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Abstract: We propose the first correct special-purpose quantum circuits for preparation of Bell
diagonal states (BDS), and implement them on the IBM Quantum computer, characterizing and
testing complex aspects of their quantum correlations in the full parameter space. Among the circuits
proposed, one involves only two quantum bits but requires adapted quantum tomography routines
handling classical bits in parallel. The entire class of Bell diagonal states is generated, and several
characteristic indicators, namely entanglement of formation and concurrence, CHSH non-locality,
steering and discord, are experimentally evaluated over the full parameter space and compared
with theory. As a by-product of this work, we also find a remarkable general inequality between
“quantum discord” and “asymmetric relative entropy of discord”: the former never exceeds the latter.
We also prove that for all BDS the two coincide.
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1. Introduction

The field of quantum computing offers an entirely new paradigm of computation
which promises significant asymptotic speedups over classical computers for certain prob-
lems [1-4] as well as new kinds of highly secure cryptographic protocols [5-7]. At the
foundation of this new field lies the theory of quantum information which, among other
things, provides insight into the structure of the state space of a system of many qubits
as well as ways to characterize and mitigate noise. Technological progress is impressive,
providing publicly available programmable quantum platforms with a dozen qubits such
as IBM Quantum Experience (IBM Q, see [8]). Recently a team at Google and NASA
demonstrated the thrilling superior performance of a 53-qubit quantum processor called
Sycamore [9], and claimed to achieve quantum supremacy (see also [10-12] for criticisms).

Bell states are archetypal examples of entangled two-qubit pure quantum states.
Statistical mixtures of Bell states are called Bell diagonal states (BDS). They form a very
interesting restricted class of states among the space of mixed two-qubit states. In particular,
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in the general space of mixed two-qubit states, they have been identified as one of the main
canonical equivalence classes remaining invariant under local filtering operations [13-16].
Despite their relative simplicity, BDS display a rich variety of correlations, and have played
a crucial role in the theory of quantum information. Because they form a representative
three-dimensional subspace of the full 15-dimensional space of two-qubit mixed states, they
are often used as a testing ground for measures of quantum correlation, such as entropic
measures [17] or quantum discord [18]. Indeed, progress in quantum information theory
led physicists to think about measures of quantum correlations beyond entanglement [19].
During recent decades the nature of entanglement has been the subject of an ever-increasing
number of studies, not only because of its intriguing nature related to Bell inequality
violations, but also because of its formerly unsuspected complexity, in particular concerning
quantum mixtures [20]. The concept of entanglement which seems trivial for bipartite
pure states was found difficult to characterize for quantum mixtures, because of the lack of
universal entanglement measure [20]. Further daunting complexities were found in the case
with more than two parties, since inequivalent classes of entanglement under LOCC (Local
Operations and Classical Communication) manipulation could be defined [21]. Further
surprises came when the encompassing subject of quantum versus classical correlations
was found to be distinct from the entanglement/separability paradigm, and various notions
of discord were introduced [18,22-26]. Indeed, separable mixed states can still exhibit
useful quantum correlations, even for only two parties. Another previously overlooked
concept is steering, the property to steer a quantum state from another location, and it was
found to be an even more subtle notion (precisely formalized for the first time in [27,28]).
Steering is intermediate between non-separability and Bell non-locality, and has duly
attracted considerable attention (see [29] for a recent review). A rewarding consequence of
all these discoveries about entanglement and quantum correlations is that most of them
prove useful for specific quantum tasks [20,26].

BDS are especially interesting in the context of calculating quantum correlations be-
cause these in many cases have an analytical expression. For instance, the “quantum
discord” of BDS and so-called X states [30-33] has been calculated, and, as it will be shown,
for BDS it coincides with “asymmetric relative entropy of discord”. The computation of
such correlations is essential in quantum information theory, to classify systems according
to the extent they exhibit non-classical behavior. In particular, one application of these ideas
is the problem of witnessing non-classicality of inaccessible objects [34]. Moreover, experi-
mental computations of such correlations for BDS have been reported. For instance [35,36]
detected a certain amount of quantum discord in magnetic resonance experiments, demon-
strating the existence of non-classical correlations without entanglement. Another type of
non-classical correlations, first quantum steering, has been observed experimentally [37,38],
as well as negativity of entanglement [39].

We propose here the first correct special-purpose quantum circuit for preparation of
any arbitrary BDS on quantum computers. Indeed, the previous proposal of Pozzobom
and Maziero [40] falls clearly short of this goal, since it is impossible to cover the intended
three-dimensional space of target states with only two parameters. In this work, we
present two new circuits, either of which enables the preparation of any BDS, and provide
implementations in Qiskit [41]. Furthermore, while the original circuit [40] uses four
qubits, we show how the task can also be accomplished with only two qubits using
unread measurements. The latter requires certain amendments to the standard quantum
tomography procedure in Qiskit. The two-qubit circuits rely on post-measurement gates
and classically conditioned measurements, which are currently unsupported on IBM Q
devices. As such, they highlight the importance of continuing the development of hardware
features for quantum computers.

The paper is structured as follows. After introducing BDS and its relevant subset
called Werner states (WS) in Section 2, we propose a parameterization of the whole set of
BDS allowing their generation by four-qubit and two-qubit circuits in Section 3. Section 4
details the implementation of the circuits with Qiskit [41], notably for two-qubit circuits
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which require new tomography functions. Entanglement of formation and concurrence,
CHSH non-locality, steering and discord are reviewed and reexamined in Section 5, and
visualized for BDS. In the last section Section 6 we study on the IBM Q platform the
achievable fidelity for Werner states, as well as classical correlations, mutual information
and discord for BDS. Results of simulations on the IBM Q simulator with noise models for
real devices, as well experimental results on real devices are reported and discussed.

2. Bell Diagonal and Werner States and Their Properties

Bell states are defined as maximally entangled basis states of the two-qubit Hilbert
space H = C2 @ C%

_ [00) +[11) _ |00) —[11)
|Boo) = 7 |B10) = — "
|Bor) = [0 + [10) |B1) = [ - 19)

V2 V2

where |ij) = |i) ®|j) (i,j € {0,1}) is the tensor product basis. They are maximally
entangled in the sense of entanglement entropy, which is a quantity defined for any pure
bipartite state p = |¢)(ip| of two quantum systems A and B as

E(|$)) = S(pa)/In2 = S(op)/In2 @

where S(p) = —Tr{pInp} is the Von Neumann entropy and p4,5 = Trp,4(p) are the
reduced density matrices of the two subsystems. As is well known Schmidt’s theorem im-
plies that their entropies are equal. A pure Bell state has maximal entropy of entanglement
1 since its reduced density matrix is always 11, 1 being the 2 x 2 identity matrix, while a
pure product state has vanishing entropy of entanglement.

By definition, the larger class of Bell diagonal states (BDS) is the set of mixed states
that are diagonal in the Bell basis, i.e., those given by density operators of the form

1
=Y. pilBix)Bixl 3)
=

where { p]-k}]l- «_o is a set of probabilities summing to 1.
Any two-qubit density matrix can be expanded based on products of Pauli matrices
0j, j =1,2,3 completed by the identity matrix 1

1 3
P:4(]l®]l+f'0'®]1+]l®s'0'+ Z tnmo'n®0'm> 4)

n,m=1

wherer -0 = 2?21 r;0; is the usual scalar product. Among the 15 real expansion parameters
we find two vectors r and s in R? corresponding to the marginal density matrices, and a
3 x 3 pure correlation matrix T (matrix elements t,,,). Thus, states with maximally mixed
marginals such as BDS fulfill the conditions r = 0 and s = 0. Such states are, up to suitable
local unitary transformations U4 ® Up, equivalent to states with a diagonal T matrix [42],
moreover the latter states can always be considered to be convex combinations of the
four Bell states [42], i.e., BDS. The subset of all BDS density matrices (pjx > 0) is thus a
very interesting set which is fully characterized by a solid geometric tetrahedron 7 in the
“t-configuration” space (see Figure 1), where each point (1, t,, t3) correspond to a density
matrix with purely diagonal parameters (1, t, t3) [42]

i=1

1 3
P_4<]1®]1+Zti‘7i®(7i> ©)
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The importance of the tetrahedron geometry and the parameterization {pj }]1 0 —

(t1, 2, t3) is going to be highlighted by the circuit analysis infra. Let us write the formulas
allowing movement from one representation to another:

14+t —tr+1t3 1-tH+th+13
poozf PlOZT

1+t +t)—1t3 1—t —ty—t3 ©)
p()l:f pllzﬁ

f1 = poo + po1 — P10 — P11
ty = —poo + po1 + p1o — P11 ()
t3 = poo — po1 + P10 — P11

In Section 3, we propose circuits that generate all BDS, i.e., in the entire tetrahedron
T. Moreover, we characterize these states in terms of various quantum correlation and
entanglement measures (Section 5) and see to what extent these can be tested on the NISQ
devices of IBM Q (Section 6). However, there are still two distinguished subsets of the
tetrahedron which are interesting to discuss, namely the octahedron of separable states and
the line of Werner states.

2.1. The Octahedron of Separable States

As an appetizer let us first remark that the four corners of the tetrahedron are pre-
cisely the four Bell states that are maximally entangled in the sense that their entropy
of entanglement is maximal. However, the entropy of entanglement cannot be defined
for mixed states. Indeed, any tensor product of two genuinely mixed states p4 ® pp has
a reduced density matrix with possibly different reduced von Neumann entropies. To
give meaningful measures of “entanglement” and other “quantum correlation” for mixed
states it is necessary to generalize the notion of product pure states. For bipartite systems,
separable mixed states are usually defined as an arbitrary convex superposition of products
of density matrices

p=Yawy @pg, g1, La=1 ®)

Non-separable mixed states are the ones that cannot be represented as such, and
are called entangled. Tt is clear that for a separable state the partial transpose p’8 must

(i)

necessarily admit only non-negative eigenvalues (indeed pj’ is positive semidefinite, thus
pg)T also is, and therefore (8) implies that pB must be positive semidefinite). This is the
so-called Positive Partial Transpose (PPT) criterion of Peres [43]. Remarkably, for 2 ® 2 and
2 ® 3 bipartite density matrices p op the PPT criterion is necessary and sufficient [44]. We
refer to [20] for more detalils.

In the case of BDS we easily see from (5) that the partial transpose of a BDS parame-
terized by (t1, t2, t3) is a matrix parameterized by (1, —ta, t3) (because 0 = 01,0 = —03,
ol = 03). Thus, partially transposed BDS correspond to a reflected tetrahedron obtained
from 7 by a reflection across the (1, t3) plane. The intersection of this reflected tetrahedron
with 7 is an octahedron O = {(t1,f3,t3) | |t1| + |t2| + |t3] < 1} (Figure 1). All elements of
O must correspond to bona-fide density matrices with non-negative eigenvalues. There-
fore, points of O necessarily correspond to separable mixed states. We still must check that
points of 7\ O correspond to non-separable states. First note that under the reflection
across the (t1, t3) plane these points are sent outside of 7. By the PPT criterion it suffices to
see that such a point corresponds to a matrix with at least one negative eigenvalue. This
last claim is checked by contradiction. Indeed the (partially transposed) matrix has trace
one, so, if all its eigenvalues were non-negative, they would also be smaller or equal to one,
hence the matrix would be a density matrix of the form (5), hence a BDS belonging to 7T,
a contradiction.
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Finally, let us note that the Bell states |,Bij> are the “furthest apart” from the subset of
separable BDS, confirming that Bell states are maximally entangled.

The PPT criterion as such is only qualitative and discriminates efficiently separable
and entangled mixed states. However, it should be pointed out that the corresponding
amount of negativity, defined as

N (o) =3 (I~ 1) ©

is quantitative in the sense that it is an entanglement monotone (here |Al|; = TrvVATA is
the trace norm). Nevertheless, it does not address the question of a measure of “quantum-
ness” of correlations other than entanglement. This issue is discussed in Section 5.

1()

Figure 1. Geometrical representation of the BDS tetrahedron 7 bounded by the four planes t; —
th+t3 > 1,4 +tp —tz3 > —1,t) —tp —t3 < 1,1 + tp + t3 < 1. The octahedron O defined by
|t1] + |t2] + |t3] < 1 contains all the separable BDS. Accordingly, four entangled regions can be
identified outside of the octahedron, in each of which a Bell state is located at the corresponding
summits of 7. We have the correspondence |Bgo) <> (1, —1,1), |Bo1) <> (1,1, -1), |B1o) < (=1,1,1),
|B11) ¢+ (—1,—1,—-1). Theredline t; = tp = t3 = —w, 0 < w < 1, along the negative diagonal,
represents Werner states (10).

2.2. The Line of Werner States

A particularly interesting subset of BDS is formed by Werner states [45], which for
2 qubits are defined by the parameter w = —t; = —t, = —t3:

p= “_Tu))1®1+w|ﬁ11><511| (10)

Geometrically, they are represented by a straight line inside the BDS tetrahedron (red
line in Figure 1). On the one side, the w = 0-extremity of the segment corresponds to the

state p = § T _o| B ) By
w = l-extremity refers to the maximally entangled state |811). More generally, the PPT
criterion applies and shows that Werner states are separable for w € [0,1/3] and entangled
for w € (1/3,1]. The critical value w = 1/3 corresponds exactly to the intersection of the
red line in Figure 1 with a face of the octahedron.

, which is a uniform statistical mixture of all Bell states. The

3. Quantum Circuits for BDS and Werner States

In this section, we propose quantum circuits with output states covering the whole
tetrahedron of BDS. We propose various circuits, using four qubits, as well as two qubits,
and discuss their relationship with various parameterizations. Specialized circuits for
Werner states are also considered. Some of these circuits serve as the basis for our imple-
mentation of BDS and their characterization on the IBM Q devices.
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3.1. Four-Qubit Circuits and Relevant BDS Parameterizations

Following Pozzobom and Maziero [40], we consider a four-qubit circuit of the form
portrayed in Figure 2. The subcircuit G is tasked with encoding the probabilities {p; } in a
two-qubit state

Gl00) = [y) = ). \/pilik) (11)

jk=0

This is mapped to
1

Y VPKliK) ap @ 1K) (12)

jk=0
by the two controlled-NOT (CNOT) gates. Finally, the Bell basis change transformation B
is applied. Please note that we swapped the qubits in B (regarding [40]), to fit standard

Bell state conventions. It produces B|jk) = |Bjx ), so that the resulting state is

1
= L VIR [Bic),; (13)

j,k=0

This is a purification of the BDS p from Equation (3), meaning that one can retrieve p
by considering the first two qubits as part of the environment, which amounts to a partial
trace operation:

Trgp(|7)(2]) = p- (14)

Now, we turn to the probability encoder G. Pozzobom and Maziero used the two-
parameter subcircuit shown in Figure 3a. There the y-rotation gate is given by

cos(6/2) —sin(6/2) ) (15)

_ —i¥e _
Ry(0) =e'2" = ( sin(6/2) cos(0/2)

in the computational basis. However, as we have already noted, two parameters are not
enough to cover all choices of {pj; }; in fact, one solely achieves those that can be factored
as pjx = ajby for some {a;} and {b;}. This is a direct consequence of the failure of their
encoder G to entangle the two qubits 4 and b.

unread
° (env.)
— = 1
: S—Hf 1
| Ped
M

_

B

Figure 2. The generalized four-qubit preparation circuit as in ref. [40]. Only the subcircuit G which

G

|¢7>ab
|
|
|
|

[
JR)
AN

|-

encodes the probabilities { p]'k}},kzo must be corrected. Qubits are then copied by CNOT gates.
Subcircuit B finally entangles into the Bell basis.
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G
==
|O>a —H Ry(g) aan
: : WJ)ub
0), —+ Ry (a)
—
(a)
G
=== ———== .
0), —+ Ry(a) Ry(B) -
: : |lp>ab
0}, — S— Ry (7) -
Lo = |
(b)
s
0)g —r Ry (26) .
! ! ’l/))ab
10)p ’: Ry(29) Ry(—2¢) :’
Lo J
(c)

Figure 3. Three different versions of the probability-encoding subcircuit G. (a) Encoder G: incomplete
circuit of [40], which involves only two parameters & and 6 (definition in [40]), and the gate R, given
by Equation (15). (b) Encoder G: compact circuit which generates the whole class of BDS with the
three parameters «, B and <y appearing in Equation (16). (c) Encoder G: complete three-parameter
circuit based on canonical coordinates ¢, 6 and ¢ on the unit 3-sphere appearing in Equation (17).

A better working implementation of G is displayed in Figure 3b. It is perhaps the sim-
plest conceivable implementation: it cannot be simplified to use less than three parameters,
and it does entangle the two qubits a and b; both are necessary features of any working
encoder. The output state is given by (11) with the probabilities

v/Poo = cos (%) cos (g) cos (%) + sin (%) sin (g) sin

@
=]

2)
2)
2
(16)
2)
2)

NI NI N
NI N NI
~— ~ —

=.

=]
TN TN N N

~— —
[}
=
=}

N TN —~

N2 N N

+
]
=}

— ~——— ~—
|
. 2]
2.
=]
TN /N /N

]
=]

~—_ —
o)
. 3 .
@
TN /N /N

To prepare any given Bell diagonal state, one thus writes it in the form of Equation (3)
and solves (16) to obtain the corresponding parameters «, § and v. It is straightforward
to solve Equation (16) numerically. An analytical solution exists as well and is given in
Appendix A.

An alternative realization of G is displayed in Figure 3c. It uses two controlled y-
rotation gates, e.g., C}’{;g@ = 0)(0], ® 1y + [1)(1|, ® Ry(2¢)p. This circuit realizes the
canonical hypersphere coordinates

(17)
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(note the ordering 00-01-11-10: the two-bit Gray code) which have the advantage of being
easily obtainable in terms of {p;} by calculating their cosines in an iterative manner,
as follows: 5
cos” () = poo
2 Po1
0) = ———~
COS ( ) 1— COSZ(I,IJ) (18)
200) — P11
©OS0) = = cos2(9)) (1~ co2(8))

When evaluating these expressions, any quotient 0/0 is taken to be 1 (in practice, one
must also beware of rounding errors). The circuit in question is more transparent than the
one suggested supra. Nevertheless, its circuit complexity is higher, since each controlled
rotation will typically be implemented using two CNOT gates as well as several one-qubit
unitaries. In the sequel, we will provide an operational comparison of the two circuits to
assess how severe this problem is.

3.2. Two-Qubit Circuits

The circuit template in Figure 2 uses four qubits, which seems inefficient as the
objective is to prepare a two-qubit output state. In fact, one could remove the two ancillary
qubits and instead perform unread measurements on the principal qubits, as shown in
Figure 4. The measurements collapse the pure state |i), as given in (11), into the mixture

1
R= ) piljk)jk| (19)
=

of computational basis states. Thus, the combination of G and the measurements acts as a
“quantum random number generator”. Finally, applying B transforms R into the prescribed
Bell diagonal state (3):

BRB' = ’kio pik|Bi ) B | = - (20)
=

The two-qubit circuit works through unread measurements, which can be interpreted
as unmonitored interactions with the environment.

‘l/)>ub Rab B
0), A H—1-
G : : : : Lab
100 A

Figure 4. A two-qubit replacement for the circuit in Figure 2.

Figures 4 and 5 jointly illustrate this equivalence: one can implement an unread mea-
surement of a system as a unitary evolution of that system together with an environment.
Moreover, it is evident from the symmetry of Equation (12) that Figure 5 describes an
equivalent circuit to that of Figure 2. Figure 5 thus shows the connection between the
two-qubit and four-qubit versions.

Out of the three equivalent circuits described supra., (Figures 2, 4 and 5), we suggest
the two-qubit variant. Using four qubits amounts to using precious resources to simu-
late decoherence on a coherent system rather than making use of decoherence already
redundantly available in today’s noisy quantum computers.
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W)y Ra B
I ' T— = 1
0}y — Fre—rH}4
G| ! | | Pab
0y — &,
|O>C D unread
‘0>d D (env.)

Figure 5. A four-qubit circuit illustrating measurement as entanglement with the environment.

The circuits proposed above can prepare Werner states, as the latter form a subset of
the Bell diagonal states. Nevertheless, in cases where the full range of BDS is not needed,
specializing the circuit offers opportunities for a further optimization. The circuit shown
in Figure 6 prepares the Werner state given in (10) using classically controlled quantum

operations. First, qubit a is put into a superposition /1 — w|0) + y/w|1), where we selected

the parameter 6 such that w = sin(%). Then, the state is measured, giving 1 with

probability w and 0 with probability 1 — w, storing the outcome in a classical bit c. This
first part is, again, a quantum random number generator. If the outcome is 0, the circuit
prepares the maximally mixed state 11 ® 1 by generating |++) = H®2|00) and performing
an unread measurement. If the outcome is 1, it prepares the pure state |f11) = B|11) by
flipping the lower qubit to |1) (the upper one is already |1)) and applying the Bell basis
change B.

10)g — Ry(0) A

0
C —

1 ¢=0 c=1 ¢

c

Figure 6. A specialized circuit for the preparation of Werner states.

All two-qubit circuits proposed so far rely on applying further quantum gates after
performing a measurement on a qubit. Such operations are not supported on present-day
IBM devices, and as a result, only the four-qubit circuits may be run on real hardware.
However, the two-qubit variants can be simulated in Qiskit, as detailed in the next section.

The last two-qubit circuit of Figure 6 incorporates in addition parallel classical infor-
mation treatment and classically controlled quantum gates. This too is not yet possible with
current hardware, but we show in Appendix B how it could be replaced by an equivalent
fully quantum circuit. There we see that the number of necessary qubits would rise to
five, and many more quantum gates and computational steps would be required, making
probably such alternatives largely unattractive because of enhanced decoherence.

4. Qiskit Implementation

To run the quantum circuits described in Section 3 on IBM Q hardware, we have pro-
vided implementations using Qiskit [41], available in a Git repository hosted on GitLab [46].
The software performs several functions.

The basic functionality is circuit construction. For a choice of probability encoder
from Figure 3 and a four-qubit or two-qubit template (Figure 2 or Figure 4), and given
the parameters {pj; }},k:O’ the software constructs a Qiskit representation of the quantum
circuit for preparing the corresponding BDS, computing the correct circuit parameters such
as (a, B,y) in the process. The specialized circuit from Figure 6 can also be constructed for
any given w.
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The software also performs quantum state tomography [47] to reconstruct the output
state of the circuits with a new set of routines. Qiskit has built-in routines for tomogra-
phy, but they require some amendment for use on circuits that contain classical registers,
including Figures 4 and 6 (implementing Figure 4 in Qiskit does require classical regis-
ters as destinations for the unread measurement results, although they are implicit in the
figure). Specifically, the built-in routines determine the output state of an n-qubit circuit
by performing various operations indexed by k, on the output and then performing a
measurement into an added #n-bit classical register 4 ...a,. Each type of measurement
k is repeated multiple times (shots), and the results are presented as counts ”Il{q...bn' where
b; € {0,1}, giving the number of times the measured bit string was a1 ...a, = by ...b,. If
the original circuit had m classical registers c; .. . ¢, the resulting counts n’lﬁl_“bn dy..d,, Need
to be aggregated as

1 1
k k
My, .. by Z Z My . budy...dy

=0  dn=0

before being passed to the built-in tomographic reconstruction routine. The implementation
partly follows [47]. See also [48].

A further complication arises when implementing the specialized circuit for Werner
states, Figure 6. This circuit contains a measurement operation conditioned on the value of
a classical bit. Such conditional measurements are not officially supported by the Qiskit
Aer simulator. However, the circuit can be simulated using a custom version of Qiskit Aer
where a small change has been made to the C++ source before compiling [49]. Our GitLab
repository [46] contains a patch with the necessary changes.

The implementations have been tested for correctness. All four combinations of
Figure 3b,c together with Figure 2 or Figure 4 were simulated in Qiskit, without noise, for
340 states uniformly distributed in the BDS tetrahedron. The circuit of Figure 6 was also
run on 100 Werner states, uniformly distributed between w = 0 and w = 1. The density
matrices of the output states were reconstructed via tomography, as detailed above, with
210 shots each, and the state fidelity (43) was computed. For all circuits, the mean fidelity
was 99.5% with a standard deviation of 0.5%.

5. Entanglement Measures and Discord

In this section, we shall review entanglement and correlation measures for BDS. These
fall in three categories: non-separability (entanglement), non-locality and steering measures.
However, going through fundamental operational definitions of all these notions would go
out of the scope of this paper (see e.g., [27,28]). In Section 5.1, we focus on main known
criteria that allow specific closed form formulas for BDS: entanglement of formation and
concurrence, a restricted setting of CHSH-non-locality implied by Bell non-locality, and a
highly restricted form of steering for which BDS are a useful testing ground. In Section 5.2,
we further develop the notion of discord which quantifies the non-classical (i.e., quantum)
correlations that are not necessarily related to entanglement. The relationship between
original discord and asymmetric relative entropy of discord is profoundly reexamined and
we show a new general inequality between the two quantities, and prove that for BDS they
are equal. Specific expressions are computed as a function of (¢1, t5, t3) whenever possible,
and their behavior in the whole tetrahedron is illustrated. Finally, Section 5.3 focuses on
the one-parameter family of Werner states which forms a very interesting particular special
case. The theoretical results summarized here will serve as benchmarks for the quality of
BDS and Werner states created by our circuits on IBM Q.

5.1. Entanglement Measures for BDS
5.1.1. Entanglement of Formation and Concurrence
Entanglement of formation is the first metric of entanglement which properly extends

to mixed states the notion of entanglement entropy E(¢) introduced in Section 2. Strictly
speaking the entanglement of formation Er(p) of a mixed state p is the minimum average
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entanglement entropy over any ensemble of pure states that would represent the mixed
state p = Y_; pi|;) (¢;| (convex roof extension), and is defined as [50]

Er(p) = min ) p;E(;) (21)
pildi) 5

For a pure state entanglement of formation reduces to the entanglement entropy.

To understand it better it is useful to recall its remarkable operational meaning. Sup-
pose two distant parties (Alice and Bob) share a large amount of Bell pairs |f11) and
suppose they want to convert them into roughly n copies of |®,4p), using only LOCC.
Then nS(p 4) is roughly the minimum number of shared Bell pairs they need to “burn” (or
spend) for this operation. If one views the |B11) as a basic unit of entanglement, the “ebit”,
this means for example that a pure bipartite state with S(p4) = 1/10 is “equivalent” (in
LOCC sense) to one-tenth of an ebit.

Now, let p4p a bipartite mixed state. it is possible to show that (asymptotically for
n — +o00) the minimum number of Bell pairs needed by Alice and Bob to fabricate n copies
of pap using only LOCC is roughly nEr(p ap). This remarkable result was first derived by
Bennett et al. [50].

Computing Equation (21) is a difficult optimization problem. Happily, for arbitrary
2-qubit systems, Wootters [51] derived a non-trivial closed form formula in terms of the
concurrence. Let

C(p) = max{0, 1 — p2 — 3 — pa} (22)

where 1 > pp > uz > g4 are the square roots of the four eigenvalues, in descending order,
of the non-Hermitian matrix pg where § = 02 ® 02p*0» ® 07 and p* the complex conjugated
matrix in the computational basis representation. Then

Er(p) = ha(5(1+ /1 - C(0)2)) 3)

where hp(x) = —xlog, x — (1 — x)log, (1 — x) is the binary entropy function (with a range
in [0, 1] since one uses the log in base two)

For separable mixed states it easy to see that the entanglement of formation vanishes,
to this end just insert the spectral decompositions of the factors in (8) and compute the
corresponding sum of entanglement entropies.

Figure 7 displays the entanglement of formation Eg(p) for all BDS in the tetrahedron,
computed using the simulation circuit of Figure 3b. It can be shown that it corresponds
exactly to the analytical result (23). We also see that entanglement of formation vanishes
on the portion of the faces which are also faces of the octahedron of separable states. On
the other hand, for the four extremal Bell states entanglement of formation is maximal and
equal to 1 as expected.

-1

—1 3l 0.0

! ty 11
Figure 7. Entanglement of formation Er(p) of BDS, calculated from the noiseless simulation of

compact circuit (Figure 3b). In the gray region entanglement of formation identically vanishes.
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The entanglement of formation on the interesting Werner line corresponding to Werner
states (inner diagonal) will be better displayed in Section 5.3 when we illustrate the corre-
sponding explicit formula.

5.1.2. CHSH-Non-Locality

The fundamental definition of non-locality (or Bell-non-locality) expresses the fact that
there is no local-hidden-variable (LHV) model allowing an explanation of all experimental
joint histograms obtained by local measurements of two parties of a bipartite system.
Suppose one wants to assess what is the part of the Hilbert space that displays non-locality.
This is a priori difficult since all possible local measurements must be examined. For this
reason, one reverts to criteria that give sufficient conditions for non-locality. The best-
known such criteria take the form of violation of so-called “Bell inequalities.” Here we
consider the simplest such inequality, namely the CHSH inequality.

For a pure state, the CHSH inequality belongs to the class of Bell inequalities and can
serve as an operational (experimental) criterion to discriminate between a product (local)
and an entangled (non-local) state. Through a series of local measurements on many copies
of their shared two qubits, Alice and Bob determine the expected value of

Bepsy =3-0@b-0+d -00b-0
+7-0@0 -7—7 000 -7 (24)

where 7,d,b, b’ are unit vectors in R3. Let

2y/Map = 5 lTr[|TAB><TAB|BCHSH] (25)
ill=|a||=|bl|=]|b"||=

it is well known that [¥ op) is a product state if Map < 1. On the other hand, if the pure
state is entangled then the latter inequality is “violated,” the Bell states giving Mg the
maximum value /2. In view of this, a natural definition of an entanglement measure for
pure states is

2/ Mg — 2
W AR ) (26)

A generalization of the measure Lap to general mixed two-qubit sates (4) has been
proposed in [52]. Consider the quantity M(p) defined from (25) but where [¥ ap) (¥ a5/ is
replaced by a density matrix p. Define the CHSH-non-locality L(p) as the quantity (26)
where My is accordingly replaced by M(p). Remarkably CHSH-non-locality L(p) can be
computed explicitly and displays the following essential properties:

Lap = max (O,

e Wehave M(p) = 11 + T2 the sum of the two largest eigenvalues (among three) of T'T
where T = (t;;).

e CHSH-local states naturally satisfy M(p) <1

e The maximum possible value of M(p) = 2 is attained for pure Bell states.

e For BDS from Equation (5) T'T = diag(#2, 13, £3) so 1 + T2 = [|f]|? — t2,;,, and (26) be-
comes

L(p) = max( "HtH Fimin ), (27)

V2-1

where tmin = min(|t1], [t2], |t3])-

This last formula is our main interest here. Non-locality vanishes in the region
{F| |I]|?> — 3, < 1} which is just the convex region corresponding to the intersection of
three unit cylinders oriented along the main axes . This region obviously contains the unit
ball ||£]| < 1, which in turn also contains the octahedron ©. The common points are the 6

vertices of @ on the coordinate axes.
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Therefore, states displaying CHSH-non-locality are also non-separable (or entangled).
However, not all non-separable states display CHSH-non-locality.

Figure 8 displays the measure L(p) of CHSH-non-locality in the tetrahedron, com-
puted using the simulation circuit of Figure 3b. This corresponds exactly to the analytical
result (27). We see that CHSH-non-locality vanishes in an “inflated” unit ball (intersection
of three unit cylinders) which contains the octahedron O, and is nonzero close to the four
corners of the tetrahedron 7. At the extremal points corresponding to pure Bell states, it
reaches its maximum as expected.

—1

—1 t 0.0

-1 tg 1 1
Figure 8. CHSH-non-locality of BDS L(p) given by (27), calculated from the noiseless simulation of

compact circuit (Figure 3b). In the gray region CHSH-non-locality identically vanishes.

5.1.3. Steering

The notion of steering goes back to one of the most paradoxical aspects of quantum
mechanics discussed by EPR and Schrodinger, but was formulated only recently [27,28].
It is the ability that A has, by making only local measurements, to prepare or “steer” the
state of party B. For example, for a pure Bell state |Bgo) if A measures its qubit in the basis
{|+),]—)} and obtains |+), then B’s qubit is “steered” to |+). Of course, this does not
imply signaling and B is completely oblivious to the actions of A, his description of his
qubit by his reduced density matrix remaining valid, unless he receives information sent
by A. To convince B that his state has been steered by A, B must receive information from
A and then do appropriate tests by local measurements on his side.

The notion of steering for mixed states was formalized precisely in [27] and seen as
an intermediate between non-separability and Bell-non-locality. Roughly speaking, we
say that A has the ability to steer the state of B if, after having received A’s information, B
cannot explain the results by a local-hidden-state (LHS) model (A would not be able to steer
a local-hidden-state on B’s side). Again, it is quite difficult to test all possible measurement
situations. For example, even when restricting to dichotomic measurements we could
imagine that A steers B’s state using only two types of measurements (2-steering), or three
types of measurements (3-steering), and so on. A general measure for the steerability of
two-qubit states has been found [53]. Just as for Bell-non-locality, sufficient criteria have
been derived for assessing steerability of a state, and in general they take the form of
inequalities [54-56], but for two-qubit states one has a steering measure [53].

Steerability of BDS has been discussed before [57,58]. It turns out that BDS are “2-
steerable” if and only if they are CHSH-non-local [53,57,59] (in fact [59] shows this is true
for all 2-qubit mixed states). They are “3-steerable” as long as H?H > 1[53,57]. Thus, one
can consider the measure [53] of 3-steerability which distinguishes 3-steerability from
CHSH-nonlocality, namely

S3(p) = max (0, Q}!:;), (28)

where f = (t1,t2, t3) is defined by (6), and the factor /3 comes from the maximum violation
of steering inequality (y/7 for n = 2,3 measurements per site [57]). We see that 3-steering
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S3(p) vanishes in the intersection of the sphere of radius one ||#|| < 1 with 7. This sphere
contains O. Therefore, nonzero 3-steering implies nonzero negativity and non-separability.
However, the reciprocal is not necessarily true.

Figure 9 displays the measure of 3-steering S3(p) in the tetrahedron, computed using
the simulation circuit of Figure 3b. This agrees again with the analytical Formula (28). We
see the intersection of the unit ball with the tetrahedron inside which steering vanishes.
States close to the four corners are 3-steerable and we observe that these domains are
slightly bigger than the CHSH-non-locality ones. Unsurprisingly steering is maximized at
the Bell states.

-1

-1 t 0.0

! [2) 11
Figure 9. S3(p), 3-steering of BDS, calculated from the noiseless simulation of compact circuit

(Figure 3b). In the gray region 3-steering identically vanishes.

5.1.4. Hierarchy between Quantum Correlation Measures: Entanglement, Steering and
CHSH-Non-Locality

The general question of hierarchy between different types of quantum correlations
has been elusive due to the difficulty of defining good measures (see e.g., discussion of
ordering in Refs. [60,61]).

However, there is a genuine hierarchy between non-separability, steering and non-
locality which was first discussed for all projective measurements in the first seminal papers
on steering [27] (in terms of LHV and LHS models), using certain families of states among
which Werner states. For generalized POVM measurements the corresponding proof has
been given only recently [62]. The steering measure for two qubits proposed by [53] and
used above of course strictly obey this hierarchy.

One can explicitly illustrate this here for 3-steering inside the full tetrahedron of BDS,
as shown in Figure 10. From (28), 3-steering S3(p) vanishes in the unit ball. This sphere is
strictly bigger than the octahedron O, so there exist non-separable entangled states that do
not exhibit steering. Similarly, from (27) CHSH-non-locality L(p) vanishes in the region
corresponding to the intersection of three unit cylinders (oriented along the main axes),
region which contains the unit ball. Thus, there exist states that exhibit 3-steering and are
not CHSH-non-local (do not violate the CHSH inequality).

Summarizing, the BDS nicely exhibit the following hierarchy: (i) states violating the
CHSH inequality exhibit 3-steering; (ii) states exhibiting steering are non-separable or
entangled. The neighborhood of the four corners of the tetrahedron 7 display all three
properties, and for the Bell states all these entanglement measures are maximal.

Finally, we recall that as pointed out above, the sets of 2-steerable and CHSH-non-local
BDS are identical.

5.2. Discord for BDS

It is not obvious how to quantify non-classicality of quantum correlations, which are
distinct from entanglement. Ollivier-Zurek [18] approached this problem by introducing
information theoretical measures, and introduced “quantum discord” as the discrepancy
between two quantum forms of mutual information. This notion has a few shortcomings,
for example it applies only to bipartite systems treated asymmetrically, and other measures
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of non-classicality have been proposed since then. Among them, one of the most natural
and conceptually clear, is the “relative entropy of discord” [23]. This notion is based on a
distance measure between a general multipartite state and its closest “classical state.” In
this paragraph we first shortly review these two notions of discord and refer the reader
to the review [24] for a more complete discussion of particular aspects of these and other
related notions of quantum correlations. We adopt the terminology used in this review
and investigate more in detail the relationship between quantum discord and asymmetric
relative entropy of discord, for which we find a general inequality.

Figure 10. Hierarchy of regions of separability (red), vanishing 3-steering (orange), vanishing CHSH-
non-locality (yellow) and the rest of the BDS tetrahedron. The Werner line is also shown.

For BDS, as we will see in the next paragraph, we find that quantum discord and
asymmetric relative entropy of discord become one and the same. This however, according
to our inequality, is not even true for general two-qubit systems, and one can only assert
that quantum discord is smaller or equal than asymmetric relative entropy of discord.

5.2.1. Quantum Discord

We explain the information theoretical point of view of reference [18]. The quantum
mutual information of a bipartite mixed state p 45 is defined as

(In2) Z(A;B) = S(pa ® p) — S(pAB)
= S(pa) + S(pp) — S(paB) (29)

This a measure of total correlation which is the closest analog to the fundamental
expression of Shannon’s mutual information I(X;Y) = H(X) + H(Y) — H(X,Y) defined
for two random variables X and Y [63]. However, Shannon’s mutual information can also
be written as I(X;Y) = H(X) — H(X]Y), i.e., the difference between Shannon’s entropy
of X and the conditional entropy of X when Y is observed [63]. We seek a quantum
analog of this second form of mutual information. Imagine that party B makes local
measurements with a complete set of orthonormal projectors {1 ® I} without recording
the measurement outcomes (here we restrict ourselves to projective measurements instead
of the more general definition involving POVM). The post-measurement description of the

k k
global state is p%B} = Y4 (1®T15)pap(1 ® 1K), the one of party B is p]{snB} = Y [T ppITk,

and the one of party A remains equal to p4 (which is compatible with no-signaling). In
this situation the mutual information after the measurement is defined as

k k
(In2) C(A; BI{TT}) = S(pa ® pl ") — 5(oll20))

= 5(pa) + S(oi5) — s (oY) (30)
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This quantity has been called the “classical correlation”. It bears two striking differ-
ences with its classical analog. First it depends on the measurement basis (a non-issue in
the classical case) and secondly it is not the same when A is measured instead of B (whereas
in the classical case we have H(X) — H(X|Y) = H(Y) — H(Y|X)).

Although in the classical case (29) and (30) both reduce to Shannon’s I(X;Y), they
are not equal for quantum systems. The quantum discord is defined as the difference
between (29) and the maximum of (30) over all possible measurement basis, i.e.,

D(pas) = T(A;B) — C(A; B) G31)

where C(A;B) = max C(A; BI{TIk}).

To summarize, Z(A; B) is interpreted as the amount of total correlation between the
two parties, C(A; B) as the amount of classical correlation, and D(pp) as the amount of
non-classical correlation.

It is a theorem that all three quantities are non-negative but in general not much more
can be said about the relative magnitude of classical and quantum correlations. Clearly
Z(A;B) is symmetric under exchange of A and B, but this is not the case for C(A; B) and
D(A; B) (one sometimes speaks of right-discord when B is measured and left-discord when
A is measured). However, note that if the two parties are identical systems these quantities
are symmetric. This is the case for BDS.

5.2.2. Asymmetric Relative Entropy of Discord

We first explain the hierarchical point of view of reference [23] which is based on
relative entropy as a distance measure, and which presents discord as a distance to the
closest classical state. Although we restrict here to bipartite systems the discussion readily
extends to multipartite situations. Classical states are defined as statistical ensembles of
perfectly distinguishable orthonormal product states |k4) ® |kg) = |kakp), that is

X=Y_ Prykylkaks)(kaks| (32)
kakp

and py ,k, is a set of probabilities summing to one. Let us call C the set of all possible
classical states. The relative entropy of discord is defined as

(In2) D(pap) = min S(pag||x) (33)
xeC

where the relative entropy is (by definition) S(pap||x) = TrpapInpap — Troap In x.

This quantity obviously treats A and B symmetrically, and as such it is not equivalent
to (31).

In (31) the root of the asymmetry between A and B lies in the amount of classical
correlation (30), which is measured only with respect to the B system (B plays here the role
of A in original papers [18,22,23]). Therefore, to establish a meaningful link between the
two kinds of discord it is first necessary to minimize in both cases on the same asymmetric
statistical ensemble, consisting of orthonormal product states with respect to B only, whose
elements read:

X’ZXk;(ﬂ@Ik)(kl)P(ﬂ@Ik)(kl) ec (34)

where both p and the set {|k)(k| = II5} are free parameters defining the ensemble C'.

. . I . .
We recognize x’ as possible post-measurement states p;{q BB}. The corresponding relative

entropy of discord then reads

(In2) D'(paB) = ?Icl,lelg, S(pasllx’) (35)
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while standard discord (31) reads

(In2) D(pap) = S(pp) — S(pap) + 4?11_[%‘1} S(palITh) (36)

where S(p4|T1%) is the conditional entropy expressed as Ykp PKS (IT5p ApTTK / py) with
Pk = Tr (H%PABH%) .
Ref. [23] shows that the two forms of discord are related when one does not minimize

with respect to the measurement basis. Indeed, for any fixed set { |k) } we define Dy ), (0.45)
and D’{‘ 0 (pap) as the quantities in (35) and (36) without the minimizations over {|k) }.

Please note that to obtain Df{l 1) (pap) one still must minimize over the p dependence of x'.
Then the following remarkably simple relation holds,

(In2) [Dyjyy = Dijyy)(pas) = Slpa ® pp) = Sy, ), (37)

where 7, is the product of the two reduced density matrices associated with X/p , which
PAB AB

itself is defined as the asymmetric classical state in C’ which minimizes D(p 4p||x’) when the
minimization is carried on over p only (for brevity’s sake the {|k) }-dependence of x;, , . and
O s is left implicit). Now, there is a modified version of theorem 2 of [23] (with a similar
proof) which states that for any fixed orthonormal basis {|k)}, the minimizer of S(p4p||x’)
over p is attained at p = pap, or equivalently at x;, . = Y (1 ® [k)(k|) pap (1 ® |k) (k[).
We note that this minimizer is such that Tra (xy,,, ) has eigenvectors |k) with eigenvalues
(k|pp k). Moreover, Trg(x,,,) = p4, and we find

T, = PAS ; k) (klpp|k) (k]| (38)

It should be stressed that this expression, which will be useful later, is not in general
equal to p4 ® pp because |k) are eigenvectors of Tra(xy,,) only, moreover it still depends
on the basis {|k) }. The latter remark also holds for relationship (37), which, as remarkable
as it is, remains insufficient to directly relate the “true” discords D(p4p) and D’ (p4p) since
they are defined by independent minimizations over { k) }.

We would now like to show that still it is possible to find a weaker relation between the
two kinds of asymmetric discords in the form of a general and useful inequality. Consider
the difference on the right-hand side of (37) which equals S(pg) — S(Xx |k) (k|pg|k) (k|). We
claim that this difference of entropies is non-positive. Thus, (37) also is non-positive for all
{k)}, which implies that Dy} (048) < D’{‘k>} (paB), ¥ {|k)}, hence also

D(pag) < D'(pap) - 39)

This means that in general original discord cannot be larger than the corresponding
asymmetric relative entropy of discord. To show the claim note that from the spectral de-
composition pg = g Ag|B)(B| wehave S(pp) = (In2) H({Ag}) and S(¥i [k) (k|pp |k) (k|) =
(In2) H({¥X [(k|B) [2A p}) where H is the classical Shannon entropy. It is a standard prop-
erty of Shannon’s entropy that it may only increase when a so-called doubly stochastic
matrix (here |(k|B)|?) is applied to a probability distribution (see for example [64] chap. 1,
p- 26).

5.2.3. Application to BDS

Concerning BDS another fundamental result emerges from the previous discussion.
Consider the r.h.s. of Equation (37): on one hand we already know that for BDS p4 =
0B = %]L, SO pA ®pp = %]l ® 1, on the other hand Equation (38) implies that T s is

also equal to 11 ® 1 for all {|k)}. So, one immediately sees that the right-hand side
of Equation (37) vanishes for all {|k)}, and thus D(pap) = D’(pap) in the whole BDS
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tetrahedron. Therefore, we conclude that for all BDS quantum discord and asymmetric
relative entropy of discord are equal quantities.

To derive a concrete expression for the BDS quantum discord one should solve the
optimization problems (36) and/or (33). As we just proved above, both problems have the
same solution. Luo [30] was the first to solve (36) and gave explicit formulas for the mutual
information, classical correlation and discord of BDS.

From the original definition of BDS one notes that the eigenvalues of the density
matrix for a point (t1,t, t3) of 7 are given by (6), which allows us to immediately write
down S(pap). On the other hand, S(p4) = S(pp) = In2 for every point of 7. Therefore

Igps = {(1*f1 —tz—t3)log2(1 —f *fz*fg)

+ (1ft1+f2+t3)10g2(1 —ti+ i +1t3)
—+ (1+t1 —f2+t3)10g2(1+f1 —t2+t3)

+ (14t + by — t3)logy (14t + t —t3)].

Iy

(40)

From [30] we have the remarkably simple result in terms of t = max(|t1], |t2], |t3])

14t
Cpps =1— hz(T) (41)
where hp(x) = —xlog, x — (1 — x)log, (1 — x) is the binary entropy function. The quantum

discord Dgps is just the difference of the two expressions (40) and (41).

Figure 11 shows the quantum mutual information of BDS computed on the tetrahedron
with Equation (40), Figure 12 shows their classical correlation according to Equation (41),
and Figure 13 displays their discord which is just their difference.

2.0
1 1.5
1.0
t3
0.5
—1
-1 . t 0.0
B to 11

Figure 11. Quantum mutual information Zgpg, calculated with (40) from the noiseless simulation of
compact circuit (Figure 3b). The range of mutual information is [0, 2].

2.0
1.5

1.0

0.5
=

-1 t 0.0
-1

12 11
Figure 12. Classical correlations Cppg, calculated with (41) from the noiseless simulation of compact

circuit (Figure 3b). Plotted on the same range as mutual information.
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-1
-1

—1
t 0.0
12 11

Figure 13. Discord Dpps = Zpps — Cpps, calculated with (40) and (41) from the noiseless simulation

of compact circuit (Figure 3b). Here the range is the natural range [0, 1]. Discord does not identically

vanish on any extended domain, note the three-pointed star pattern on the faces.

5.3. The Particular Case of Werner States

t3 =

We recall that Werner states, defined in (10), lie on the negative diagonal t; = t, =
—w, w € [0,1] of T. Formulas for entanglement of formation Er(p), steering, CHSH-

non-locality L(p), 3-steering S3(p) and discord can be easily specialized on this line. The re-
sulting quantities are plotted on Figure 14. We clearly observe the strict hierarchy discussed
earlier: non-locality implies 3-steering which implies non-separability (or entanglement).

Non-separability and entanglement of formation Ep(p). The PPT criterion shows that
Werner states are separable for w € [0, 1] and display entanglement for w € (3,1].
The same threshold applies to concurrence (see (22)) and entanglement of formation
(see (23)). The details are given in appendix C.

CHSH-non-locality. CHSH-non-locality L(p) vanishes for w € [0, %] Please note

that %[2 corresponds to the only points in the common intersection of the three unit

cylinders oriented along the main axes.

Steering. The threshold for 2-steering is identical to the one of CHSH-non-locality [53,57,59].
1
V3
are 3-steerable. We point out that [27] proved that Werner states cannot be replaced

by a LHS model if an only if w > % (this is the fundamental threshold below which
Werner states are not steerable).
Discord and classical correlation. From (41), the classical correlation is simply Cyy =

1 —hy(15%) and using (40) we find the discord

On the other hand, 3-steering S3(p) vanishes for w € [0, —z] and states with larger w

Dy = (1 w)logy (1~ w) — 3 (1+w) logy(1 +w)
1 1 2 (42)
4 ZL(1 + 3w) log, (1 + 3w)

We note that discord is strictly bigger than classical correlation for all w except w = 0
and 1.
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Figure 14. Correlations of Werner states as a function of w along the Werner line. The vertical bars
mark the following critical values: entanglement of formation Er(p) vanishes for w < % and states

are separable, 3-steering S3(p) vanishes for w < L., CHSH-non-locality L(p) and 2-steering both

\/g/

vanish for w < % Discord Dy and classical correlations Cyy are always positive, and discord is

always bigger than classical correlations. Both are monotonously increasing on [0, 1].

6. IBM Q Results

This section is divided in two parts. We first provide results obtained by simulations
augmented with the noise model from IBM Q devices. Then we present experimental runs
on real devices.

In this section, we shall focus on only two types of quantities: first the fidelity of
achievable density matrices with our circuits, this will allow an estimation of the error.
Second, we shall compute the corresponding classical correlations, quantum mutual infor-
mation and discord. We have chosen these quantum correlations because they are the less
trivial quantities, which do not vanish on any portion of the tetrahedron (except eventual
singular points).

Fidelity will be displayed only in one-dimensional plots for Werner states on the
Werner line, because the error for each value of the parameter w can be easily visualized, as
well as because the most important set of states in the tetrahedron are still covered. On the
contrary classical correlations, quantum mutual information and discord will be displayed
for the whole range of BDS in the tetrahedron.

The density matrices p obtained from noisy simulations and/or experiments are
reconstructed by Qskit tomography. Their accuracy can be measured thanks to the fidelity
with respect to the theoretical density matrix p* of BDS

F(p,p™) = [ Tr ( \/@P\/@)} p (43)

The worst possible case would correspond to a maximally mixed reconstructed state
o~ %]l ® 1. On the Werner line this would yield

Fuorst (W) = %(%\/1 “wt %\/1 +3w)”. (44)

This expression serves as a gross benchmark dotted line plotted on Figures 15 and 16.

We first turn to simulations which give a first realistic expectation for experimental
results, and which also allows the evaluation of some circuits which cannot yet be realized
on IBM Q.



Entropy 2021, 23, 797

21 of 30

1.00 - - e e
5095 . \
< —— Compact 2-qubit
E Werner 2-qubit
é 0.901" —e— Canonical 2-qubit
L; —— Werner 4-qubit
E 085 T Compaot 4—qub1t:
s —=— Canonical 4-qubit
----- Maximally mixed state
0.80 5
8 0.0 0.2 0.4 0.6 0.8 1.0

w

Figure 15. Simulated fidelity curves F(p" cir¢, oW theo) of Werner states as a function of the w parame-
ter, for density matrices produced by two-qubit and four-qubit versions of the circuits described in
Section 3. For comparison, the black dashed line corresponds to a maximally mixed state. These re-
sults are based on tomography with 2!° shots under a Qiskit noise model generated for ibmq_athens

on 16 May 2021.
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w
Figure 16. (Above) Fidelity (43) of experimental Werner state density matrices reconstructed by
Qiskit on ibmq_athens and ibmq_santiago for 5000 shots, and compared with the results from Qiskit
simulator and noise models provided by Qiskit. The black dashed line corresponds to the extreme
worst case where an identity matrix would be produced by the simulations (cf. Equation (44) and its
discussion). (Below) Standard deviation of fidelity over 10 simulations for ibmg_athens (red solid
line) and its noise model (yellow dash-dotted line).

6.1. Simulations with Noise Models from IBM Q Quantum Deuvices

To compare the various quantum circuits that we have proposed in Section 3, and
specifically their expected performance in producing quantum correlations when subject to
noise, we have run simulations using Qiskit [41]. The source code for these is available in
our GitLab repository [46]. Each circuit is executed 2! times, with noise simulated accord-
ing to the Qiskit noise model [65]. Such noise models are generated semi-automatically
by Qiskit based on the state of a real IBM Q device at the time of generation. As such,
they are subject to change over time, and should in any case not be viewed as accurate
representations of noise in real devices. They are, however, useful as a rough benchmark
for comparing different quantum circuits.
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6.1.1. Fidelity in Noisy Simulations on the Werner Line

Figure 15 shows the fidelity F(p"Vi¢, pWtheo) of Werner states o™ prepared with
the different circuits described in Section 3, with respect to the corresponding theoretical
Werner density matrix p"Vthe°, in the presence of simulated Qiskit noise. The fidelity is
computed from the density matrix of the output state, as empirically determined using
our adaptation of Qiskit’s built-in routine for quantum tomography; see Section 4. As may
have been expected, two-qubit circuits consistently outperform four-qubit circuits, and the
“compact” circuit (Figure 3b) consistently outperforms the one based on canonical 3-sphere
coordinates (Figure 3c). Perhaps surprisingly, the two-qubit circuit specialized for Werner
states (see Figure 6) generally does not outperform the compact circuit.

6.1.2. Noisy Simulation in the Whole Tetrahedron: Expected Quantum Mutual Information
and Discord

We have simulated the 4-qubit as well as 2-qubit circuits of section 3 using a Qiskit
noise model for the backend ibmg_london (respectively generated on 2019-12-03 and
2019-12-10 with 1000 shots). Figures 17 and 18 display the result for the quantum mutual
information and the discord on the whole tetrahedron. In general, we observe that noise
reduces these quantities to almost half their theoretical value close to the corners of the
tetrahedron. Interestingly, in the corners and along the edges we observe that the 2-qubit
circuit is slightly more faithful to the ideal results of Figures 11 and 13 in Section 5.1. The
same observations hold also for the classical correlation (not shown here). These results
are consistent with the corresponding observations on the Werner line discussed in the
previous paragraph.

2.0

to 11
Figure 17. Quantum mutual information Zppg on its natural scale [0, 2], as expected from noisy
simulation of 4-qubit (left) and 2-qubit (right) circuits.

1
t3
-1
—1 t1
- ty 11

lo 11
Figure 18. Discord Dppg on its natural scale [0, 1], as expected from noisy simulation of 4-qubit (left)

and 2-qubit (right) circuit. The three-pointed star pattern is visible, but deteriorating.
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6.2. Experiments on IBM Q Quantum Devices

We now turn to true quantum experiments on IBM Q. Some of the circuits which
cannot yet be implemented are left out. The quantities measured and evaluated will be the
same as in the simulations of the previous subsection, namely fidelity of the experimental
density matrices (obtained by Qskit tomography) and experimentally achieved classical
correlations, quantum mutual information and discord.

6.2.1. Fidelity of Experimental Density Matrices

Figure 16 shows the fidelity in the experiment using the quantum circuit on Figure 3b
on ibmq_athens and ibmg_santiago with 5000 shots. This is compared to the ideal noise-
less simulation with gasm-simulator, and the one using a Qiskit noise model based on the
properties of each real hardware. The density matrix reconstructed using both ibmqg_athens
and ibmg_santiago with 5000 shots is close to the ideal one for small w, proving the perfor-
mance of the real quantum computer in the corresponding domain, although it drops below
85% and 75%, respectively, for w = 1. At the time, this result suggests that it is necessary to
improve the current noise model to describe the fidelity drop in a more faithful way. In
this run, we see that slightly higher fidelity was obtained by ibmg_athens compared to
ibmqg_santiago.

Figure 19 shows the fidelity of states on the full BDS tetrahedron, as computed from
the density matrices reconstructed from experiments on the ibmqx2 backend, running the
circuit of Figure 3b with 1000 shots per measurement. We see that the fidelity is fairly high,
~0.9, over the whole domain which allows us to proceed with the calculations of quantum
correlations in the following.

1.0

-1

[2) 11
Figure 19. Experimental fidelity of BDS, scale [0.7,1].

6.2.2. Experimental Classical Correlations, Quantum Mutual Information and Discord

Several quantities are studied on the real quantum computer. Again, we use the
ibmgx2 backend, running the circuit of Figure 3b with 1000 shots per measurement.

One can see on Figure 20 that the experimental classical correlations seem to follow
the theoretical predictions, nevertheless exhibiting lower values, especially visible on the
edges of the tetrahedron. Quantum mutual information (Figure 21) seems to suffer most
of the lack of fidelity, indeed, its maximal values are nearly one unit below the theoretical
ones. Finally, discord, plotted on Figure 22, also decreased compared to the theory.

It can be noticed that classical correlations and quantum mutual information reveal an
asymmetric behavior in the tetrahedron. The Bell states |Bgo) and |Bo1) both have higher
values of these quantities than |B19) and |B11). This asymmetry is however also apparent
in the noise simulations (see Figures 17 and 18) and thus seems to be explained by the noise
model. More work would be needed to track the possible source of this asymmetry at the
circuit level (with respect to the preparation of Bell states and edges of the tetrahedron).
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0.5

0.0
t 11
Figure 20. Experimental classical correlations Cppg, scale [0,1.5].

b 11
Figure 22. Experimental discord Dppg on the scale [0, 0.7]. The three-pointed star pattern is barely visible.

7. Conclusions

In the preceding work, we have proposed new quantum circuits for the preparation
of the entire class of Bell diagonal states, and in particular Werner states, and tested them
in simulations as well as on a real quantum device. To the best of our knowledge, they are
the first correct, special-purpose BDS preparation circuits to be described. Furthermore,
we have given a comprehensive reexamination of the central role of Bell diagonal states
in the study of entropic measures of quantum correlations, in particular quantum discord
for which we found a specific equivalence with “asymmetric relative entropy of discord”.
More generally, and as a by-product of this work, we also found the remarkable general
inequality (39) between these two quantities: for any quantum state the former never ex-
ceeds the latter! We have illustrated the behavior of these measures on the BDS tetrahedron
and the Werner line, comparing theory, circuit simulations and experiments.

Currently, two primary qubits and two ancillary qubits seem necessary to prepare BDS
on physical IBM Q devices; we recommend the circuit of Figure 2 combined with Figure 3b
for this purpose. However, this is not a fundamental restriction, but rather a consequence
of the current limited capabilities of the hardware. On future quantum computers that
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support post-measurement gates and classically controlled measurement operations, the
ancillary qubits will not be necessary. This highlights the value of developing not only the
quantum systems themselves, but also the classical interfaces controlling them. In addition,
fully fledged classical control will make it possible to implement key protocols that rely on
classical communication, such as quantum teleportation.

We point out that it would be interesting (in future work) to implement the four-qubit
circuit template of Figure 5. Indeed, as explained in Section 3 it implements the unread
measurements as an interaction with two environmental qubits. This could in practice be
at an advantage compared to that of Figure 2, especially so in combination with Figure 3b.
Indeed, it places weaker demands on the topology of the underlying device. The degree
to which this is true will of course depend on the particular device, but we speculate that
Figure 5 will typically be at an advantage because it concentrates most operations to the
qubits 2 and b, and in particular, reuses the CNOT channel 2 — b where Figure 2 requires
an additional CNOT channel ¢ — 4.

We have shown that the IBM Q devices allow for an experimental investigation of a
large portion of the Hilbert space of two-qubit systems, in particular for the correlation
measures over the whole tetrahedron of BDS in Section 6. The comparison of experiments
and noisy simulations seems to show that the backend noise models provided by Qiskit are
too optimistic; this reveals especially near corners of the tetrahedron. This is also visible at
the level of the fidelity on the Werner line.
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Appendix A. Analytical Solution for Parameters

We provide here a full analytical solution to Equation (16). The procedure is imple-
mented in the accompanying software [46]. For brevity, we let ¢y = cos <g), Sp = sin (g)
and aj = ,/Pjx. We then want to solve

a00 = CuCpCy + SaSpgSy
agy = C,xCﬁSry — SaSﬁC7 (Al)
ajp = C,XS/gC,Y — SaC’gS'y
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for a, B and <. First, inspecting the circuit of Figure 3b, we notice that the parameter «
controls the degree of entanglement of the output state. Guided by this, we isolate « by
computing the measure of entanglement

apo  4o1

= aoo411 — 401410
ajp 411

= (2 + si)(cﬁs}gcﬂys7 — CpSpCySy)
+ casa(c%c%r + c%s% + s%c% + s%s%) (A2)
= c,xs,x(cf; + s%)(c,zy + s%)

1 .
= CaSa = 5 sin(a).

Choosing « € [—7%, 5], implying cos(a) > 0 and ¢, > 0, we thus obtain
0N = arcsin(Z(aooall — El()lﬂl())). (A3)

Now, with knowledge of ¢, and s, Equation (A1) turn into a linear system of equations
in four unknowns CBCy, CpSy, SpCy and SpSy- The solution is

1
= (Caaoo — Sa011)

ey cos(a)
CpSy = (cafto1 + sadi10)
cos(a) (A4)
SgCy = m(saﬂm + cattip)
58y = (—Sa00 + cafi11)

cos(a)
where we have used ¢2 — 52 = cos(«).
In the case of cos(x) = 0,i.e.,, &« = £7, we have ¢, = £5, = % and the system (A1)

is singular because the output state in fact depends only on § T . Then we may choose
v = 0 and find B directly from (A1) through

Cﬁ = \@aoo, Sﬁ = \fZam. (A5)

(In fact, for cos(a) = 0, one of the parameters a;; must be negative unless § = <, so only
the case B = v = 0 is of interest to us.)
If cos(a) # 0, we can construct the matrix

A= (Cﬁ” Cﬁs“’) — be" (A6)
S‘5C7 sﬁsy

where we have defined the unit vectors

b= (;i) and ¢ = <§Z> (A7)

The matrices AA" = bc'cb” = bb" and ATA = cb"bc" = cc” are the projectors onto b

and c respectively, and may be used to find b and c up to a sign (for example, b = i%
for an arbitrary vector x not orthogonal to b). We may fix the sign of b, e.g., by imposing
cg > 0 (or sp > 0if cp = 0); the sign of c is then fixed by the condition bc” = A. Finally,

and -y are determined by b and c.
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Appendix B. Quantum Implementation of Classical Operations

We showed in Section 3.2 how we could reduce the number of quantum bits from
four to two by introducing classical registers and operations. However, current hardware
does not support these. Therefore, as well as for general theoretical interest, it is relevant to
ask how the classical parts of a circuit, including measurements, can be recast as purely
quantum operations.

Any purely classical computation can be done on a quantum computer using only the
subset of quantum gates that map computational basis states to computational basis states
(that is, gates whose matrix representation have only one nonzero element in each row and
each column). For this to work, one must first arrange for the classical computation to be
reversible, which is always possible but may require ancillary bits [66], chap. 3.2.5.

It is also possible to rearrange a quantum circuit where decisions are taken based
on measurement outcomes into one where all measurements occur at the end of the
computation. One simply replaces each measurement with a CNOT operation targeting
a new qubit, and any gates conditional on the result being 1 with the corresponding
controlled gates. This is the principle of deferred measurement [66], chap. 4.4.

0}, —Ry(6) (H]

Pab
10),, LTJ H} <
0). S—e—{X —{ x|

unread
’O>d <> (env.)
10}, &

Figure A1. Fully quantum version of the circuit of Figure 6 for preparing Werner states.

Figure Al shows the result of straightforwardly applying the principle of deferred
measurement to the circuit of Figure 6. Although the two circuits are theoretically equiva-
lent, the rewriting has introduced several extra quantum gates, including three Toffoli gates.
The extra complexity makes it likely that the purely quantum circuit is more sensitive
to noise than the one incorporating classical elements (though this statement of course
depends on the performance of the hypothetical in-circuit measurement, which we cannot
in fact assess). Therefore, we have not considered this circuit as a practical alternative to
the one in Figure 6.

Appendix C. Separability and Entanglement of Formation for Werner States

For the sake of completeness, we summarize a few details for the determination of the
separability threshold and entanglement of formation.
In the computational basis the Werner state reads

1—-w 0 0 0
1 0 1+w —2w 0
4 o 2w 1+w 0

0 0 0 1-w

and its partial transpose is given by

1—w 0 0 —2w
1l 0 14w 0 0
w=31 o 0 14w 0
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The eigenvalues are easily calculated from the two 2 x 2 blocks, and one finds three
degenerate eigenvalues equal to 1+Tw and another equal to %. By the PPT criterion the
state is separable if and only if w € [0, §] and entangled for w € (3,1].

To compute the entanglement of formation we apply the formulas of Section 5.1. First,

we compute the matrix gy = 02 ® 007,02 ® 02,

1—w 0 0 0

. 110 14+w 2w 0

PW=21 0o 2w 1+w 0O
0 0 0 1-w

and note that it is equal to py. Thus, the square roots of the eigenvalues of pypw = p%,
are given by the eigenvalues of py. These are, in descending order, y1 = (1 + 3w),
o = 3 = pg = (1 —w). Applying Wootters’ Formula (22) we find C(py) = max(0, 3%~
and the entanglement of formation immediately follows from Equation (23).
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