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Abstract: Deng entropy and extropy are two measures useful in the Dempster-Shafer evidence
theory (DST) to study uncertainty, following the idea that extropy is the dual concept of entropy.
In this paper, we present their fractional versions named fractional Deng entropy and extropy and
compare them to other measures in the framework of DST. Here, we study the maximum for both of
them and give several examples. Finally, we analyze a problem of classification in pattern recognition
in order to highlight the importance of these new measures.
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1. Introduction

The concept of entropy as a measure of uncertainty was first introduced by Shannon [1],
and since then, it has been used in the field of information theory, image and signal
processing and economics. Let X be a discrete random variable with probability mass
function vector p = (py, ..., pn). The Shannon entropy of X is defined as follows

H(X) = H(p) = — )_ pilogpi, 1)
i=1

where log(-) stands for the natural logarithm with the convention 0log0 = 0. Recently,
the dual measure of entropy has become widespread. It is known as extropy and was
defined for a discrete random variable X by Lad et al. [2] as

n

J(X) =J(p) == Y_(1—pi)log(1—pi), )

i=1

and since then, as the Shannon entropy;, it has been studied in several contexts and in its
differential version [3-6].

The generalization of Shannon entropy to various fields is always of great interest.
Ubriaco [7] defined a new entropy based on fractional calculus as follows:

Se(X) = S4(p) = Y_ pil—logpi]?, 0<qg<1. )
i=1

The fractional entropy is concave, positive and non-additive. Moreover, for g4 = 1, the
fractional entropy reduces to the Shannon entropy. From a physical sense, it also satisfies
Lesche and thermodynamic stability.
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The purpose of this paper is to extend to the fractional case of Deng entropy and
extropy. Deng entropy and extropy [8,9] are two measures of uncertainty known in the
context of the Dempster—Shafer theory (DST) of evidence. The DST of evidence [10,11]
is a generalization of the classical probability theory. In DST, an uncertain event with
a finite number of alternatives is considered, and a mass function over the power set
of the alternatives, considered as a degree of confidence, is defined. DST allows us to
describe more general situations in which there is less specific information with respect
to the classical probability theory. DST has several applications due to its advantages in
dealing with uncertainty; for example, it is used in reliability analysis [12,13], in decision
making [14,15], and so on [16,17].

Now, we describe an example given in [8] to explain how DST extends the classical
probability theory. Consider two boxes, A and B, such that in A, there are only red balls,
whereas in B, there are only green balls and the number of balls in each box is unknown.
A ball is picked randomly from one of the boxes. The box A is chosen with probability
pa = 0.6 and box B is selected with probability pgp = 0.4. Thus, the probability of picking
up a red ball is 0.6, P(R) = 0.6, and the probability of picking a green ball is 0.4, P(G) = 0.4.
Now, suppose in box B there are green and red balls with rates unknown and pg4, ps
are unchanged. In this case, we cannot obtain the probability of picking up a red ball.
To overcome this problem, we can use DST to express the uncertainty. In particular, we
choose a mass function m, such that m(R) = 0.6 and m(R, G) = 0.4.

The rest of the paper is organized as follows. In Section 2, we recall the basic notions
of the Dempster—Shafer theory of evidence and some of the most important measures of
uncertainty in this context. In Section 3, we define and study the fractional Deng entropy.
In Section 4, we introduce the fractional Deng extropy, and several examples are given. In
Section 5, we apply fractional Deng entropy and fractional Deng extropy to a problem of
classification. Finally, in Section 6, we give conclusions and summarize the results obtained
in the paper.

2. Preliminaries

In this section, we review some basic definitions in the Dempster-Shafer evidence
theory (DST) [10,11] and Deng entropy [8].

Definition 1. Let X = {6,,65,...,6;,..., Q‘X‘} be a finite set of mutually exclusive and collec-

tively exhaustive events, X is the frame of discernment (FOD). The power set of X consists of 21X
elements denoted as follows:

2X ={@,{6:},.... {0)x}. {61,62},...,{61,62,...,6;},..., X}.

Definition 2. (Mass function) Given a FOD X = {61,60,,...,6;,..., 0‘X| }, a mapping m from
2X t0 [0, 1] is called a mass function, or basic probability assignment (BPA), formally defined by:

m: 2% = 10,1]

which satisfies
m(@) =0, Y m(A)=1, m(A)>0. 4)
Ae2X
In DST, m(A) represents how strongly the evidence supports A. Then, m(A) measures the
belief exactly assigned to A. If m(A) > 0, then A is called a focal element.

Recently, some operations on BPA are presented, such as negation [18] and correla-
tion [19]. In several applications, we need to generate a new BPA starting from independent
BPAs or from a weight of evidence represented by a coefficient « € (0, 1].
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In DST, there are different indices to evaluate the degree of belief in a subset of FOD.
Among them, here we recall the definitions of belief function, plausibility function and
pignistic probability transformation (PPT).

Definition 3. (Belief function and plausibility function) A BPA m can also be represented by the
belief function Bel or the plausibility function P, defined as follows:

Bel(A)= Y. m(B), PI(A)= Y  m(B).

@+#BCA BNA#D

Definition 4. Given a BPA m on a FOD X, the pignistic probability transformation (PPT) of
A C X is defined as [20]
B
ppr(a) = Y "B 5)

B:ACB |B| '

Some Uncertainty Measures for the Dempster—Shafer Framework

In the context of the DST, there are interesting measures of discrimination, such as
Deng entropy; it has many advantages in some cases, in comparison with other uncertainty
measures in the DST framework. It was this latter concept that has suggested to us the
introduction of a new extension. In Table 1, we present the definitions of some of the most
important measures of uncertainty in DST.

Table 1. Uncertainty measures in the DST framework.

Uncertainty Measure Definition
Hohle’s confusion measure [21] Cu(m) = — Y acxm(A)log, Bel(A)
Yager’s Dissonance Measure [22] Ey(m) = =Y scx m(A)log, PI(A)
Dubois and Prade’s Weighted Hartley Entropy [23] Epp(m) = — Y acx m(A)log, |A]
Klir and Ramer’s discord measure [24] Dxr(m) = — Y acx m(A)log, Ypcx m(B) VTQ‘B‘
Klir and Parviz’s strife measure [25] Skp(m) = — L acx m(A)log, Ypcx m(B) “TQ?'
George and Pal'’s total conflict measure [26] TCep(m) = X acx m(A) Lgcx m(B) (1 — %)

Definition 5. (Deng entropy) Deng entropy was introduced in [8] for a BPA m as

m(A) ),

A —1 (6)

Esm)=— Y m<A>1og2(
ACX:m(A)>0

where | A| denotes the cardinality of the focal element A.

Deng entropy degenerates to the Shannon entropy if, and only if, a positive mass function
value is assigned only to singleton elements, whichis E;(m) = — Z!i‘l m({6;})log, m({6;}).
Deng entropy has attracted the interest of researchers, and several of its generalizations
have been studied. In Table 2, we present some modified versions of Deng entropy.

Table 2. Modified Deng entropy in the DST framework.

Uncertainty Measure Definition

A1
Zhou et al.’s Entropy [27] Epa(m) = — Y 4cx m(A)log, ZT&(‘A) e X

-1
Pan et al.’s Entropy [28] Ppe(m) = =YX acx BEI(A);'PZ(A) log, (PZ(AZ)‘;IE?Z(A)

|AnB]
Cui et al.’s Entropy [29] E(m) = — Y acxm(A)log, (meZBCX'B# 2Xi )
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3. Fractional Deng Entropy

In recent years, great attention has been given to fractional calculus. For this reason,
several authors have studied various fractional entropies from the idea that they satisfy
physical conditions of stability. In order to obtain an analog of (6), we introduce the concept
of fractional Deng entropy in the following definition.

Definition 6. Let m be a BPA on a FOD X. We define the Fractional Deng Entropy (FDEn) of m as

m(A 1
Ej(m) = Y,  m(4) [—log2<2|A|(_)1>} , 0<g<1 @)
ACX:m(A)>0
Example 1.
(i) Assume that the FOD is X = {a,b,c}. For a mass function m(a) = m(b) = m(c) = %, the

associated fractional entropy and FDEn are obtained as follows:

Sq(p) = Ej(m) = [log, 3]".

It is obvious that, in this case, the FDEn is increasing in q € (0,1].
(i) Assume there is a € X such that m(a) = 1. The associated fractional entropy and FDEn
coincide and are obtained as

Sq(B) = Eg(m) =0.

Clearly, we see that the results of fractional entropy and FDEn are identical when
the BPA assigns a positive mass only to singletons. Moreover, if A C X exists such that
m(A) > 0and | A |> 1, we cannot evaluate the fractional entropy.

Example 2. Given a FOD X = {a, b, c}, for a mass function my(a,b,c) = 1, we have
Ej(m1) = [log, 7)".

For another mass function my(a) = my(b) = my(c) = my(a,b) = my(a,c) = my(b,c) =

my(a,b,c) = %, we obtain

3 1
Ej(m2) = = ([logy 7]7 + [log, 21)7) + = [log, 49]7.
The plot of the FDEn as a function of g € (0,1] is given in Figure 1. From Figure 1, it is seen that

EZ(m) is increasing in q and the maximum is achieved for g = 1, i.e., when the FDEn reduces to
Deng entropy.

<
<

©
)

3.0
|

1.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

q

Figure 1. Plot of EZ("ZZ) in Example 2 as a function of g.
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Example 3. Assume that the FOD is X = {ay,ay,...,ax}. For a mass function m({ay,ay,
...,a10})) =04, m({a1y,a12,...,a20}) = 0.6, we obtain

0.4 q 0.6 q
q _

The plot of this FDEn is given in Figure 2. From Figure 2, it is seen that Eg(m) is increasing in g,
and the maximum is achieved when FDEn reduces to Deng entropy.

0.0 0.2 0.4 0.6 0.8 1.0

q

Figure 2. Plot of EZ(m) in Example 3 as a function of 4.

Example 4. Let us consider a FOD X = {a,b,c} and a BPA m such that m(a) = p, and
m(a,b) = r,, where r, =1 — p,. For p; € {0.01,0.8,0.99}, the function Eg(m) is computed.
In this example, it is shown that the Eg(m) can be increasing, decreasing and upside-down bath-
tubed shaped. The FDEn is given by

Ej(m) = pallogy(1/pa))? + rallog, (3/7a)]".

In Figure 3, the plot of Eg(m) for different values of p, is given. It is seen that for p, = 0.01,
pa = 0.80 and p, = 0.99, the plot of EZ(m) is increasing, upside-down bathtub shaped and
decreasing, respectively.

p.=0.01
~ p.=0.80
— p.=0.99

15

1.0

q

Figure 3. Plot of Eg(m) in Example 4 as a function of g for different values of p,.

In the above examples, it is seen that the function EZ (m) cannot be a concave function,
and it can be increasing, decreasing and upside-down bathtub shape. Furthermore, the
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supremum FDEn is achieved when g is near to the boundary of interval (0, 1]. Therefore,
we can state the following theorem.

Theorem 1. Let m be a non-degenerate BPA on a FOD X and q € (0,1]. Then, the supremum
FDEn as a function of q is attained for q € {0, 1} and the infimum is attained in the extremes of
interval (0,1), or it is a minimum assumed in a unique qo € (0,1).

Proof. By noting that for fixed x > 0 the function g(p) = x* is a convex function of p we
can conclude that the FDEn is a strictly convex function of 4. Hence, we have three possible
scenarios. In the first one, the FDEn is strictly increasing in g and hence it assumes the
maximum value for g = 1, i.e., when it reduces to Deng entropy, and the infimum is 1 by
the normalization condition. In the second scenario, the FDEn is strictly decreasing; hence,
the supremum is 1 and the minimum is assumed for 4 = 1. In the third case, there is a
unique stationary point in (0,1), it is an absolute minimum, whereas the supremum is
given by max{1, E;(m)}. O

In the following theorem, we study the maximum FDEn for a fixed value of q. This is
an important issue in the theory of measures of uncertainty; see, for instance, [30] for the
study of the maximum Deng entropy.

Theorem 2. Let X be a FOD, q € (0,1] and m be a BPA, which assigns positive mass to each
non-empty subset of X. The maximum FDEn is attained if the BPA m is defined as

214 —1
= CLE Y

Proof. For a fixed g € (0,1] the FDEn is given by (7) as

B = ¥ mia)[- 1o (5520 )] ©)

OLACX 2141 —1

m(A)

We have to maximize (9) subject to the constraint

Y, m(A)=1. (10)

@#£ACX

We use the method of Lagrange multipliers, and we have to compute the partial
derivatives of the function

El = Q#;QX m(A) {_ log, (szl(ﬂ) ] 9 +A <®#;gxm(A) - 1)

with respect to m(A). By differentiating E"Z with respect to m(A), we have

oE m(A) \11 m(A) 1771
d _ _ _ _ N
om(A) [ log, <2A| - 1)} 7108, (¢) { 10g2<2A . 1)] A
_ m(4) \]7 m(A)
= |:— logz (2A|_1>:| —q 10g2 (e) — 10g2 m + A.
In order to vanish all the partial derivatives of E"g, the ratio 27\%@1 = K has to be

invariant with respect to A. In fact, the function

§(z) = [~logy(2)]""" [-qlog, (e) —log,(2)]
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is strictly decreasing in z € (0, 1) since

¢'(2) = T8 [ 1og, (2))772((g — 1) logy(¢) + log, (2)]

and z < e!77. Hence, by the constraint (10), we get

1
Ke -
Yaex (2Bl —1)

and the BPA m, which maximizes the FDEn, is given in (8). [

Example 5. Based on the result of Theorem 2, let us evaluate the maximum FDEn for a FOD of
cardinality 3, X = {a, b, c}. In this case, the BPA given in (8) is defined as

m(a) =m(b) = m(c) = %,
m(a,b) = m(a,c) =m(b,c) = %,
m(xX) = o

Then, the maximum FDEn is given by
El(m) = [log,(19)]".

4. Fractional Deng Extropy

In the following definition, we present the Deng extropy introduced by Buono and
Longobardi [9] as a dual measure of uncertainty to Deng entropy.

Definition 7. (Deng Extropy) Deng extropy was introduced in [9] for a BPA m on a FOD X as

B 1—m(A)
EXy(m) = — ACX:mZ(A)>O<1 —m(A))log, (2Ac|1>

where A€ is the complementary of A in X and |A°| = |X| — |A].
Now, in analogy with FDEn, we introduce the fractional version of Deng extropy.

Definition 8. Let m be a BPA on a FOD X. We define the Fractional Deng Extropy (FDEx) of m as

1-m(A)\11
EXim)= Y. (1-m(A)) {— log, <2IAI(1)H : (11)
ACX:m(A)>0
Example 6.
(i) Assume that the FOD is X = {a,b,c}. For a mass function m(a) = m(b) = m(c) = %, the

associated FDEx is obtained as follows:

q 911
EX;(m) zz{lc)g2 2} :

Based on this BPA, we have obtained the FDEn in Example 1. In Figure 4, the plot of
EXZ(m) — Eg(m) is given.
One can see that EX}(m) — EJ(m) is an increasing function of q, and this function is greater

than 1. Thus, for q € (0,1], the FDEx is greater than the FDEn. Furthermore, EXZ(m) is
increasing in q and the maximum is achieved for g = 1, i.e., when FDEx reduces to Deng extropy.
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(i) Assume there is a € X such that m(a) = 1. Then,
EX{(m) = 0.

In this case, the FDEx is consistent with its dual definition FDEn.

25
|

2.0

1.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4. Plot of EXZ (m) — Eg(m) in Example 6 as a function of g.

Example 7. Let us consider a FOD X = {a,b,c}. For a mass function m(a) = m(b) = m(c) =
m(a,b) = m(a,c) =m(b,c) =m(a,b,c) = L, we obtain

18
Ej(m) = 7([1082 7—1]7+ [log, 7 —log, 6]7).

In Figure 5, the plot of EXZ(m) is given. One can see that as a function of q, it has a convex
parabolic shape and the maximum is achieved when it reduces to Deng extropy.

52

5.1

4.9

4.8

4.7
|

Figure 5. Plot of EXZ (m) in Example 7 as a function of 4.

Example 8. Assume that the FOD is X = {ay,ay,...,ax}. For a mass function m({ay,az,
...,a10}) = 04, m({ay, a11,--.,a2}) = 0.6, we obtain

0.6 1 0.4 1
EX}(m) =06 [—log2 (210_1)] +0.4 [—log2<210_1)] .

In this case, FDEx and FDEn are equal.
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Example 9. Given a FOD X = {a,b,c} and a BPA m such that m(a) = 0.9, m(a,b) = 0.01 and
m(X) = 0.09, we have

] . 1001
EX(m) = 0.1[log, 30]7 4- 0.99 | log, 59 | -

In Figure 6, the plot of EXZZ(m) is given. One can see that as a function of q, it has a convex
parabolic shape and the maximum is achieved when q tends to zero.

1.0

0.8
|

0.6
|

0.4

0.0 0.2 0.4 0.6 0.8 1.0

q

Figure 6. Plot of E XZ (m) in Example 9 as a function of g.

Similar to FDEn, in the above examples, it is seen that the function E Xg(m) cannot
be a concave and it can be increasing, decreasing and upside-down bathtub shape. Fur-
thermore, the supremum FDEX is achieved when g is near the boundary of interval (0, 1].
The following theorem is immediate.

Theorem 3. Let m be a non-degenerate BPA on a FOD X and q € (0,1]. Then, the supremum
FDEx as a function of q is attained for g € {0, 1} and the infimum is attained in the extremes of
interval (0,1) or it is a minimum assumed in a unique qo € (0,1).

Proof. The proof is similar to that of Theorem 1; in this case, the supremum is given
by max{N — 1+ m(X), EX;(m)}, where N is the number of focal elements different
form X. O

Next, in analogy with Theorem 2, we obtain an upper bound for the maximum FDEx
with a fixed value of q.

Theorem 4. Let X be a FOD, q € (0,1] and m be a BPA that assigns positive mass to each
non-empty subset of X. For a fixed value of m(X), an upper bound for the FDEx is assumed in
correspondence of the fictitious BPA 1 such that m(X) = m(X) and

o QX =34+ m(X) (54
m(A) =1— Forrx @ T (2 - 1), ®+ACX. (12)

Proof. The proof is similar to the one given for Theorem 2. After establishing that
1-m(A)
214511
normalization, we get

= K have to be invariant with respect to A, in order to satisfy the condition of

1—m(A) = K(zw‘ - 1)
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and, by summing over A C X

234 m(X)
Yoracx(241—1)

Hence, the BPA which maximizes the FDEx is given in (12). We have to specify that it
is a fictitious BPA, in the sense that 177( A) may be negative for some subset of X. [

Example 10. Based on the result of Theorem 4, let us evaluate the upper bound for FDEx in the
case | X| = 3 with fixed m(X). We have three subsets of cardinality one and three of cardinality
two, and then the upper bound in given by

= (5+m(X)) [1082 (S—i—lrrzz(X))r

5. Application to a Problem of Classification

In this section, we apply FDEn and FDEXx to a problem of classification. We analyze a
dataset given in [31] about typical qualities of Italian wines. This dataset is composed of
178 instances and, for each one, thirteen attributes are given. The instances of the dataset
are divided into three classes of wine: class 1, class 2 and class 3. We use six attributes to
discriminate for each instance the correct class. In particular, the attributes involved in
this example are: Alcohol, Malic acid, Ash, OD280/0D315 of diluted wines (OD), Color
intensity (CI) and Proline. We use the method of max—min values to generate a model of
interval numbers. In particular, for a fixed attribute, we study the interval of variability in
a single class, and then we intersect the intervals of more classes. The model of interval
numbers is shown in Table 3.

Table 3. The model of interval numbers.

Class Alcohol Malic Acid Ash oD CI Proline
1 [12.850, 14.830] [1.3500, 4.0400] [2.0400, 3.2200] [2.5100, 4.0000] [3.5200, 8.9000] [680, 1680]

2 [11.030, 13.860] [0.7400, 5.8000] [1.3600, 3.2300] [1.5900, 3.6900] [1.2800, 6.0000] [278,985]

3 [12.200, 14.340] [1.2400, 5.6500] [2.1000, 2.8600] [1.2700, 2.4700] [3.8500, 13.0000] [415,880]
1,2 [12.850, 13.860] [1.3500, 4.0400] [2.0400, 3.2200] [2.5100, 3.6900] [3.5200, 6.0000] [680,985]
1,3 [12.850, 14.340] [1.3500, 4.0400] [2.1000, 2.8600] — [3.8500, 8.9000] (680, 880]
2,3 [12.200, 13.860] [1.2400, 5.6500] [2.1000, 2.8600] [1.5900, 2.4700] [3.8500, 6.0000] [415, 880]
1,2,3 [12.850, 13.860] [1.3500, 4.0400] [2.1000, 2.8600] — [3.8500, 6.0000] (680, 880]

Suppose the selected instance is (13.860, 1.5100, 2.6700, 3.1600, 3.3800,410). From the

dataset, we know that the selected instance belongs to class 2, and our purpose is to classify
it in the right way. We generate six BPAs, one for each attribute, by using a method based
on the similarity of interval numbers proposed by Kang et al. [32]. Given two intervals
A = [a1,a3] and B = [by, by], their similarity S(A, B) can be defined as

1
AB)=——"——
SAAB) = DA By

where « > 0 is the coefficient of support, here we use « = 5, and D(A, B) is the distance of
intervals A and B defined in [33] as

wo=[(52)- () () (5]
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For each attribute, we can get seven values of similarity by choosing as A the intervals
given in Table 3 and as B the corresponding singleton of the selected instance. Then, by
normalizing the obtained values, we get six BPAs, as reported in Table 4.

Table 4. BPAs based on Kang’s method.

Class Alcohol Malic Acid Ash oD CI Proline
m(1) 0.1699 0.1685 0.1416 0.2700 0.0967 0.0623
m(2) 0.0715 0.1095 0.0897 0.1732 0.2088 0.1700
m(3) 0.1244 0.1083 0.1568 0.1126 0.0562 0.1877
m(1,2) 0.1675 0.1685 0.1416 0.3168 0.1889 0.1187
m(1,3) 0.1860 0.1685 0.1568 0.0000 0.0939 0.1368
m(2,3) 0.1132 0.1083 0.1568 0.1273 0.1777 0.1877
m(1,2,3) 0.1675 0.1685 0.1568 0.0000 0.1777 0.1368

Without any additional information, we can evaluate a final BPA giving the same
weight to each attribute, i.e., by summing the six values related to a focal element and then
dividing by six. In this way, we get the final BPA shown in Table 5.

Table 5. Final BPA.

Class Final BPA
m(1) 0.1515
m(2) 0.1371
m(3) 0.1243
m(1,2) 0.1837
m(1,3) 0.1237
m(2,3) 0.1452
m(1,2,3) 0.1345

Now, based on the BPA in Table 5, we can evaluate the PPT (5) of the classes, and
we get
PPT(1) =0.3500, PPT(2) =0.3464, PPT(3) = 0.3036.

Hence, the focal element with the highest PPT is class 1, and so, it would be our final
hypothesis without making the correct decision.

We try to improve the described method by using FDEn. Let us fix the value g = 0.6.
We evaluate the FDEn of BPAs given in Table 4 and we obtain the results shown in Table 6.

Table 6. Fractional Deng entropies of BPAs in Table 4.

Attribute Alcohol Malic Acid Ash oD CI Proline
FDEn 2.2684 2.2658 2.2638 1.8801 2.2494 1.4378

Since a higher value of FDEn means a higher uncertainty, we can give more weight
to the attributes with lower FDEn. In particular, we define the weights by normalizing
to 1 the reciprocal values of fractional Deng entropies. We obtain the weights presented
in Table 7.

Table 7. The weights of attributes based on FDEn.

Attribute Alcohol Malic Acid Ash oD CI Proline
Weight 0.1472 0.1473 0.1474 0.1775 0.1484 0.2322

Based on the weights in Table 7, we get a weighted version of the final BPA, as shown
in Table 8.
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Table 8. Final weighted BPA.

Class Final Weighted BPA
m(1) 0.1474
m(2) 0.1411
m(3) 0.1293
m(1,2) 0.1822
m(1,3) 0.1210
m(2,3) 0.1483
m(1,2,3) 0.1307

Finally, based on the BPA in Table 8, we evaluate the PPT of the classes and we get
PPT(1) = 0.3426, PPT(2) =0.3499, PPT(3) = 0.3075.

Hence, the focal element with the highest PPT is class 2, so it is our final hypothesis and
we made the correct decision.

Along the same lines, we can use FDEx. In Table 9, we give the recognition rates of the
non-weighted method and methods based on FDEn and FDEx for different choices of 4.

Table 9. The recognition rate.

Non-Weighted Method q FDEn Method FDEx Method
93.26% 0.5 94.38% 93.26%
0.6 94.94% 93.26%
1 94.38% 93.26%

6. Conclusions

In this paper, fractional Deng entropy and extropy have been defined from the def-
initions of Deng entropy and extropy. These measures have been compared with other
well-known ones, and some examples have been proposed. Characterization results for the
maximum fractional Deng entropy and extropy have been given, and finally, a problem of
classification based on a dataset has been discussed in order to emphasize the relevance of
these measures in pattern recognition.
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Abbreviations

The following abbreviations are used in this manuscript:

BPA Basic probability assignment

CI Color intensity

DST  Dempster—Shafer theory of evidence
FDEn Fractional Deng Entropy


http://archive.ics.uci.edu/ml

Entropy 2021, 23, 623 13 of 13

FDEx Fractional Deng Extropy

FOD  Frame of discernment

OD 0OD280/0D315 of diluted wines
PPT  Pignistic probability transformation
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