
#28 123 70 13 0.3347 0.0010 0.3341 0.0141 0.0131
#29 1235 91 5 0.3346 0.0025 0.3330 0.0144 0.0119
#30 1234 81 11 0.3398 0.0013 0.3390 0.0236 0.0223
#31 12345 94 4 0.3447 0.0025 0.3431 0.0343 0.0319

Total 2384 470
% 76.90 15.16
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