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Abstract: The way people learn will play an essential role in the sustainable development of the
educational system for the future. Utilizing technology in the age of information and incorporating
it into how people learn can produce better learners. Implicit learning is a type of learning of the
underlying rules without consciously seeking or understanding the rules; it is commonly seen in small
children while learning how to speak their native language without learning grammar. This research
aims to introduce a processing system that can systematically identify the relationship between
implicit learning events and their Encephalogram (EEG) signal characteristics. This study converted
the EEG signal from participants while performing cognitive task experiments into Multiscale Entropy
(MSE) data. Using MSE data from different frequency bands and channels as features, the system
explored a wide range of classifiers and observed their performance to see how they classified the
features related to participants’ performance. The Artificial Bee Colony (ABC) method was used for
feature selection to improve the process to make the system more efficient. The results showed that
the system could correctly identify the differences between participants’ performance using MSE
data and the ABC method with 95% confidence.

Keywords: multiscale entropy; artificial bee colony; implicit learning; EEG; machine learning

1. Introduction

There are many new and exciting technologies being invented every year. Especially
now, in the age of information, the growth of new technology has grown exponentially, and
there is no sign of it slowing down. To be competitive in the fast-growing world, people
have to adapt and improve the learning process. Smart Education is a type of learning
environment where learning can occur in a more personalized lesson plan. Utilizing
available cutting-edge technology, a person can start learning more efficiently by using
advanced electronics such as e-learning, online learning, hybrid learning, and blended
learning to record their progress and adjust lesson plans to be more suitable to the learner.
It could be a way to battle and manage all the information required to be competitive
in the fast-paced technological world. Ideally, the data that would be tracked should
provide feedback to the learner in real-time or as close to real-time as possible. Data,
such as whether or not they are learning at that precise time, can be used to improve the
learning process.

Implicit learning is a type of learning where the learning of complex information
occurs in an unintentional manner. Previous research studies suggested [1] that those who
can perform implicit learning well can learn other things that require similar skills more
effortlessly than those who do not excel in implicit learning. Implicit learning skills are
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helpful for tasks such as language learning and other complex activities. Biofeedback or
neurofeedback could be the tool that can be used to improve implicit learning skills.

Biofeedback or neurofeedback is a non-drug treatment technique by which individuals
can self-trained or with bits of help from the therapist to improve their health through
monitoring devices. The participants can learn to control bodily processes that are typically
involuntary by monitoring in real-time biological and neurological data, such as heart rate,
muscle stiffness, blood pressure, and concentration level. Biofeedback and neurofeedback
had help patients with attention deficit hyperactivity disorder (ADHD), depression, anxiety,
addiction, and other types of brain conditions [2]. There was a study that showed that 90%
of children were able to improve against their ADHD symptoms, which were maintained
even after a 6-month follow-up using neurofeedback training [3]. Past research suggested
that one can perform better in sports activities after they undergo implicit motor learning
on movement, albeit only slightly using biofeedback [4,5]. The goal of this research is to
provide means to obtain data to improve implicit learning skills by introducing a concept
of neurofeedback for learning events for healthy adults using the Smart Education concept.
To be a better implicit learner using neurofeedback, there has to be a way to identify when
the implicit learning event occurs so that we can train individuals’ brains to be better at
implicit learning. The pattern of Implicit Learning events will be identified as learners go
through learning activities to achieve this goal [4,5].

One way this research can discern the implicit learning event on neuro signal is to
monitor said signal of the participants while they undergo an experiment where they
have to solve the problem without anyone telling them how to reach the solution. We can
identify when they achieve implicit learning by monitoring their brainwave, while they
undergo a cognitive learning task. The measurement data that will be used for analyzing
and capturing these implicit learning events are electroencephalogram data or EEG data.
EEG signal is a very complex datum to interpret because they are non-linear, dynamic,
and correlate between multiple channels. There is research that tried to accomplish these
enormous tasks of interpreting EEG signals. Dennis et al. [6] gave a summary review
of EEG-based brain–computer interface (BCI) and explored the possibility of enhancing
neurorehabilitation of people with strokes and other chronic disorders. Mohammed et al. [7]
introduced a new method to represent the depth of anesthesia (DOA) as compared to
conventional bispectral index (BIS) monitor using wavelet–Fourier analysis (WFADOA) on
EEG signal.

Previously, there was an experiment on explicit memory during learning conducted
by Rose et al. [8]. The experiment was set up where 31 participants were asked to solve a
cognitive problem without any prior instruction on how to solve that problem. Each of
these cognitive problems will be consist of four questions per trial and up to 180 trials per
participant. There will be two rules that govern all the questions in the experiment. The 4th
question will be different in that there will be one more additional rule to govern it. Using
the response time of the 4th question and compare it to the response time of the average of
the other question, there is a set of algorithms that will determine whether learning had
occurred or not. Triple Response Time (TRT) was coined up by Rose et al., which is when
the response time of the 4th question was consistently faster than the response time of the
average of the other question in the same trial for three consecutive trials [8]. During the
Response Time Analysis phase of our research, we discovered that TRT had occurred in
both of our groups between those we determined to have achieved implicit learning and
those that did not. It was decided that TRT alone will not be enough to be used as a marker,
but it’s a start. Entropy was selected after many literature reviews to be used alongside
TRT to differentiate between the two groups. Markers such as these can be used to help
our research narrow down when the implicit learning event occurs.

Given that the raw EEG data are inherently challenging to discern, it is imperative
to modify and convert the EEG data into more manageable elements. There are studies
that use EEG entropy data as a way to identify different brain states [9]. Entropy is a
scientific concept for the measurement of uncertainty and complexity within a system. By
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converting brain signals into entropy data, researchers would be able to measure the level
of complexity in the brain, and in turn, able to determine the activeness of the brain state.
Since brain signal is always complex, the level of complexity can differentiate between
brain states. Case in point, when a patient entropy value is of a certain level, it means the
anesthetic is working, and the brain is at a more relaxed state [10]. Entropy value has also
been shown to be able to differentiate between memory and motivation. The difference
between wanting to remember or not and actually remembering or not can have different
entropy values for the duration of the event [11].

While entropy is useful in finding the brain state based on fixed-time events, it is not
as useful to find a pattern in time series data. This is because the event pattern itself is
often not known, not even the duration of the event. There are studies that used Multiscale
Entropy (MSE) and see its scaling effect on the data to identify patients with heart failure
with reliable success [12]. The multiscale entropy measure differs from regular entropy
techniques in that it included multiple time scales of measurement using a coarse-graining
method. The inclusion of these multiple measurements allows for assessing complexity
in an overall individual time scale and at longer and shorter time scales. By taking all
time scales into account, this combination of features allows researchers to identify the
time scale at which the peak in complexity occurs. The overall time scales or scaling effect
of the data at the preset period of time will be the feature that will be analyzed to find
whether of implicit learning event had occurred or not due to its flexibility and robustness
in capturing the level of complexity in an unknown data pattern. Donglin et al. [13]
proposed a novel multi-scale fusion convolutional neural network based on an attention
mechanism for the visualization analysis to improve signal representation, the robustness
of the network system, and maximize information flow. Wonjun et al. [14] improved upon
classifying motor imagery (MI) induced brain signal by differentiating between relevant
and irrelevant information using the reinforcement learning method and discarding the
latter. Wonjun et al. [15] also introduced a novel deep multiscale neural network (MSNN)
to extract information among spatial representations for subject intention and condition
identification. More precisely, they exploited multiple EEG paradigms in the network
contrary to the prevailing methods of focusing on one EEG paradigm to classify early
seizure detection and mental fatigue.

There were several discussions and research in regard to using recurrent neural
network (RNN) methods such as long short-term memory that seem to work well with
time-series data or deep learning-based BCI methods such as convolutional neural network
(CNN) to deal with EEG classification of brain state at various application [16]. These
methods do not seem to work well with our approach. One major reason is that our data is
simply not large enough for these data-hungry methods to yield a good result. According to
Ovedare studies on data size and their corresponding classification performance using deep
learning, our data size is simply too small to be used in CNN and LSTM effectively [17].

The objective of this study is to systematically identify the relationship between im-
plicit learning events and their EEG signal characteristics by searching for distinguishable
features that related to participants’ performance and test the efficacy of different classifiers
to find those differences. This study will explore a wide range of classifiers and their per-
formance at correctly classifying the EEG signals related to participants’ performance. Our
contribution is simply that this paper will introduce a method that will identify the implicit
learning event using MSE based feature extraction approach for event detection in time
series. This paper will evaluate whether our proposed method of using MSE in conjunction
with artificial bee colony can deliver a satisfying outcome with statistical confidence in
high accuracy.

2. Data Collection

Implicit learning is commonly found in small children learning how to speak their
native language without prior knowledge of grammar. Past research showed that many
who succeeded in implicit learning could perform other tasks that require similar skills,
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such as learning an additional language [1]. The data used in this research was acquired
from an earlier experiment conducted by our previous experiment. The experiment was
designed to captured implicit learning events. Subjects will be consisting of 30 people
between the age of 21 and 29 years old. They will be healthy with no prior learning
disability and no color-blindness. Throughout the entire experiment, the participant will
be strapped to an EEG and fNIRS cap, while they undergo visual event-related potentials
(vERP). All participants were volunteer that signed written informed consent, and the
experiment was approved by Experimental Ethics Committee of Faculty of Information
Science and Electrical Engineering, Kyushu University (ISEE H26-3, 23 June 2014).

The experiment will be consisted of two boxes on the screen and requested to respond
based on what they see on the screen by pressing the color buttons on the keypad with
no prior instruction. Each of the boxes will have its corresponding color. The participant
was asked to respond within three seconds. There will be a total of three different colors
which are red, blue, and green. The participants were asked to input one of those colors
in response to the paired color shown on the screen. Once the 3 s are up, the correct
answer will be shown alongside the following pairs of color boxes. These answers will
follow a particular set of rules which is not known to participants. Each trial will consist
of four questions. There will be a random delay between one to zero seconds in between
each trial. There will be a maximum of 180 trials per participant. If the subject seems to
grasp the underlying rules before the 180 trials were up based on the observer’s discretion,
the experiment will continue for ten more trials then stop. The experiment is shown in
Figures 1 and 2.

Entropy 2021, 23, x FOR PEER REVIEW 4 of 24 
 

 

2. Data Collection 
Implicit learning is commonly found in small children learning how to speak their 

native language without prior knowledge of grammar. Past research showed that many 
who succeeded in implicit learning could perform other tasks that require similar skills, 
such as learning an additional language [1]. The data used in this research was acquired 
from an earlier experiment conducted by our previous experiment. The experiment was 
designed to captured implicit learning events. Subjects will be consisting of 30 people be-
tween the age of 21 and 29 years old. They will be healthy with no prior learning disability 
and no color-blindness. Throughout the entire experiment, the participant will be 
strapped to an EEG and fNIRS cap, while they undergo visual event-related potentials 
(vERP). All participants were volunteer that signed written informed consent, and the 
experiment was approved by Experimental Ethics Committee of Faculty of Information 
Science and Electrical Engineering, Kyushu University (ISEE H26-3, 23 June 2014). 

The experiment will be consisted of two boxes on the screen and requested to re-
spond based on what they see on the screen by pressing the color buttons on the keypad 
with no prior instruction. Each of the boxes will have its corresponding color. The partic-
ipant was asked to respond within three seconds. There will be a total of three different 
colors which are red, blue, and green. The participants were asked to input one of those 
colors in response to the paired color shown on the screen. Once the 3 s are up, the correct 
answer will be shown alongside the following pairs of color boxes. These answers will 
follow a particular set of rules which is not known to participants. Each trial will consist 
of four questions. There will be a random delay between one to zero seconds in between 
each trial. There will be a maximum of 180 trials per participant. If the subject seems to 
grasp the underlying rules before the 180 trials were up based on the observer’s discretion, 
the experiment will continue for ten more trials then stop. The experiment is shown in 
Figures 1 and 2. 

 
Figure 1. Cognitive tasks designed to induced learning. Figure 1. Cognitive tasks designed to induced learning.



Entropy 2021, 23, 617 5 of 22Entropy 2021, 23, x FOR PEER REVIEW 5 of 24 
 

 

 
Figure 2. 10/20 system positioning was used to record EEG/NIRS. Red and blue circles represent 
the emitter and receiver of NIRS optodes, respectively, while the arches symbols represent the 
EEG electrodes. Noted, NIRS data will not be discussed in this paper. 

The answer to the color pair questions will be governed by three rules. The first rule 
stated that if the color pair is different in color, the answer will be the color that is not 
shown. If the color pair is the same color, the answer will be that color; that is the second 
rule. When the participant input an incorrect answer, there will be a beeping noise to in-
dicate negative feedback that the answer was incorrect. The last rule state that the answer 
to the first color pair will always be the answer to the fourth color pair question. Please 
note that there is no indication or feedback of any kind to hint to the participant of this 
rule, such as a feedback sound like for the first two rules. 

Whether or not the participant achieves the status of explicit and implicit knowledge 
was evaluated immediately after the session had been interrupted or concluded. The par-
ticipants were asked whether they noticed anything special about the task. If a participant 
were to answer yes, they were asked to explain. If they did not notice anything special, 
then it would be explained to them that there were rules governing the tasks. They are 
then asked to describe and articulate the rule and to write down examples. If the partici-
pants were able to describe the first two rules, then they will be categorized as having an 
explicit learning event. If the participant could verbalize the 3rd rule, that participant was 
then considered as a group that has obtained implicit learning during the experiment. This 
information is crucial because it will be used for supervised learning in the later process 
of the research. 

Notice that our experimental design was similar to Rose et al. [8]. The difference be-
tween Rose et al.’s and our experiment is how there were negative feedbacks provided to 
the participant in the form of beep noise when they provide an incorrect answer. This 
feedback is important because it provides crucial information to the participant’s ability 
to answer the question. However, this negative feedback does not represent the 3rd rule 
that governs only the 4th question. The rule stated that the answer to the 1st question will 
always be the same as the answer to the 4th question. These differences between the 1st, 

Figure 2. 10/20 system positioning was used to record EEG/NIRS. Red and blue circles represent
the emitter and receiver of NIRS optodes, respectively, while the arches symbols represent the EEG
electrodes. Noted, NIRS data will not be discussed in this paper.

The answer to the color pair questions will be governed by three rules. The first rule
stated that if the color pair is different in color, the answer will be the color that is not
shown. If the color pair is the same color, the answer will be that color; that is the second
rule. When the participant input an incorrect answer, there will be a beeping noise to
indicate negative feedback that the answer was incorrect. The last rule state that the answer
to the first color pair will always be the answer to the fourth color pair question. Please
note that there is no indication or feedback of any kind to hint to the participant of this rule,
such as a feedback sound like for the first two rules.

Whether or not the participant achieves the status of explicit and implicit knowledge
was evaluated immediately after the session had been interrupted or concluded. The par-
ticipants were asked whether they noticed anything special about the task. If a participant
were to answer yes, they were asked to explain. If they did not notice anything special,
then it would be explained to them that there were rules governing the tasks. They are then
asked to describe and articulate the rule and to write down examples. If the participants
were able to describe the first two rules, then they will be categorized as having an explicit
learning event. If the participant could verbalize the 3rd rule, that participant was then
considered as a group that has obtained implicit learning during the experiment. This
information is crucial because it will be used for supervised learning in the later process of
the research.

Notice that our experimental design was similar to Rose et al. [8]. The difference
between Rose et al.’s and our experiment is how there were negative feedbacks provided
to the participant in the form of beep noise when they provide an incorrect answer. This
feedback is important because it provides crucial information to the participant’s ability
to answer the question. However, this negative feedback does not represent the 3rd rule
that governs only the 4th question. The rule stated that the answer to the 1st question
will always be the same as the answer to the 4th question. These differences between the
1st, 2nd, and 3rd question and the 4th question will have an impact on how participant
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response time (RT). It will be the crucial distinction of when implicit learning has occurred
or whether they happen at all.

3. Methods

In this study, Multiscale Entropy was used as a method for feature extractions, while
Artificial Bee Colony (ABC) algorithm was used for feature selections. An examination of
various machine learning techniques will be applied to see how effective ABC methods are
on the current setup according to the block diagram, shown in Figure 3.
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3.1. Entropy and Multiscale Entropy (MSE)

The concept of entropy was first used by Rudolph Clausius in the field of thermo-
dynamics [18]. It basically follows the second law of thermodynamics that defined the
change of the entropy in the volume elements as equivalent to the ratio between changes in
heat state and temperature [19]. Since then, “Entropy” was used as a measurement of the
system’s thermal energy per unit temperature or the molecular disorder, in turn, the ran-
domness of the system. Using that concept of the randomness of the system, Shannon [20]
started using entropy to define the amount of complexity or useful information of a system
in the field of information theory, the field he created. Right now, there are various usages
of entropy and its evolution in the field of biomedical signals [21–23]. Pincus [24] used
approximate entropy to examine the changes in the heart rate of infants to help identify
the sudden illness. Approximate entropy was determined to be well suited to solve the
problem of common signals with short noise in the biomedical signals. Richman and
Moorman further developed sample entropy (SampEn) which works better on data with
varying data lengths which is very suitable for biomedical data [25,26].

The humans’ vital signs, such as EEG signals, are quite erratic and prone to noise
interference. A signal conversion must be implemented to observe and determine its
behaviors correctly. Entropy, a concept that represents the complexity of information,
when applied to bioinformatics data can simplify the erratic signal and turn it into a more
manageable representation. The value of the entropy will increase or decrease based on
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the level of complexity of the EEG signals. If the entropy value is relatively low for a
certain region of the brain, it means the brain is less active in that particular region. Sample
Entropy was chosen in this research due to its robustness and capability to adjust for
real-time detection [10].

Converting the raw EEG data into SampEn data, the EEG signal must first be divided
into short sequences, called epochs. Using the entirety of that epoch data to determine the
SampEn by applying it to:

SampEn(m, r, N) = − log ∑ Ai

∑ Bi
= − log

A
B

(1)

where m is the template length, r is the tolerance for accepting matches, N is the number of
data points per epoch, Ai is the number of the matches of length m+1, and Bi is the number
of matches of length m. If the number of matches is equal for A and B, the SampEn is equal
to zero, or no complexity in the data. If the number of matches for template A is smaller,
and it will always be the same or smaller because the template is shorter, then the SampEn
value will increase.

While SampEn is acceptable for determining the complexity of the data in fixed length,
the determination of that length is still up for contention. Which is how Multiscale Entropy
(MSE) was introduced. Determining MSE, the epoched data will be coarse-grained by
averaging in the range of a specified scale. If the scale were 2, two neighboring data points
are averaged. The number of total data points is reduced to a total number divided by two.
The new dataset can be expressed through the scaling process as [27–29]:

y(τ)
j =

1
τ ∑i = jτ− τ+ 1jτxi, 1 ≤ j ≤ N

τ
(2)

where xi is the original data point, and τ is the scale level, then the sample entropy will be
calculated from the new dataset for each scale.

Previous studies have shown that SampEn’s most appropriate template length m to
be 2, r = 0.15x standard deviation of the epoch [27,29] for time series data. According to
Richman and Moorman [25], the appropriate N should be at least 100 to 400 for each scale
because when the scale increase, the number of N will decrease. Based on the experiment
data that was gathered that would be explained in the later section, the sampling frequency
is 1000 Hz, with the appropriate epoch for the experiment to be at maximum, 3 s, we
determined that our data will have at most 1000 Hz × 3s = 3000 data points. With the
maximum scale of 20, the size of N is 150, which is still enough data points to get a
reliable SampEn.

3.2. Artificial Bee Colony

Artificial Bee Colony (ABC) [30] is an empirical method that tries to mimic the in-
telligent action of honeybees while they hunt for their food source. Although ABC is
very similar to Ant Colony Optimization and Particle Swarm Optimization as they share
information between members in the colony, ABC is easier to implement because it has
a smaller number of control parameters to adjust. In addition, ABC also has a unique
solution update process that allows the result not to get stuck in a less optimal solution
and instead converge on the actual optimal solution. Bee colonies tend to operate by
dividing their duties and sharing information about food sources among other bees in their
perspective colony. Bees in the ABC algorithm are divided into three types: employed
bees, onlooker bees, and scout bees. Employed bees evaluate current food sources and
share the information with onlooker bees that reside in the hive. With that information,
the onlooker bees will decide on whether they will go out and find the food source or not
based on the received information. Scout bees are tasked with the search for new food
sources. The determination of which food source they will utilize will be decided based on
the number of food sources and their quality. In ABC, a food source represents a solution to
an optimization problem. Fitness function will determine food sources’ quality at a given
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location. This behavior of bees searching for a source of food can be utilized to locate the
optimal solution in the given system.

ABC can be divided into three steps that will be looped and repeated accordingly. After
initializations of the food sources, which are randomly created to within a predetermined
range, the following formula will be used for the first step, Employed Bees Phase:

vij = xij + rand(0− 1)
(

xij − xkj

)
(3)

the subscript k and i indicate the solution number, and the index j indicates the dimension
vector of each solution, that is, the location of the solution in the space of all solutions.
Using the current solution xij and a randomly selected neighbor xkj, vij was created. Rand
function was used as a uniformly distributed random number generator between zero and
one. This function will randomly generate a new solution in the next iteration from the
current solution. The employed bees and onlooker bees will replace their current position
with the new solution if the new candidate solution has a better fitness value than the
residing one.

The second phase, the onlooker phase, is when the onlooker bees will use the known
information from employed bees to determine the possible solution with a probability that
depends on the relative fitness of each solution based on this fitness equation:

Pi =
fiti

∑N
n fitn

(4)

Pi was calculated for the probability of each I solution. N is the total number of all solutions,
and fiti represented the fitness value of each solution. Fiti was generated from the fitness
function, which is based on the objective function of the problem. As the fitness value
increases, the probability that the new solution will be updated by the onlooker bees will
also increase. The objective function that will be used in this research will be the accuracy
of the classifiers.

The third phase, the scouting phase, is used to avoid suboptimal solutions. The scout
bee process will start when an employed bee is stuck in the same location over a preset
number of trials. This can happen when an employed bee cannot improve its fitness value
over and over again. If this were to occur, the current solution would be abandoned. The
employed bee will turn into a scout bee and start searching for new solutions.

4. Analytical Process

Our research will flow as shown in Figure 3.

4.1. Pre-Processing Data

Bandpass filtered of 0.5–50 Hz and a Notch filter of 60 Hz was used on the EEG data
to remove physiological and power line noise, respectively. Furthermore, a blind source
separation method (BSS) called independent component analysis (ICA) was used to remove
more of the non-brain signal [31].

4.2. Feature Extraction Using Multiscale Entropy

When computing for SampEn, the size of what to be calculated must also be considered.
Since the data consists of many trials and they are all in a time series, dividing the data
into appropriate epoch must happen first before SampEn data get implemented. There are
many things to consider; since we have different participants and each participant has a
different number of trials. Moreover, based on the setup of the experiment, it is also known
that in the trials, there are four questions, and only the 4th question got dictated by the
extra rule; therefore, it is essential to separate the sample entropy calculation into whether
implicit learning had occurred or not. As shown in Figure 4, we perform Multiscale Sample
Entropy on each epoch, where an epoch is between the time question is asked and when
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the next question will begin. This means that each trial will produce four multiscale sample
entropy data.
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4.3. Obtain Categorical Data and Response Time Analysis

According to the Response Time Analysis and SampEn data, there is a trend that
seems to indicate the difference between the group of those who achieved implicit learning
and those that did not. One of those trends is that the group with implicit learning tends to
achieve Triple Response Time (TRT) more regularly as well as maintaining that state for a
longer amount of trials compared to the group that did not. TRT was decided to be event
marker based on that distinction.

Obtaining the TRT label, the response time data were divided and modified into two
types. The moving median (MM) of window five was performed on all response time
data to get rid of any outlier. The MM response time for 4th question was categorized as
determined response time (DRT). The average MM response time between 2nd question
and 3rd question was performed for each trial and given the label of undetermined response
time (URT). When DRT drops below 90% negative confident interval of URT for three
consecutive trials, that is when the mark of TRT was given to that trial. In total, we were
able to extract 175 trials where TRT was achieved from those we determined to have
achieved implicit learning. We also randomly selected 175 trials from the group that we
determined as people who did not achieve implicit learning during the experiments to
have an equal number of data for a non-bias classification process.

The epoch in which they achieved TRT were given fast labels, while the epoch that
did not achieve TRT received slow labels. These labels were used to train various classifiers
as supervised learning. Figure 5 showed a graphical representation of the TRT marker.

If the participant was able to perform significantly better at answering 4th question as
opposed to the other question, it must mean that a learning event had occurred at some
point, either at this particular trial or some trial earlier. This means that the trial that
received TRT marks are very crucial at identifying the learning event.
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Figure 5. An example of the Response Time Data. Determined RT is the response time of Q4, while
the Undetermined RT represents the average response time of 2nd and 3rd question in the same trial.
The dotted line is the 90% negative confident interval of the Undetermined RT. Each dot represented
a trial that was given the fast response time label. Fast is the response time of Determined RT
that is less than the response time of the Undetermined RT negative confident interval for three
consecutive trials.

4.4. Preparing Features Selections

The feature selection process is a process that will identify important features and
remove redundant or irrelevant features from the entire set of features. Unlike feature
extraction, which tends to use all features in its classifier, the feature selection method will
search for and identify the optimal subset of feature data from all the available features that
will still yield adequate results while maintaining the least amount of error and information
loss [32].

The features to be selected are the frequency band and the EEG channels. In preparing
for classification, only the frontal channel of AF3, AF4, F3, F4, F5, F6, F7, F8, and FZ, were
chosen. These channels were selected because the frontal lobe was identified as a region that
is responsible for personality expression, planning complex cognitive behavior, memory,
and decision making [33]. These channels and frequency bands, including Gamma, Beta,
Alpha, Delta, and Theta, will be assigned as features. If the features were to be selected, the
feature would be represented as 1. If the feature is not selected, it will be represented as 0.
These strings of zero and one will be Food Source for the ABC [34].

4.5. ABC Process

This section will describe the setup and methods for the ABC algorithm as seen in
Figure 6.
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4.5.1. Initialization

To begins, several parameters are needed to be considered. The number of employed
bees, onlooker bees, the threshold for scout bees to be deployed, and the maximum number
of iterations are the parameters that needed to be decided. Once that is done, the initial
food sources are generated randomly as well as their respective solution. The solution is
derived from the various classifier. The accuracy value from each classifier will be used to
represent the food source fitness value. Simply put, the higher the fitness value, the better
the classification performance.

4.5.2. Employed Bees Process

Employed bees process is a process where food source gets updated based on the
solution of the prospective food source location expressed in Equation (5). It was decided
that in this algorithm, the food source will be binary numbers. It follows the concept of the
solution update based on the nearby solution using the bitwise AND operation as follows:

vij =


xij = xkj i f

(
xij = xkj

)
0 i f

(
xij 6= xkj and ϕ ≤ 0.5

)
1 i f (xij 6= xkj and ϕ > 0.5)

(5)

where vij the new candidate for each food source location i and j, xij the current location of
the food source i feature j, xkj the randomly selected neighboring location k feature j. Fd
represented in Figure 4 are features that will be selected or not based on a random real
number between 0 to 1, where d is the total number of potential features.

In this method, the feature value will be either 0 or 1, for not selected and for selected,
respectively. If the value of the feature j given from the neighboring food source and its
present food source are the same, then there will be no changes to the current food source
location. Otherwise, a new value of either 0 or 1 will be randomly assigned as a new food
source location. For example, if a current solution is {0, 1, 1, 0}, and the selected neighboring
solution is {0, 1, 0, 1}, the new candidate solution could be one of the following solutions
{0, 1, 1, 1}, {0, 1, 1, 0}, {0, 1, 0, 1}, and {0, 1, 0, 0}. Once the new location is obtained, the
new solution will be generated using the various classifier. If the new solution and its
fitness value were deemed to be better than the current one, the employed bees would then
update their solution with the new candidate solution. If the new solution is not better,
then the solution will be ignored.

4.5.3. Onlooker Bees Process

Onlooker bees will select whether to visit a new food source once the employed bees
share their information of their solutions based on the probability of each respective food
source, based on Equation (4). Updating possible solutions using the same methods as
employed bee phase using Equation (5) will also be performed in the process. If the new
solution has a better fitness value, the current solution in the onlooker bee’s memory will
be swap by the new candidate solution.

4.5.4. Scout Bees Process

The current food source location will be abandoned if the fitness value of the current
food source has not been improved by the decided number of iterations, called “limit.”
The scout bee will then randomly create a new food source location in the system space
in all dimensions if the abandon counter (AC) is above the limit. This way, a sub-optimal
solution will be avoided. The Best So Far of the food source location, however, will not be
forgotten as it is stored in best so far solution trackers.

4.5.5. Termination Process

The entire operation will be repeated until a maximum number of iterations is reached.
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4.6. Classifier

Evaluating the solution of the food source location, the various classifier will be used
and examine its performances. The classifiers are Decision Tree, Random Forest, kNN, and
SVM. These classifiers were chosen to be surveyed because to properly identify implicit
learning events to as close to real-time as possible with accurate results; many factors need
to be considered. Factors include accuracy, robustness, computer memory, and CPU usage,
interpretability, and speed. Knowing the characteristics of these classifiers will be helpful
for future research on whether to evaluate learners in real-time or posthoc analysis.

4.6.1. Decision Tree

A decision tree is a type of classifier where it will generate a flowchart-like structure
from each node that represents an attribute of each branch. Each leaf node is a class label
within each branch which in turn represents the test condition. When putting it all together,
the paths from leaf to root will stand for classification rules, equations, or conditions for
each class label. The number of maximum nodes will be set to 100, 20, and 3 for Fine,
Medium, and Coarse configuration, respectively, of decision trees that were evaluated in
this paper.

4.6.2. Random Forest

Random forests (RF) are an ensemble of a large number of individual decision trees.
The final prediction will be derived from the predictions from all trees that were pooled
together. Each decision tree in the random forest will generate its own class prediction.
The class with the most predictions will become the classifier’s prediction.

4.6.3. k-Nearest-Neighbor (kNN)

k-Nearest Neighbor is a non-parametric, lazy learning algorithm. It stores all instances
that correspond to training data points in n-dimensional space. Its purpose is to use data
and its corresponding classes to predict the classification of a new sample point. Once
a new unknown discrete data is received, it analyzes the closest possible class it should
belong to base on the number of class membership and returns the most common class as
the prediction. There will be four configurations of kNN classifiers that were used in this
paper. Three kNN will use Minkowski Distance with a number of neighbors being 1, 3,
and 20 for Fine, Medium, and Coarse, respectively. The last kNN configuration that was
evaluated will use Cosine Distance.

4.6.4. Support Vector Machine (SVM)

Support vector machines are algorithms used to find a hyperplane in an N-dimensional
space that distinctly classifies the data points. N is often representing the number of features.
The hyperplane that was chosen will determine the accuracy result of the model. The
most optimum plane should have the maximum distance between data points of different
classes. There will again be four configurations of SVM classifiers that were used in this
paper, each with different kernel functions. The three polynomial kernel functions that
were used were linear, poly, and cubic. One SVM used Gaussian RBF as its kernel function.

4.7. Statistical Analysis

Once feature selection was completed, using the best food source location, a new
classification evaluation will be performed five times for each location. The results were
evaluated using k-fold cross-validation. Here, the k value was chosen as 5. Each result
will also yield a confusion matrix which will be further used as a performance metric
to determine accuracy, specificity, and sensitivity. An independent-samples t-test was
performed to compare the difference between using the ABC method and not using the
ABC method for classification on each classifier. This will tell us which classifier provides
the best accuracy as well as which features were selected. This t-test will also tell us that
the difference between using ABC and not using ABC will be significant or not.
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5. Results and Discussion

In this section, we present our ABC results in identifying the differences in participant’s
performances while they undergo their cognitive tasks.

Given how classifier are inherently governed by probability, the experiment was
repeated five times for the ABC feature selection process. The non-ABC process was also
conducted with all features being selected while it went into the classifiers. The non-ABC
was again repeated five times, and only the median value was represented as in Figures 7–9
as a thick dot-dash black line. Since non-ABC has no feature selection, the accuracy of the
classifier will not change as iteration increases. As shown in Figure 8, all four setups of
the classifiers perform better as iteration increases. The four set up of the decision tree
classifier for Fine, Medium, and Coarse are tree split of 100, 20, and 3, respectively. All of
the ABC processes consistently outperformed their non-ABC counterpart. Figure 9 showed
that kNN classifiers and all of their configurations pretty much outperform all the other
classifiers as well. The configuration for the kNN classifier for Fine, Medium, and Coarse
are the number of different neighbors of 1, 3, and 20, respectively. Given that kNN tends
to be much slower and very taxing to memory usage, it might not be advisable to use
this classifier for real-time analysis, even if its performance outshines the other classifier.
Figure 10 showed the ABC process using SVM classifiers and all of its configurations. The
configuration for the SVM classifier for Linear, Polynomial, Cubic, with the degree being 1,
2, and 3, respectively. SVM classifier also used Fine Gaussian as the last configuration.

The ROC curves showed a clear distinction between how the classifier performs better
with feature selections, as shown in Figure 10. Given how generating the ROC curve
requires randomly partitioning of the data with fivefold cross-validation, the individual
classifier performed the cross-validation with the selected best food source location five
times. The ROC that is represented as the result of the median of those cross-validations
process to make sure that the result is fair.

Using the same cross-validation process as in Figure 11, Figure 12 showed the ROC
curves for all the classifiers. Only some configurations of the classifier were chosen as not
to clutter up the graph. Based on the data, it is clear that Decision Tree performed the
worse while kNN performed the best in terms of getting the most accurate results.

Once the feature was selected, the best food source location will be used to reevaluate
the classifiers for accuracy, specificity, and sensibility. Each food source will be reevaluated
a total of five times, and the median value will be recorded as presented in Tables 1 and 2.
Table 1 represented the classifiers’ accuracy, specificity, and sensibility as well, but all
features will be selected as they never went through the ABC feature selections process
while Table 2 represented the confusion matrix outcome of ABC method. Tables 3 and 4
showed the best, median, mean, and standard deviation of accuracy values for each
classifier without using ABC method and with using ABC method respectively.
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Table 1. Classifiers’ performance when all available features were selected.

Without ABC

Random
1

Random
2

Random
3

Random
4

Random
5

Tree
Fine 1

Tree
Fine 2

Tree
Fine 3

Tree
Fine 4

Tree
Fine 5

Accuracy 0.791 0.762 0.777 0.78 0.76 0.6914 0.72 0.6912 0.714 0.7229
Specificity 0.7714 0.7771 0.7486 0.791 0.7143 0.7286 0.6514 0.7143 0.6943 0.6971
Sensitivity 0.7943 0.7314 0.7371 0.8 0.8057 0.6971 0.68 0.7886 0.6971 0.7486

Tree
Med 1

Tree
Med 2

Tree
Med 3

Tree
Med 4

Tree
Med 5

Tree
Coarse 1

Tree
Coarse 2

Tree
Coarse 3

Tree
Coarse 4

Tree
Coarse 5

Accuracy 0.68 0.682 0.6824 0.72 0.7171 0.7 0.66 0.68 0.69 0.6457
Specificity 0.7286 0.7543 0.7429 0.72 0.7143 0.7714 0.76 0.6686 0.7143 0.6571
Sensitivity 0.7057 0.7029 0.6457 0.7086 0.72 0.7486 0.76 0.6457 0.7257 0.6343

kNN
Fine 1

kNN
Fine 2

kNN
Fine 3

kNN
Fine 4

kNN
Fine 5

kNN
Med 1

kNN
Med 2

kNN
Med 3

kNN
Med 4

kNN
Med 5

Accuracy 0.84 0.8543 0.8314 0.8314 0.84 0.8486 0.8343 0.8571 0.8429 0.8543
Specificity 0.9429 0.9486 0.9257 0.9314 0.9429 0.9486 0.9429 0.9543 0.96 0.9543
Sensitivity 0.7371 0.76 0.7371 0.7314 0.7371 0.7486 0.7257 0.76 0.7257 0.7543

kNN
Coarse

1
kNN

Coarse 2
kNN

Coarse 3
kNN

Coarse 4
kNN

Coarse 5
kNN

Cosine 1
kNN

Cosine 2
kNN

Cosine 3
kNN

Cosine 4
kNN

Cosine 5
Accuracy 0.8543 0.8657 0.8429 0.8486 0.8657 0.7771 0.7886 0.76 0.7829 0.78

Specificity 0.9486 0.9429 0.9486 0.9714 0.9486 0.8229 0.8457 0.8171 0.8514 0.7943
Sensitivity 0.76 0.7886 0.7371 0.7257 0.7829 0.7314 0.7314 0.7029 0.7143 0.7657

SVM
Linear

1
SVM

Linear 2
SVM

Linear 3
SVM

Linear 4
SVM

Linear 5
SVM
Poly 1

SVM
Poly 2

SVM
Poly 3

SVM
Poly 4

SVM
Poly 5

Accuracy 0.7486 0.7571 0.7543 0.74 0.7257 0.8429 0.8314 0.8257 0.8114 0.8371
Specificity 0.76 0.7429 0.7371 0.7086 0.7314 0.8514 0.84 0.8457 0.8 0.8571
Sensitivity 0.7371 0.77143 0.7714 0.7714 0.72 0.8343 0.8229 0.8057 0.8228 0.8171

SVM
Cubic

1
SVM

Cubic 2
SVM

Cubic 3
SVM

Cubic 4
SVM

Cubic 5
SVM

Gaus 1
SVM

Gaus 2
SVM

Gaus 3
SVM

Gaus 4
SVM

Gaus 5
Accuracy 0.80857 0.82 0.8257 0.81143 0.82 0.7643 0.7914 0.8029 0.8028 0.8114

Specificity 0.8571 0.8571 0.88 0.8457 0.8629 0.7486 0.7486 0.76 0.7714 0.76
Sensitivity 0.76 0.78286 0.7714 0.7771 0.7771 0.84 0.8343 0.8457 0.8343 0.8629
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Table 2. Classifiers’ performance of each Best Food Source from each classifier.

With ABC

Random
1

Random
2

Random
3

Random
4

Random
5

Tree
Fine 1

Tree
Fine 2

Tree
Fine 3

Tree
Fine 4

Tree
Fine 5

Accuracy 0.8362 0.8591 0.8667 0.8391 0.8543 0.74381 0.7114 0.7209 0.719 0.7229
Specificity 0.7981 0.8171 0.8229 0.8 0.8343 0.74 0.7143 0.7314 0.7486 0.72
Sensitivity 0.8743 0.901 0.9105 0.8781 0.8743 0.7467 0.7086 0.7105 0.6895 0.7257

Tree
Med 1

Tree
Med 2

Tree
Med 3

Tree
Med 4

Tree
Med 5

Tree
Coarse 1

Tree
Coarse 2

Tree
Coarse 3

Tree
Coarse 4

Tree
Coarse 5

Accuracy 0.74 0.7343 0.7162 0.7191 0.7343 0.7238 0.7286 0.6905 0.6781 0.7057
Specificity 0.7486 0.7314 0.7371 0.7067 0.7257 0.6781 0.6495 0.6705 0.6133 0.6286
Sensitivity 0.7314 0.7371 0.6952 0.7314 0.7429 0.7695 0.8076 0.7105 0.7429 0.7829

kNN
Fine 1

kNN
Fine 2

kNN
Fine 3

kNN
Fine 4

kNN
Fine 5

kNN
Med 1

kNN
Med 2

kNN
Med 3

kNN
Med 4

kNN
Med 5

Accuracy 0.8543 0.8986 0.86 0.8486 0.8486 0.8543 0.8571 0.88 0.8743 0.8629
Specificity 0.9314 0.92 0.9029 0.9371 0.9486 0.9714 0.9486 0.9314 0.92 0.9371
Sensitivity 0.7771 0.8171 0.8171 0.76 0.7486 0.7371 0.7657 0.8286 0.8286 0.7886

kNN
Coarse

1
kNN

Coarse 2
kNN

Coarse 3
kNN

Coarse 4
kNN

Coarse 5
kNN

Cosine 1
kNN

Cosine 2
kNN

Cosine 3
kNN

Cosine 4
kNN

Cosine 5
Accuracy 0.88 0.8771 0.8657 0.8829 0.8914 0.8629 0.8486 0.8686 0.8371 0.8657

Specificity 0.9486 0.9086 0.9257 0.9543 0.9429 0.9371 0.92 0.9657 0.8914 0.9314
Sensitivity 0.8114 0.8457 0.8057 0.8114 0.84 0.7886 0.7771 0.7714 0.7829 0.8

SVM
Linear

1
SVM

Linear 2
SVM

Linear 3
SVM

Linear 4
SVM

Linear 5
SVM
Poly 1

SVM
Poly 2

SVM
Poly 3

SVM
Poly 4

SVM
Poly 5

Accuracy 0.7686 0.7829 0.78 0.78 0.7486 0.8286 0.8057 0.7971 0.82 0.8171
Specificity 0.76 0.7829 0.7543 0.7829 0.72 0.8686 0.8057 0.8057 0.8571 0.8457
Sensitivity 0.7771 0.7829 0.8057 0.7771 0.7771 0.7886 0.8057 0.7886 0.84 0.7886

SVM
Cubic

1
SVM

Cubic 2
SVM

Cubic 3
SVM

Cubic 4
SVM

Cubic 5
SVM

Gaus 1
SVM

Gaus 2
SVM

Gaus 3
SVM

Gaus 4
SVM

Gaus 5
Accuracy 0.8429 0.8514 0.8429 0.8229 0.8343 0.8171 0.8171 0.8314 0.8 0.8314

Specificity 0.8743 0.88 0.88 0.8457 0.8 0.7829 0.7771 0.7714 0.76 0.8114
Sensitivity 0.8114 0.8229 0.8057 0.8 0.8114 0.8514 0.8571 0.8914 0.84 0.8514

Table 3. The Best, Median, Mean, and SD of Accuracy for each classifier without using ABC.

WITHOUT ABC

4th Quantile 3rd Quantile 2nd Quantile 1st Quantile 0th Quantile
Classifier Best Acc Quantile Median Quantile Worst Acc Mean SD

Random Forest 0.791 0.78 0.777 0.762 0.76 0.7740 0.0130
Decision Tree Fine 0.7229 0.72 0.714 0.6914 0.6912 0.7079 0.0155

Decision Tree Medium 0.72 0.7171 0.6824 0.682 0.68 0.6963 0.0204
Decision Tree Coarse 0.7 0.69 0.68 0.66 0.6457 0.6751 0.0221

kNN Fine 0.8543 0.84 0.84 0.8314 0.8314 0.8394 0.0094
kNN Medium 0.8571 0.8543 0.8486 0.8429 0.8343 0.8474 0.0092
kNN Coarse 0.8657 0.8657 0.8543 0.8486 0.8429 0.8554 0.0102
kNN Cosine 0.7886 0.7829 0.78 0.7771 0.76 0.7777 0.0108
SVM Linear 0.7571 0.7543 0.7486 0.74 0.7257 0.7451 0.0127

SVM Polynomial 0.8371 0.8314 0.8257 0.82 0.8114 0.8251 0.0100
SVM Cubic 0.8257 0.82 0.82 0.81143 0.80857 0.8171 0.0070

SVM Gaussian (RBF) 0.8114 0.8029 0.8028 0.7914 0.7643 0.7946 0.0183



Entropy 2021, 23, 617 19 of 22

Table 4. The Best, Median, Mean, and SD of Accuracy of each classifier on each Best Food locations derived from ABC feature selection.

WITH ABC

4th Quantile 3rd Quantile 2nd Quantile 1st Quantile 0th Quantile
Classifier Best Acc Quantile Median Quantile Worst Acc Mean SD

Random Forest 0.8667 0.8591 0.8543 0.8391 0.8362 0.8511 0.0131
Decision Tree Fine 0.74381 0.7229 0.7209 0.719 0.7114 0.7236 0.0121

Decision Tree Medium 0.74 0.7343 0.7343 0.7191 0.7162 0.7288 0.0105
Decision Tree Coarse 0.7286 0.7238 0.7057 0.6905 0.6781 0.7053 0.0215

kNN Fine 0.8986 0.86 0.8543 0.8486 0.8486 0.8620 0.0210
kNN Medium 0.88 0.8743 0.8629 0.8571 0.8543 0.8657 0.0111
kNN Coarse 0.8914 0.8829 0.88 0.8771 0.8657 0.8794 0.0093
kNN Cosine 0.8686 0.8657 0.8629 0.8486 0.8371 0.8566 0.0133
SVM Linear 0.7829 0.78 0.78 0.7686 0.7486 0.7720 0.0142

SVM Polynomial 0.8371 0.8314 0.8257 0.82 0.8114 0.8251 0.0100
SVM Cubic 0.8514 0.8429 0.8429 0.8343 0.8229 0.8389 0.0108

SVM Gaussian (RBF) 0.8314 0.8314 0.8171 0.8171 0.8 0.8194 0.0130

t-Test was conducted to see whether utilizing ABC has a significant difference com-
pared to not using the ABC method. The null hypothesis was set to that they are the same.
Table 5 showed that the accuracy from 11 out of 12 classifiers has a p-value less than 0.05;
therefore, of those classifiers, the Null hypothesis was rejected. Also, of those classifiers,
their respective Median value is shown to have a positive difference, so a conclusion can
be formed that using the ABC feature selection process will yield better accuracy result
with 95% confidence. As for Specificity and Sensitivity, 6 out of 12 classifiers and 9 out of
12 classifiers have p-value less than 0.05, respectively, which means that the system tends
to be able to classify fast events correctly compared to classifying slow events.

Table 5. t-Test between using ABC and without ABC on the Accuracy value of each classifier.

N Mean STD DF t p-Value

Random Forest With ABC 5.000 0.851 0.013 4.000 8.972 0.001
Without ABC 5.000 0.774 0.013 p < 0.01

Decision Tree Fine With ABC 5.000 0.724 0.012 4.000 2.124 0.051
Without ABC 5.000 0.708 0.015 p < 0.10

Decision Tree Medium With ABC 5.000 0.729 0.010 4.000 4.873 0.004
Without ABC 5.000 0.696 0.020 p < 0.01

Decision Tree Coarse With ABC 5.000 0.705 0.021 4.000 3.448 0.013
Without ABC 5.000 0.675 0.022 p < 0.05

kNN Fine With ABC 5.000 0.862 0.021 4.000 4.110 0.007
Without ABC 5.000 0.839 0.009 p < 0.01

kNN Medium With ABC 5.000 0.866 0.011 4.000 10.570 0.000
Without ABC 5.000 0.847 0.009 p < 0.01

kNN Coarse With ABC 5.000 0.879 0.009 4.000 12.491 0.000
Without ABC 5.000 0.855 0.010 p < 0.01

kNN Cosine With ABC 5.000 0.857 0.013 4.000 37.090 0.000
Without ABC 5.000 0.778 0.011 p < 0.01

SVM Linear With ABC 5.000 0.772 0.014 4.000 18.596 0.000
Without ABC 5.000 0.745 0.013 p < 0.01

SVM Polynomial With ABC 5.000 0.825 0.010 4.000 8.881 0.001
Without ABC 5.000 0.814 0.012 p < 0.01

SVM Cubic With ABC 5.000 0.839 0.011 4.000 11.259 0.001
Without ABC 5.000 0.817 0.007 p < 0.01

SVM Gaussian (RBF) With ABC 5.000 0.819 0.013 4.000 6.807 0.001
Without ABC 5.000 0.795 0.018 p < 0.01

We also performed a performance test of our system to see whether it can identify
the fast trial not used in the trained data. Our data with a fast label was very limited to
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begin with, but nine data that were leftover was used to perform this evaluation. To make
a fair comparison, we also obtained nine non-train slow trials and saw if the system can
identify those trials as well. Our confusion matrix result is shown in Table 6. We randomly
selected one set of parameters for each classifier because the result does not change much
from one configuration to another. Our system was able to classify the non-train test trial
with accuracy ranging from 67% to 94% for the system not utilizing ABC and 83% to 100%
when utilizing the ABC method. These high accuracy performances are skeptical, due to
very small test data, but at least we can ascertain that our system was able to identify fast
and slow trials outside of the trained data with fewer features while still yielding relatively
high accuracy.

Table 6. The confusion matrix result from the non-train data.

Classifier Accuracy Sensitivity Specificity

Decision Tree
Without ABC 0.667 0.778 0.556

With ABC 0.833 1.000 0.667

Random Forest
Without ABC 0.944 1.000 0.889

With ABC 1.000 1.000 1.000

kNN
Without ABC 0.944 0.889 1.000

With ABC 0.944 0.889 1.000

SVM
Without ABC 0.944 0.889 1.000

With ABC 0.944 0.889 1.000

In summary, our system was able to confidently identify the fast response time
from the slow response time based on MSE data. This means that our system has the
potential to identify fast and slow trials, which can be used in the future to identify implicit
learning events.

6. Conclusions

In this study, a design scheme of a way to capture features of the implicit learning
event and its EEG signal characteristics was introduced. Many EEG data transformation
was performed to accomplish this. First, the data was converted to Multiscale Entropy data
to simplify the data for features extraction. The features are then marked by event markers
TRT, captured from Response Time Analysis, to be used to supervise learning of whether
the participant has some kind of learning or not at that point in time. Features are then
classified by many classifiers. The result is the baseline of what the research was trying
to improve. Features selections methods were implemented to increase the performance
for capturing the features of the learning event. The experimental results showed that the
ABC method indeed improved the performance of features extraction.

Although the features extraction and selections process proposed in this paper showed
that learning events can be identified with high accuracy, there can still be a further
improvement on the following aspects: (1) The ABC that was used was not dynamic. There
are still ways to improve upon this ABC process to cater specifically to our binary data type
of feature selection. (2) The spatial location and the frequency band can still be analyzed to
narrow down feature selections to speed up the process and make it more efficient. Based
on preliminary observation, our results do coincide with the finding from Rose et al. in
terms of spatial location and frequency band. This finding could play an important in
identifying learning events. (3) This is still very early to accomplish the overall goal of
finding the implicit learning event. Many things are still needed to be accomplished. For
example, identifying the trial where the participant’s performance was improved does
not necessarily mean that the learning event had occurred in that trial. More than likely,
the learning event should have occurred a trial or two before the TRT trial. Identifying
the TRT means that the participant started to use the knowledge to improve his relative
response time.
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By continuously improve on the brain–computer interface technology at identifying
mental activity associated with the learning process and how to apply it in real-time, a
system based on BCI can provide an adaptive learning environment which can enhance
the learning process that can be utilized in a Smart Education environment. A marriage
between BCI and education can and will provide a better learning process for all members
of society.
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