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Abstract: Ship-radiated noise is one of the important signal types under the complex ocean back-
ground, which can well reflect physical properties of ships. As one of the valid measures to charac-
terize the complexity of ship-radiated noise, permutation entropy (PE) has the advantages of high
efficiency and simple calculation. However, PE has the problems of missing amplitude information
and single scale. To address the two drawbacks, refined composite multi-scale reverse weighted PE
(RCMRWPE), as a novel measurement technology of describing the signal complexity, is put forward
based on refined composite multi-scale processing (RCMP) and reverse weighted PE (RWPE). RCMP
is an improved method of coarse-graining, which not only solves the problem of single scale, but
also improves the stability of traditional coarse-graining; RWPE has been proposed more recently,
and has better inter-class separability and robustness performance to noise than PE, weighted PE
(WPE), and reverse PE (RPE). Additionally, a feature extraction scheme of ship-radiated noise is
proposed based on RCMRWPE, furthermore, RCMRWPE is combined with discriminant analysis
classifier (DAC) to form a new classification method. After that, a large number of comparative
experiments of feature extraction schemes and classification methods with two artificial random
signals and six ship-radiated noise are carried out, which show that the proposed feature extraction
scheme has better performance in distinguishing ability and stability than the other three similar
feature extraction schemes based on multi-scale PE (MPE), multi-scale WPE (MWPE), and multi-scale
RPE (MRPE), and the proposed classification method also has the highest recognition rate.

Keywords: multi-scale permutation entropy; ship-radiated noise; refined composite multi-scale
reverse weighted permutation entropy; feature extraction

1. Introduction

With the development and application of modern sensor technology, it is possible
to record time sequences accurately for further research [1,2], especially in the fields of
resource detection, ocean, environmental monitoring, security, medical diagnosis, etc. As
important equipment in the ocean, the ship-radiated noise generated by the ship during
navigation is a complex multi-source coupled noise source, which will cause unnecessary
health effects to the crew inside the ship and the marine fauna outside the ship [3,4],
and the research on ship-radiated noise is also of great significance for improving the
comprehensive acoustic performance of the ship [5].

In recent years, more and more attention has been paid to the impact of ship-radiated
noise on environment and ecology [6]. In 2012, Aglaia Badino and others proposed that it
is necessary to evaluate and control the impact of noise emission from ships [7]. Bernardini
Marco conducted experiments on the impact of noise from small ferries at different ports
on citizens in 2019 [8]. In 2020, Luca Fredianelli characterized the sound power level and
1/3 octave band sound power spectrum of seagoing ships while moving at low speeds,
and analyzed the transmission characteristics of the noise emitted by different types of
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seagoing ships at different ports [9]. In the same year, Marco Nastasi and others studied
the effects of parameters such as minimum distance, speed, and draft on noise emission
from a ferry and conducted a multiple regression analysis on them [10].

Entropy, as one of the parameters representing the state of matter in thermodynamics,
is a powerful metric of the degree of chaos, complexity, or disorder in time series, such as
permutation entropy (PE), approximate entropy (AE), sample entropy (SE), fuzzy entropy
(FE), and their improved and multi-scale ones [11–16]. However, as a fast and powerful
symbolization method, PE has attracted much attention from researchers due to the unique
advantages of the advantages of high efficiency and simple calculation [17].

In 2001, Bandt and Pompe proposed PE in a pioneering paper [18]. Its applications
can also be found in the fields of economics [19,20], mechanical engineering [21,22], and
underwater acoustics [23,24]. On the aspect of economics, PE can reveal the inherent law of
the Shanghai and Shenzhen Stock Exchanges [20]. On the aspect of fault diagnosis, a hybrid
fault diagnosis model for motor bearing was put forward that integrated PE, ensemble
empirical mode decomposition (EEMD), and optimized support vector machine (SVM),
where PE is used to detect fault states of motor bearing [21]. On the aspect of underwater
acoustic signal processing, PE and multi-scale PE (MPE) are first applied to complexity
feature extraction of underwater acoustic signal in 2016 and 2017, respectively [23,24].

In 2013, Fadlalah Bilal and others proposed weighted permutation entropy (WPE)
and applied it in the field of medical signal processing [25]. Compared with PE, WPE
introduced amplitude information for the first time on the basis of PE and has the following
advantages: (i) WPE can better capture the abrupt changes in time series by weighted
calculation; (ii) at low signal-to-noise ratio (SNR), WPE also has better stability and ro-
bustness. Moreover, the application superiorities of WPE have been found in different
fields. In [26], a bearing multi-fault diagnosis method was put forward integrated EEMD,
WPE, and improved SVM ensemble classifier, where WPEs of the first several intrinsic
mode functions (IMFs) are served as the fault feature vectors of bearing vibration signals.
In [27], PE and WPE were used to analyze two types of resting state EEG from diabetics,
and the results show that WPE can better discriminate between the amnestic mild cognitive
impairment diabetics and normal cognitive function diabetics. In [28], WPE is first used in
feature extraction of underwater acoustic signal combined with duffing chaotic oscillator
(DCO) and complete EEMD with adaptive noise (CEEMDAN), and it can provide more
accurate feature information than PE.

In 2017, Bandt proposed another PE for the second time, which we call reverse PE
(RPE) [29]. RPE was originally used to identify different sleep stages based on EEG data in
the medical field. Then, RPE has been rapidly applied in the field of underwater acoustic.
In [30], noise reduction and feature extraction schemes for ship-radiated noise are proposed
based on RPE and variational mode decomposition (VMD), RPE has stronger recognition
ability to noise IMFs than PE, and RPE has better separability than PE as the complexity
feature of IMF for ship-radiated noise. In [31], RPE combined with DCO was applied to
detect the line spectrum frequency, the results show that RPE can be more accurate to
extract line spectrum frequency of IMF for ship-radiated noise.

In 2019, Li proposed reverse weighted PE (RWPE), which united the core ideas of
WPE and RPE and has better inter-class separability and robustness performance to noise
than PE, WPE, and RPE [32]. However, RWPE can only represent the complexity of signal
under single scale, which cannot fully reflect the complexity of the signal and has some
limitations. In order to break through these limitations, refined composite multi-scale
RWPE (RCMRWPE) is put forward based on refined composite multi-scale processing
(RCMP) and RWPE in this paper, and Figure 1 shows the origin of RCMRWPE. From
Figure 1, it can be observed that WPE and RPE are the improvement of PE; RWPE combines
the core technologies of WPE and RPE; RCMRWPE carries out refined composite multi-
scale processing (RCMP) on the basis of RWPE, and RCMP is an improved method of
coarse-graining, which not only solves the problem of single scale, but also improves the
stability of traditional coarse-graining [33,34].



Entropy 2021, 23, 476 3 of 16

Entropy 2021, 23, x FOR PEER REVIEW 3 of 16 
 

 

multi-scale processing (RCMP) on the basis of RWPE, and RCMP is an improved method 

of coarse-graining, which not only solves the problem of single scale, but also improves 

the stability of traditional coarse-graining [33,34]. 

Most of the traditional feature extraction methods for ship-radiated noise are based 

on frequency or energy, for example, the aforementioned feature extraction schemes 

based on CEEMDAN and VMD, their superior performance in the extraction of ship-ra-

diated noise has been confirmed in [35,36]. However, compared with these traditional fea-

ture extraction methods, the entropy-based feature extraction method can extract the com-

plexity of the ship-radiated noise, and has better performance at distinguishing between 

different ships [14], such as PE, RPE, and WPE. In this paper, we apply RCMRWPE to the 

artificial random signals and actual underwater acoustic signals, and propose an under-

water acoustic signal feature extraction scheme based on RCMRWPE. A large number of 

feature extraction and classification experiments for ship-radiated noise prove the superi-

ority and effectiveness of the proposed feature extraction scheme. 

PE

WPE

RPE

RWPE RCMRWPERCMP 

 

Figure 1. The origin of RCMRWPE. 

In the next section, we introduce RCMRWPE in detail, and introduce the feature ex-

traction scheme and classification method based on RCMRWPE, respectively. In Section 

3, a large number of feature extraction and classification experiments are carried out to 

verify the effectiveness of the proposed feature extraction scheme in artificial random sig-

nals and ship-radiated noise classification. Section 4 summarizes the total research work. 

2. Refined Composite Multi-Scale Reverse Weighted Permutation Entropy 

RCMRWPE, as a novel complexity metric, is based on RWPE and RCMP. Therefore, 

this section first introduces RWPE, and then presents RCMRWPE using RCMP on the ba-

sis of RWPE. 

2.1. RWPE 

For a given time sequences 𝑌 = {𝑦𝑖 , 𝑖 = 1, 2, 3, … , 𝑁}, it can be reconstructed as 𝐿 

vectors as follows: 

[
 
 
 
 
 
 
𝑦1      𝑦1+𝜏       ⋯        𝑦1+(𝑚−1)𝜏

𝑦2      𝑦2+𝜏       ⋯        𝑦2+(𝑚−1)𝜏

⋯       ⋯         ⋯           ⋯
𝑦𝑗       𝑦𝑗+𝜏       ⋯        𝑦𝑗+(𝑚−1)𝜏

⋯       ⋯         ⋯           ⋯
𝑦𝐿      𝑦𝐿+𝜏        ⋯        𝑦𝐿+(𝑚−1)𝜏]

 
 
 
 
 
 

 (1) 

where 𝜏 and 𝑚 represent the time delay and embedding dimension, and 𝐿 = 𝑁 − (𝑚 −

1)𝜏. 

The 𝐿 vectors are rearranged according to the size as follows: 

𝑦𝑖+(𝑗1−1)𝜏 ≤ 𝑦𝑖+(𝑗2−1)𝜏 ≤ ⋯ ≤ 𝑦𝑖+(𝑗𝑚−1−1)𝜏 ≤ 𝑦𝑖+(𝑗𝑚−1)𝜏 (2) 

If 𝑦𝑖+(𝑗𝑎−1)𝜏 and 𝑦𝑖+(𝑗𝑏−1)𝜏 are equal for the same vector, which is defined as follows: 

𝑦𝑖+(𝑗𝑎−1)𝜏 < 𝑦𝑖+(𝑗𝑏−1)𝜏, (𝑎 < 𝑏) (3) 
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Most of the traditional feature extraction methods for ship-radiated noise are based
on frequency or energy, for example, the aforementioned feature extraction schemes based
on CEEMDAN and VMD, their superior performance in the extraction of ship-radiated
noise has been confirmed in [35,36]. However, compared with these traditional feature
extraction methods, the entropy-based feature extraction method can extract the complexity
of the ship-radiated noise, and has better performance at distinguishing between different
ships [14], such as PE, RPE, and WPE. In this paper, we apply RCMRWPE to the artifi-
cial random signals and actual underwater acoustic signals, and propose an underwater
acoustic signal feature extraction scheme based on RCMRWPE. A large number of feature
extraction and classification experiments for ship-radiated noise prove the superiority and
effectiveness of the proposed feature extraction scheme.

In the next section, we introduce RCMRWPE in detail, and introduce the feature
extraction scheme and classification method based on RCMRWPE, respectively. In Section 3,
a large number of feature extraction and classification experiments are carried out to verify
the effectiveness of the proposed feature extraction scheme in artificial random signals and
ship-radiated noise classification. Section 4 summarizes the total research work.

2. Refined Composite Multi-Scale Reverse Weighted Permutation Entropy

RCMRWPE, as a novel complexity metric, is based on RWPE and RCMP. Therefore,
this section first introduces RWPE, and then presents RCMRWPE using RCMP on the basis
of RWPE.

2.1. RWPE

For a given time sequences Y = {yi, i = 1, 2, 3, . . . , N}, it can be reconstructed as L
vectors as follows: 

y1 y1+τ · · · y1+(m−1)τ
y2 y2+τ · · · y2+(m−1)τ
· · · · · · · · · · · ·
yj yj+τ · · · yj+(m−1)τ
· · · · · · · · · · · ·
yL yL+τ · · · yL+(m−1)τ


(1)

where τ and m represent the time delay and embedding dimension, and L = N− (m− 1)τ.
The L vectors are rearranged according to the size as follows:

yi+(j1−1)τ ≤ yi+(j2−1)τ ≤ . . . ≤ yi+(jm−1−1)τ ≤ yi+(jm−1)τ (2)

If yi+(ja−1)τ and yi+(jb−1)τ are equal for the same vector, which is defined as follows:

yi+(ja−1)τ < yi+(jb−1)τ , (a < b) (3)

After that, all of the patterns for L vectors are as follows:

πr = (j1, j2, . . . , jm−1, jm), (r = 1, 2, . . . , m!− 1, m!) (4)
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Due to the introduction of amplitude information, RWPE has more patterns than PE.
For example, when m is 3, Figure 2 is a pattern in PE and the corresponding three possible
patterns in RWPW.
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For RWPE, the weight value of the pattern πr is represented as follows:

ωd(πr) =
1
m

m

∑
k=1

(y(j+(k−1)τ) − yj)
2 (5)

where yj is the mean of the j−th vector, and it can be expressed as follows:

yj =
1
m

m

∑
k=1

y(j+(k−1)τ) (6)

The frequency of the pattern πr can be expressed as:

f (πr) = ∑ f (πr, i) ωg(πr, i) (7)

where πr, i is a possible pattern of πr, f (πr, i) is the number of the pattern πr, i. Thus, the
probability of the πr can be represented as:

P(πr) =
f (πr)

∑m!
r=1 f (πr)

(8)

Like RPE, RWPE is represented as follows:

HRWPE =
m!

∑
r=1

(P(πr)−
1

m!
)

2
=

m!

∑
r=1

P(πr)
2 − 1

m!
(9)

For example, there are two probabilities (p and 1− p), HPE(p), and HRWPE(p) are the
function of p, which can be expressed as:{

HPE(p) = [−p log p− (1− p) log(1− p)]/ log 2
HRWPE(p) = 2[(p− 1

2 )
2
+
(

1− p− 1
2 )

2
] (10)
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Figure 3 shows the functions of HPE(p) and HRWPE(p). From Figure 3, it is evident that
HRWPE(p) shows a reverse trend to HPE(p), HPE(p) and HRWPE(p) reach a maximum of 1
and a minimum of 0 when p is 0.5, and the two functions have the same range of values
from 0 to 1.
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Figure 3. The functions HPE(p) and HRWPE(p).

For ease of comparison studies, the functions 1− HPE(p) and HRWPE(p) are shown in
Figure 4. As seen in Figure 4, 1− HPE(p) and HRWPE(p) have a similar varying tendency,
and the two functions reach the maximum and the minimum at the same time. Therefore,
like PE, RWPE can also be used to measure complexity.
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2.2. RCMRWPE

For RCMRWPE, the RCMP of time sequences X = {xi, i = 1, 2, 3, . . . , N} can be
shown as:

Y(s) =
{

Y(s)
k , 1 ≤ k ≤ s

}
(11)
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where s is the scale factor of RCMRWPE, Y(s)
k is the k−th result for RCMRWPE. Unlike

coarse-graining for MPE, there are s results for RCMRWPE by RCMP, Y(s)
k can be repre-

sented as:

Y(s)
k =

{
Y(s)

k,j ,
(

1 ≤ j ≤ N
s

)}
(12)

where Y(s)
k,j is can be represented as:

Y(s)
k,j =

1
s

k+js−1

∑
c=k+s(i−1)

xc (13)

For instance, when embedding dimension m is 3, the coarse-graining for MPE and RCMP
for RCMRWPE can be observed in Figure 5. As seen in Figure 5, RCMP can get more
information from the original time sequences than the traditional coarse-graining.

Based on RWPE in Section 2.1, RCMRWPE can be defined as:

HRCMRWPE =
m!

∑
r=1

(P(πr)−
1

m!
)

2
=

m!

∑
r=1

P(πr)
2 − 1

m!
(14)

where P(πr) is the average value of P(πr) for Y(s).
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Figure 5. The coarse-graining for MPE and RCMP for RCMRWPE. 

Based on RWPE in Section 2.1, RCMRWPE can be defined as: 
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where �̄�(𝜋𝑟) is the average value of 𝑃(𝜋𝑟) for 𝑌(𝑠). 
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2.3. The Feature Extraction Scheme and Classification Method Based on RCMRWPE

In order to prove the good performance of RCMRWPE in ship-radiated noise clas-
sification, we take the RCMRWPE value under each scale as the extracted feature, and
combine it with discriminant analysis classifier (DAC) to get a new classification method.
In addition, we also combine MPE, MWPE, and MRPE with DAC, respectively, to get three
classification methods, which are MPE, MWPE, and MRPE-based classification methods,
and the effectiveness of the RCMRWPE based feature extraction scheme can be verified by
comparing the classification recognition rate. Figure 6 shows the flow chart of the proposed
classification method.

As shown in Figure 6, the details of the proposed classification method can be de-
scribed as follows.

Step 1: First, we select several types of ship-radiated noise and draw their time-
domain waveforms.
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Step 2: Then, we calculate RCMRWPE, MPE, MWPE, and MRPE of all ship-radiated
noise samples under 20 scales, and compare their mean and standard deviation (STD)
entropy curves.

Step 3: Next, we combine the calculated entropy with DAC to form four classification
methods, and randomly select training samples and testing samples to form training sets
and testing sets.

Step 4: Finally, we calculate the recognition rate and confusion matrix of each classifi-
cation method, which is used to verify the superiority of the proposed feature extraction
scheme. In addition, we also carried out comparative experiments on different embedding
dimension m to explore its impact on the classification performance of RCMRWPE.
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3. A Ship-Radiated Noise Feature Extraction Scheme Based on RCMRWPE
3.1. Synthetic Signals

In this section, we introduce White Gaussian noise (WGN) and 1/ f noise to verify
the effectiveness of RCMRWPE as a feature extraction method. WGN and 1/ f noise are
two important signals to evaluate multi-scale entropy method. Generally speaking, the
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complexity of 1/ f noise is higher than that of WGN, and the irregularity of WGN is higher
than 1/ f noise [17].

Figure 7 shows the mean and STD entropy curves obtained for RCMRWPE (m = 3),
MRPE (m = 3), MWPE (m = 3), and MPE (m = 3) using 30 different 1/ f noise and WGN
signals with the length of 2000 samples. In addition, the time delay τ > 1 will lead to
the loss of frequency information, so we set τ as 1 in this paper. Comparing the four
curves with different entropy in Figure 7, we can draw the following conclusions: (i) the
RCMRWPE and MRPE value of WGN is larger than one of 1/ f noise, which is opposite to
the result of MPE and MWPE, this is because the reverse process is added to RCMRWPE
and MRPE, which makes their results contrary to the fact, therefore, the four curves can all
verify the conclusion that the irregularity of WGN is higher than 1/ f noise, especially in
RCMRWPE and MWPE curves; (ii) the STD of WGN under each curve is smaller than one
of 1/ f noise, and the difference between the STD of the two noises in the RCMRWPE and
MWPE curves is relatively large, which is in line with the conclusion that the complexity of
1/ f noise is higher than that of WGN; (iii) we can see that RCMRWPE and MWPE curves
can distinguish signals more easily than the one of MPE and MRPE.
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All these results indicate that the feature extraction scheme based on RCMRWPE and
MWPE has a better performance than the other two schemes. In order to further compare
their distinguishing ability and stability, we carry out many comparative experiments on
ship-radiated noise.
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3.2. Ship-Radiated Noise Datasets

In this section, we select six ship-radiated noises to verify the validity of RCMRWPE.
The six ship-radiated noises are termed SHIP 1, SHIP 2, SHIP 3, SHIP 4, SHIP 5, and SHIP 6,
respectively. Table 1 shows the label information of ship-radiated noise experimental data.
Each ship-radiated noise has 500 samples, and the length of each sample is 5000 points.
The normalized time-domain waveforms and probability density estimation function for
the six ship-radiated noises are shown in Figure 8, and the estimation of probability density
is computed through using Matlab function ‘ksdensity.m’.
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Table 1. Label description of the used data.

Ship-Radiated Noise Class Used Data

SHIP 1 State Ferry
SHIP 2 Cruise Ship
SHIP 3 Freighter
SHIP 4 Small Diesel Engine
SHIP 5 Motorboat
SHIP 6 Ocean Liner
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3.2.1. Analysis of Feature Extraction

First of all, we focus on testing the effect of feature extraction. Generally, the validity
of RCMRWPE as a feature extraction scheme is judged by calculating the mean and STD
RCMRWPE (m = 3) of six ship-radiated noise, and we apply MPE (m = 3), MRPE (m = 3),
and MWPE (m = 3) with the feature number of 20 to the comparison of feature extraction.
Figure 9 depicts the mean and STD entropy curves of six ship-radiated noise for different
feature extraction schemes. From Figure 9, the STD of RCMRWPE and MRPE maintains a
small value at each scale, which indicates that both of RCMRWPE and MRPE have a great
stability in ship-radiated noise. We can also observe that MRPE and RCMRWPE curves
share a similar trend, which is greatly different from that of MPE and MWPE curves.
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3.2.2. Analysis of Single Scale

From Figure 9, we can only get the mean and STD entropy. In this section, we use
a discriminant analysis classifier (DAC) as a classifier and combine it with MPE (m = 3),
MWPE (m = 3), MRPE (m = 3), and RCMRWPE (m = 3), respectively, to get four entropy-
based classification methods. By comparing the recognition rate of each classification
method under single scale, we can prove the effectiveness of RCMRWPE as a feature
extraction scheme.

Under each scale, 50 randomly selected samples of each ship-radiated noise are used
as the training set, and 100 randomly selected ones are taken as testing set. Figure 10 shows
the recognition rate of four feature extraction schemes based on DAC under 20 single scales.
From Figure 10, it can be observed that when the scale is 1, each classification method has
the highest recognition rate, among which RCMRWPE reached the highest value (0.7383).
In addition, the classification method based on RCMRWPE has a higher recognition rate
under most single scales than other classification methods, and with the increase of scale,
the overall recognition rate presents a downward trend. The above results indicate that the
proposed RCMRWPE-based classification method have much better performance than that
of MRPE, MPE, and MWPE-based classification methods under a single scale.
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3.2.3. Analysis of Multi-Scale

In Section 3.2, the experimental results show the effectiveness of the classification
method based on RCMRWPE, but the highest recognition rate is only 0.7383, which is due
to the large number of noise categories and the few selected features. In order to further
verify the good performance of the proposed feature extraction scheme in ship-radiated
noise, in this section, we sequentially increase the number of selected features.

For comparison purposes, we, respectively, calculated the recognition rate of the
MPE-based (m = 3), MWPE-based (m = 3), MRPE-based (m = 3), and RCMRWPE-based
(m = 3) classification method under different numbers of features. Assuming that the
number of selected features is n, like the experiment in Section 3.2, 50 randomly selected
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samples are used as the training set with dimension (50× n), and the testing set consisting
of 100 samples with dimension (100× n). Table 2 shows the recognition rates of each
classification method under various feature combination. In Table 2, the blue numbers
are the lowest recognition rate of each classification method, and the red numbers are
the highest recognition rate of each classification method. By observing their position
distribution, it is evident that with the increase of the number of features, the recognition
rate of each classification method is increasing, especially in RCMRWPE-based classification
method, when the number of features is 13, its recognition rate is much higher than
the other three classification methods, and has maintained a good performance in more
feature combinations.

From Table 2, we can also observe that the highest recognition rate of the RCMRWPE-
based classification method is 0.9667, which has the best performance among four classi-
fication methods under 20 feature combinations. Figure 11 depicts the confusion matrix
under the combination of features with the highest recognition rate for each classification
method. By observing Figure 11, we can find that all the classification methods have a
good classification performance for all selected ship-radiated noise except SHIP 6, and it is
valuable to note that the main gap between different classification methods is reflected in
the classification of SHIP 6. The RCMRWPE-based classification method has a recognition
rate of 0.82 on SHIP 6, while the recognition rate of the other three classification methods
on the SHIP 6 is only 0.56, 0.68, and 0.59, respectively, which states that the proposed
feature extraction scheme has better performance in distinguishing ability than the other
three feature extraction schemes.

Entropy 2021, 23, x FOR PEER REVIEW 13 of 16 
 

 

Table 2. The recognition rate of each classification method for different numbers of features. 

Number of 

Features 

Recognition Rate 

RCMRWPE MRPE MWPE MPE 

1 0.7467 0.7267 0.7300 0.7250 

2 0.7733 0.8333 0.7767 0.8317 

3 0.8300 0.8783 0.8317 0.8783 

4 0.8333 0.8833 0.8283 0.8883 

5 0.8300 0.8850 0.8317 0.8850 

6 0.8300 0.8817 0.8317 0.8817 

7 0.8317 0.8783 0.8267 0.8783 

8 0.8333 0.8800 0.8267 0.8800 

9 0.8333 0.8767 0.8317 0.8750 

10 0.8333 0.8783 0.8283 0.8750 

11 0.8400 0.8683 0.8283 0.8683 

12 0.8667 0.8833 0.8300 0.8833 

13 0.9533 0.8950 0.8567 0.8950 

14 0.9650 0.9100 0.8933 0.9100 

15 0.9617 0.9167 0.9383 0.9150 

16 0.9650 0.9217 0.9433 0.9250 

17 0.9667 0.9250 0.9450 0.9300 

18 0.9600 0.9250 0.9367 0.9300 

19 0.9617 0.9250 0.9367 0.9300 

20 0.9600 0.9267 0.9367 0.9317 

From Table 2, we can also observe that the highest recognition rate of the RCMRWPE-

based classification method is 0.9667, which has the best performance among four classi-

fication methods under 20 feature combinations. Figure 11 depicts the confusion matrix 

under the combination of features with the highest recognition rate for each classification 

method. By observing Figure 11, we can find that all the classification methods have a 

good classification performance for all selected ship-radiated noise except SHIP 6, and it 

is valuable to note that the main gap between different classification methods is reflected 

in the classification of SHIP 6. The RCMRWPE-based classification method has a recogni-

tion rate of 0.82 on SHIP 6, while the recognition rate of the other three classification meth-

ods on the SHIP 6 is only 0.56, 0.68, and 0.59, respectively, which states that the proposed 

feature extraction scheme has better performance in distinguishing ability than the other 

three feature extraction schemes. 

 

(a) RCMRWPE 

 

(b) MRPE 

Entropy 2021, 23, x FOR PEER REVIEW 14 of 16 
 

 

 

(c) MWPE 

 

(d) MPE 

Figure 11. The confusion matrix under the combination of features with the highest recognition rate for each  

classification method. 

3.2.4. Analysis of Parameter Selection 

In order to assess the sensitivity of RCMRWPE to the embedding dimension 𝑚, we 

selected different embedding dimension 𝑚  for comparative experiments. For a clear 

comparison, we use the same training samples and test samples as in Section 3.2.3, and 

calculate the recognition rates of different classification methods with 𝑚 = 4 and 5, re-

spectively. It can also be seen from Table 2 that the highest recognition rate of 4 classifica-

tion methods can be achieved with the number of features is greater than 15, therefore, in 

this section, we only compare the classification performance when the number of features 

exceeds 15. The details can be observed in Table 3. From Table 3, it is evident that com-

pared with other classification methods, the classification method based on RCMRWPE 

has a higher recognition rate no matter when 𝑚 = 4 or 𝑚 = 5, which indicates that the 

change of 𝑚 will not affect the fact that RCMRWPE has excellent performance in distin-

guishing ability and stability. In addition, we can also find that with the increase of 𝑚, the 

recognition rate of each classification method is also decreasing, this is because some in-

formation will be lost when m is too large, which may result in a poor classification per-

formance. 

Table 3. The recognition rate of each classification method with different embedding dimensions. 

Number of Features 16 17 18 19 20 

Recognition 

Rate<break>(

𝒎 = 4) 

RCMRWPE 0.9650 0.9650 0.9617 0.9633 0.9633 

MRPE 0.9183 0.9200 0.9200 0.9217 0.9167 

MWPE 0.9350 0.9367 0.9367 0.9383 0.9383 

MPE 0.8483 0.8483 0.8450 0.8500 0.8550 

Recognition 

Rate<break>(

𝒎 = 5) 

RCMRWPE 0.9217 0.9233 0.9200  0.9233  0.9250  

MRPE 0.9017 0.9017 0.9017  0.9017  0.8967  

MWPE 0.9050 0.9067 0.9083  0.9100  0.9083  

MPE 0.8433 0.8417 0.8433 0.8400 0.8400 

4. Conclusions 

In this paper, RCMRWPE is proposed by combining RCMP and RWPE, which aims 

to overcome the shortages of traditional multiscale distribution entropy in complexity 

measures of time series. Additionally, RCMRWPE is used in feature extraction of ship-

radiated noise, through the comparison experiments of feature extraction and classifica-

tion, the conclusions are included as follows: 

Figure 11. The confusion matrix under the combination of features with the highest recognition rate for each classifica-
tion method.



Entropy 2021, 23, 476 14 of 16

Table 2. The recognition rate of each classification method for different numbers of features.

Number of
Features

Recognition Rate

RCMRWPE MRPE MWPE MPE

1 0.7467 0.7267 0.7300 0.7250
2 0.7733 0.8333 0.7767 0.8317
3 0.8300 0.8783 0.8317 0.8783
4 0.8333 0.8833 0.8283 0.8883
5 0.8300 0.8850 0.8317 0.8850
6 0.8300 0.8817 0.8317 0.8817
7 0.8317 0.8783 0.8267 0.8783
8 0.8333 0.8800 0.8267 0.8800
9 0.8333 0.8767 0.8317 0.8750
10 0.8333 0.8783 0.8283 0.8750
11 0.8400 0.8683 0.8283 0.8683
12 0.8667 0.8833 0.8300 0.8833
13 0.9533 0.8950 0.8567 0.8950
14 0.9650 0.9100 0.8933 0.9100
15 0.9617 0.9167 0.9383 0.9150
16 0.9650 0.9217 0.9433 0.9250
17 0.9667 0.9250 0.9450 0.9300
18 0.9600 0.9250 0.9367 0.9300
19 0.9617 0.9250 0.9367 0.9300
20 0.9600 0.9267 0.9367 0.9317

3.2.4. Analysis of Parameter Selection

In order to assess the sensitivity of RCMRWPE to the embedding dimension m, we
selected different embedding dimension m for comparative experiments. For a clear com-
parison, we use the same training samples and test samples as in Section 3.2.3, and calculate
the recognition rates of different classification methods with m = 4 and 5, respectively. It
can also be seen from Table 2 that the highest recognition rate of 4 classification methods
can be achieved with the number of features is greater than 15, therefore, in this section,
we only compare the classification performance when the number of features exceeds 15.
The details can be observed in Table 3. From Table 3, it is evident that compared with
other classification methods, the classification method based on RCMRWPE has a higher
recognition rate no matter when m = 4 or m = 5, which indicates that the change of m will
not affect the fact that RCMRWPE has excellent performance in distinguishing ability and
stability. In addition, we can also find that with the increase of m, the recognition rate of
each classification method is also decreasing, this is because some information will be lost
when m is too large, which may result in a poor classification performance.

Table 3. The recognition rate of each classification method with different embedding dimensions.

Number of Features 16 17 18 19 20

Recognition Rate
(m = 4)

RCMRWPE 0.9650 0.9650 0.9617 0.9633 0.9633
MRPE 0.9183 0.9200 0.9200 0.9217 0.9167
MWPE 0.9350 0.9367 0.9367 0.9383 0.9383

MPE 0.8483 0.8483 0.8450 0.8500 0.8550

Recognition Rate
(m = 5)

RCMRWPE 0.9217 0.9233 0.9200 0.9233 0.9250
MRPE 0.9017 0.9017 0.9017 0.9017 0.8967
MWPE 0.9050 0.9067 0.9083 0.9100 0.9083

MPE 0.8433 0.8417 0.8433 0.8400 0.8400

4. Conclusions

In this paper, RCMRWPE is proposed by combining RCMP and RWPE, which aims
to overcome the shortages of traditional multiscale distribution entropy in complexity
measures of time series. Additionally, RCMRWPE is used in feature extraction of ship-
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radiated noise, through the comparison experiments of feature extraction and classification,
the conclusions are included as follows:

(1) The feature extraction scheme based on RCMRWPE has smaller variance and better
stability than the feature extraction scheme based on MWPE, and MPE.

(2) In the comparative experiment of different classification methods, the RCMRWPE-
based classification method shows much better performance than MPE, MWPE, and
MRPE-based classification methods under most single scales.

(3) In the multi-scale feature comparison experiment, when the number of selected fea-
tures exceeds 15, each classification method has a good classification performance.
Among them, the classification method based on RCMRWPE has the highest recogni-
tion rate, reaching 0.9667, which is 4% higher than the classification method based
on MRPE.

(4) The increase of embedding dimension m will cause the loss of information in ship-
radiated noise, but the RCMRWPE-based classification method still has a good classi-
fication performance, which further proves the distinguishing ability and stability of
the proposed feature extraction scheme.
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