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Abstract: This study considers support vector regression (SVR) and twin SVR (TSVR) for the time
series of counts, wherein the hyper parameters are tuned using the particle swarm optimization (PSO)
method. For prediction, we employ the framework of integer-valued generalized autoregressive
conditional heteroskedasticity (INGARCH) models. As an application, we consider change point
problems, using the cumulative sum (CUSUM) test based on the residuals obtained from the PSO-SVR
and PSO-TSVR methods. We conduct Monte Carlo simulation experiments to illustrate the methods’
validity with various linear and nonlinear INGARCH models. Subsequently, a real data analysis,
with the return times of extreme events constructed based on the daily log-returns of Goldman Sachs
stock prices, is conducted to exhibit its scope of application.

Keywords: time series of counts; INGARCH model; SVR and TSVR with PSO; change point detection;
CUSUM test

1. Introduction

In this study, we developed a forecasting method for the time series of counts based
on support vector regression (SVR) with particle swarm optimization (PSO), and used
it to detect a change in the conditional mean of the time series based on the cumulative
sum (CUSUM) test that is calculated from integer-valued autoregressive conditional het-
eroscedastic (INGARCH) residuals. Over the past few decades, the time series of counts
have gained increased attention from researchers in diverse scientific areas. Considering
the research conducted by [1–5], two classes of models, such as integer-valued autore-
gressive (INAR) and INGARCH models, have been popular for analyzing the time series
of counts. See [6] for more details. These models have been harnessed to analyze polio
data [7], crime data [8], car accident traffic data [9], and financial data [10].

Although the basic theories and analytical tools for these models are quite well
developed in the literature, as seen in [11–15], a restriction on their usage exists because
both INAR and INGARCH models are mostly assumed to have a linear structure in their
conditional mean. In INGARCH models, Poisson and negative binomial distributions
have been widely adopted as the conditional distribution of current observations over past
information. This is because assuming these distributions is not impractical, as the correct
specification of underlying distributions is not essential when attempting to estimate the
conditional mean equation, as demonstrated by [16], who considered the quasi-maximum
likelihood estimation (QMLE) method for the time series of counts. However, for the
QMLE approach to perform adequately, the conditional mean structure must be correctly
specified. As misspecification can potentially lead to false conclusions in real situations,
we considered SVR as a nonparametric algorithm for forecasting the time series of counts.
To our knowledge, our current study is the first attempt in the literature to use SVR for the
prediction of time series of counts based on the INGARCH scheme.

SVR has been one of the most popular nonparametric algorithms for forecasting
time series and has been proven to outperform classical time series models, such as au-
toregressive and moving average (ARMA) and GARCH models, as SVR can approximate
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nonlinearity without knowing the underlying dynamic structure of time series [17–25]. SVR
has the merit of implementing the “structural risk minimization principle” [26] and seeks a
balance between model complexity and empirical risk [27]. Moreover, a smaller number
of tuning parameters is required, and determining a global solution is not problematic
because it solves a quadratic programming problem (QPP).

SVR has been modified in various manners; for example, smooth SVR [28], least
squares (LS)-SVM [29], and twin SVR (TSVR) [30]. TSVR generates two hyperplanes unlike
SVR and has a significant advantage over SVR in computational speed. For the relevant
references, see [31–33]. Here, we harness the SVR and TSVR methods particularly with the
particle swarm optimization (PSO) algorithm, originally proposed by [34], in determining
a set of optimal parameters to enhance their efficacy. For an overview of PSO, see [35,36].

As an application of our SVR method, we consider the problem of detecting a signifi-
cant change in the conditional mean of the INGARCH time series. Since [37], the parameter
change detection problem has been a core issue in various research areas. As financial time
series often suffer from structural changes, owing to changes in governmental policy and
critical social events, and ignoring them leads to a false conclusion, change point tests have
been considered as an important research topic in time series analysis. See [38,39] for a
general review. The CUSUM test has long been used as a tool for detecting a change point,
owing to its practical efficiency [40–44]. As regards the time series of counts, see [7,45–50].

Among the CUSUM tests, we adopted the residual-based CUSUM test, because the
residual method can successfully discard the correlations of time series and enhance the
performance of the CUSUM test in terms of both stability and power. See [51,52]. The
authors of the recent reference [43,53] developed a simplistic residual-based CUSUM test
for location-scale time series models, based on which the authors of [21,22] designated a
hybridization of the SVR and CUSUM methods for handling the change point problem
for AR and GARCH time series and demonstrated its superiority over classical models.
However, their approach is not directly applicable and requires a new modification for
effective performance, especially on the proxies used for the GARCH prediction, as seen
in Section 3.4, as simple or exponential moving average type proxies conventionally used
for SVR-GARCH models [22] would not work adequately in our current study. Here, we
instead used the proxies obtained through the linear INGARCH fit to time series of counts.

The rest of this paper is organized as follows. Section 2 reviews the principle of
the CUSUM test and CUSUM of squares test for the INGARCH models and then briefly
describes how to apply the SVR-INGARCH method for constructing the CUSUM tests.
Section 3 presents the SVR and TSVR-GARCH models for forecasting the conditional mean
and describes the SVR and TSVR methods with PSO. Section 4 discusses the Monte Carlo
simulations conducted to evaluate the performance of the proposed method. Section 5
discusses the performance of the real data analysis, using the return times of extreme events
constructed based on the daily log-returns of Goldman Sachs (GS) stock prices. Finally,
Section 6 provides concluding remarks.

2. INGARCH Model-Based Change Point Test

Let {Yt, t ≥ 1} be a time series of counts. In order to make inferences for {Yt}, one
can consider fitting a parametric model to Yt, for instance, the INGARCH model with the
conditional distribution of the one-parameter exponential family and the link function fθ ,
parameterized with θ ∈ Θ ⊂ Rd, that describes the conditional expectation, namely,

Yt|Ft−1 ∼ p(y|ηt), Xt := E(Yt|Ft−1) = fθ(Xt−1, Yt−1), (1)

where Ft denotes the past information up to time t, fθ is defined on [0, ∞) × N0 with
N0 = {0, 1, . . .}, and p(·|·) is a probability mass function given by

p(y|η) = exp{ηy− A(η)}h(y), y ≥ 0,
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where η is the natural parameter, A(·) and h(·) are known real-valued functions, B = A′

is strictly increasing, and ηt = B−1(Xt). B(ηt) and B′(ηt) are the conditional mean and
variance of Yt over past observations, respectively. Symbols Xt(θ) and ηt(θ) are used to
emphasize θ.

Conventionally, fθ is assumed to be bounded below by some real number c > 0 and
to satisfy

sup
θ∈Θ
| fθ(x, y)− fθ(x′, y′)| ≤ ν1|x− x′|+ ν2|y− y′| (2)

for all x, x′ ≥ 0 and y, y′ ∈ N0, where ν1, ν2 ≥ 0 satisfies ν1 + ν2 < 1, which, according
to [12], allows {Yt} to be strictly stationary and ergodic, required for the consistency of the
parameter estimates.

In practice, Poisson or negative binomial (NB) linear INGARCH(1,1) models with
Xt = ω + αXt−1 + βYt−1, ω > 0, α ≥ 0, β ≥ 0, α + β < 1, are frequently used. For the
former, we assume Yt|Ft−1 ∼ Poisson(Xt), whereas for the latter, we assume Yt|Ft−1 ∼
NB(r, pt), Xt = r(1−pt)

pt
= ω + αXt−1 + βYt−1, where r ∈ N and Y ∼ NB(r, p) denotes

the negative binomial distribution with its mass function: P(Y = k) = (k+r−1)!
(r−1)!k! (1− p)k pr,

k ≥ 0.
Let θ0 be a true parameter, which is assumed to be an interior point of the compact

parameter space Θ. The θ0 is then estimated using the conditional likelihood function of
model (1), based on the observations Y1, . . . , Yn:

L̃n(θ) =
n

∏
t=1

exp{η̃t(θ)Yt − A(η̃t(θ))}h(Yt), (3)

where η̃t(θ) = B−1(X̃t(θ)) is updated through the equations: X̃t(θ) = fθ(X̃t−1(θ), Yt−1) for
t ≥ 2, X̃1(θ) = X̃1, with an initial value X̃1.The conditional maximum likelihood estimator
(CMLE) of θ0 is then obtained as the maximizer of the likelihood function in Equation (3):

θ̂n = argmax
θ∈Θ

L̃n(θ) = argmax
θ∈Θ

n

∑
t=1

˜̀t(θ),

with ˜̀t(θ) = log p(Yt|η̃t(θ)) = η̃t(θ)Yt − A(η̃t(θ)). The authors of the reference [12,50]
showed that, under certain conditions, θ̂n converges to θ0 in probability and

√
n(θ̂n − θ0) is

asymptotically normally distributed as n tends to ∞. This θ̂n is harnessed to make prediction
for calculating residuals.

In our current study, we aim to extend Model (1) to the nonparametric model:

Yt|Ft−1 ∼ p(y|ηt), Xt = g(Xt−1, Yt−1), (4)

where p(·|·) and g are unknown, and g is implicitly assumed to satisfy Equation (2). Pro-
vided g ∈ { fθ ; θ ∈ Θ} and p(·|·) is known a priori, one can estimate g with ĝ = fθ̂ . Even if
p(·|·) is unknown, one can still consider using the Poisson or NB quasi-likelihood estimator
(QMLE) method as in [16]. See also [54] for various types of CUSUM tests based on the
QMLEs. However, when one has no prior information as to g, the parametric modeling
may hamper the inference, and in this case, one can estimate g with the nonparametric
SVR method stated below in Section 3.

On Model (1), setting up the null and alternative hypotheses: H0 : θ remain the same
over t = 1, . . . , n. vs. H1 : not H0, The authors of the reference [50] considered the problem
of detecting a change in θ based on the CUSUM test:

T̂res
n = max

1≤k≤n

1√
nτ̂n

∣∣∣∣∣ k

∑
t=1

ε̂t −
k
n

n

∑
t=1

ε̂t

∣∣∣∣∣ (5)
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with the residuals ε̂t = Yt − X̃t(θ̂n) and τ̂2
n = 1

n ∑n
t=1 ε̂2

t −
(

1
n ∑n

t=1 ε̂t

)2
. Furthermore, the

authors of the references [55,56] employed the residual-based CUSUM of squares test:

T̂square
n = max

1≤k≤n

1√
nτ̃n

∣∣∣∣∣ k

∑
t=1

ε̂2
t −

k
n

n

∑
t=1

ε̂2
t

∣∣∣∣∣ (6)

with τ̃2
n = γ̃n(0) + 2 ∑hn

h=1 γ̃n(h), γ̃n(h) = 1
n ∑n−h

t=1 (ε̂
2
t − ε̄2)(ε̂2

t+h − ε̄2), ε̄2 = 1
n ∑n

t=1 ε̂2
t , and

hn =
√

2(log10n)2.
The authors of the reference [50] verified that, under the null H0, T̂res

n behaves asymp-
totically the same as

Tn = max
1≤k≤n

1
nτ

∣∣∣∣∣ k

∑
t=1

εt −
k
n

n

∑
t=1

εt

∣∣∣∣∣,
where εt = Yt − Xt(θ0) and τ2 = Var(ε1). As {εt} forms a sequence of martingale dif-
ferences, we obtain Tn ≈ T := sup0≤s≤1 |B◦(s)| in distribution [57], where B◦ denotes a
Brownian bridge, owing to Donsker’s invariance principle, so that, as T̂res

n ≈ Tn, we have
T̂res

n ≈ T in distribution. For instance, H0 is rejected if T̂res
n ≥ 1.3397 at the level of 0.05,

which is obtainable with Monte Carlo simulations. Similarly, the authors of the reference [55]
verified that T̂square

n ≈ T in distribution, so that the same critical values as for the case of T̂res
n

can be harnessed. Provided that a change point exists, the location of change is identified as

k̂n = argmax1≤k≤n

∣∣∣∣∣ k

∑
t=1

ε̂i
t −

k
n

n

∑
t=1

ε̂i
t

∣∣∣∣∣, i = 1, 2.

This CUSUM framework for parametric models can be easily adopted for nonpara-
metric models as far as the residuals ε̂t can be accurately calculated, as seen in [21,22] who
deal with the change point problem on SVR-ARMA and SVR-GARCH models. Below,
when dealing with Model (4), instead of ε̂t in Equation (5), we use ε̂t = Yt − ĝ(Xt−1, Yt−1)
in the construction of the CUSUM tests in Equations (5) and (6).

When estimating g with SVR and TSVR, we train (yt, xt)T either with yt = X̃t and xt =
(X̃t−1, Yt−1)

T or yt = Yt and xt = (X̃t−1, Yt−1)
T, with some proper proxy X̃t−1. The former has

been used for the SVR-GARCH model in [21], while the latter is newly considered here, inspired
by the fact that Yt = g(Xt−1, Yt−1) + νt, where the error process {νt} is a sequence of martingale
differences, which also holds for Model (1) because we can express Yt = Xt + νt in this case. See
Step 3 in Section 4 below for more details.

3. SVR-INGARCH Model

In this section, we provide an outline of the SVR, TSVR, and PSO methods for a quick
reference and describe the change point test based on the SVR-INGARCH model.

3.1. Support Vector Regression

SVR is an extension of the SVM, originally proposed by [58], and merits accurate non-
linear prediction. SVR aims to identify a nonlinear function of the form: f (x) = wTφ(x)+ b,
where x denotes a vector of inputs, w and b are vectors of regression parameters, and φ is a
known kernel function. The optimal w and b are determined from the ε-insensitive loss
function (Vapnik, 2000):

`ε(y, f (x)) =

{
|y− f (x)| − ε if |y− f (x)| ≥ ε

0 otherwise.
(7)
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Given input vectors xi, scalar output yi, i = 1, . . . , n, and a constant C > 0, we
construct the objective function of the SVR as follows:

minimize
1
2
||w||2 + C

n

∑
i=1

(ξ1,i + ξ2,i), (8)

subject to


yi − wTφ(xi)− b ≤ ε + ξ2,i

wTφ(xi) + b− yi ≤ ε + ξ1,i

ξ1,i ≥ 0, ξ2,i ≥ 0,

where ξ1,i, ξ2,i > 0 denote slack variables that allow some points to lie outside the ε-band with
a penalty, and C denotes a trade-off between the function complexity and the training error.

To obtain the optimal w and b, we formulate an unconstrained optimization problem
using Lagrange multipliers [27]. The Karush–Kuhn–Tucker (KKT) conditions then lead to
the following dual form:

maximize − 1
2

n

∑
i=1

n

∑
j=1

(α1,i − α2,i)(α1,j − α2,j)φ(xi)
Tφ(xj)

− ε
n

∑
i=1

(α1,i + α2,i) +
n

∑
i=1

(α1,i − α2,i)yi, (9)

subject to ∑n
i=1(α1,i − α2,i) = 0, 0 ≤ α1,i ≤ C, 0 ≤ α2,i ≤ C, where α1,i and α2,i denote dual

variables [26]. Subsequently, the optimization problem in Equation (9) yields the solutions
ŵ, b̂, f̂ of w, b, f , as follows:

ŵ =
n

∑
i=1

(α1,i − α2,i)φ(xi),

b̂ =

{
yi − ŵTφ(xi)− ε, 0 < α1,i < C
yi − ŵTφ(xi) + ε, 0 < α2,i < C,

f̂ (x) =
n

∑
i=1

(α1,i − α2,i)K(xi, x) + b̂ (10)

with K(x, y) = φ(x)Tφ(y). In particular, we employ the Gaussian kernel for K in Equation (10),

K(x, y) = exp
(
− ||x−y||2

2γ2

)
, and determine the tuning parameters γ2, C in Equation (8), and

ε in the loss function Equation (7) using the PSO method on the cube of (C, γ2, ε) with
1 ≤ C ≤ 100, 0.1 ≤ γ2 ≤ 1, and 0.1 ≤ ε ≤ 1.

3.2. Twin Support Vector Regression

TSVR is a modified version of SVR [30]. Similar to TSVM [59], TSVR derives two
nonparallel planes f1(x) = wT

1 φ1(x) + b1 and f2(x) = wT
2 φ2(x) + b2, which respectively

determines the ε1-sensitive downbound and ε2-sensitive upbound of data. Given input
vectors xi and output yi, i = 1, . . . , n, the linear TSVR can be formulated as the constraint
minimization problem as follows:

minimize f (w1, b1, ξ1) =
1
2
||Y− Aw1 − eb1 − eε1||2 + C1eTξ1,

subject to Y− Aw1 − eb1 ≥ eε1 − ξ1; (11)

minimize f (w2, b2, ξ2) =
1
2
||Y− Aw2 − eb2 + eε2||2 + C2eTξ2,

subject to Aw2 + eb2 −Y ≥ eε2 − ξ2, (12)
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where Y = (y1, . . . , yn)T , A = (x1 . . . xn)T , ε1, ε2 ≥ 0, e denotes a vector whose components
are all equal to 1, C1, C2 ≥ 0 are hyperparameters, and ξ1, ξ2 ≥ 0 are slack variables.
Each QPP has m constraints instead of 2m constraints and has an advantage of faster
computational speed. To obtain the optimal w1 and b1 in Equation (11), we solve the QPP
using the Lagrangian function:

L(w1, b1, ξ1, α1, β1) :=
1
2
||Y− Aw1 − eb1 − eε1||2 + C1eTξ1

− αT
1 (Y− Aw1 − eb1 − eε1 − ξ1)− βT

1 ξ1, (13)

where α1 ≥ 0 and β1 are Lagrangian multiplier vectors. If there is an optimal solution, it
must satisfy the following KKT conditions:

−AT(Y− Aw1 − eb1 − eε1) + ATα1 = 0; (14)

−eT(Y− Aw1 − eb1 = eε1) + eTα1 = 0; (15)

C1e− α1 − β1 = 0; αT
1 (Y− Aw1 = eb1 − eε1 + ξ1) = 0, α1 ≥ 0;

βT
1 ξ1 = 0, β1 ≥ 0; Y− Aw1 + eb1 ≥ eε1 − ξ1, ξ1 ≥ 0;

Aw2 + eb2 −Y ≥ eε2 − ξ2, ξ2 ≥ 0.

We define G = (A e), h1 = Y− eε1, and u1 = (wT
1 b1)

T . Combining Equations (14) and (15),
we have

u1 = (GTG)−1GT(h1 − α1). (16)

However, since GTG is only semidefinite, we introduce a regularization term σI, where σ > 0
is very small, to overcome some ill-conditioned setting and use u1 = (GTG + σI)−1GT(h1 −
α1). Next, substituting Equation (16) and the KKT conditions into Equation (13), we obtain
the dual QPP form:

maximize − 1
2

αT
1 G(GTG)−1GTα1 + hT

1 G(GTG)−1GTα1 − hT
1 α1,

subject to 0 ≤ α1 ≤ C1e,

which yields u1. Likewise, Equation (12) can acquire the dual QPP form:

minimize − 1
2

αT
2 G(GTG)−1GTα2 − hT

2 G(GTG)−1GTα2 + hT
2 α2,

subject to 0 ≤ α2 ≤ C2e,

where α2 is the Lagrangian multiplier vector and h2 = Y + eε2. This yields u2 = (wT
2 b2)

T .
Then, the estimated regressor can be formulated as follows:

f (x) =
1
2
( f1(x) + f2(x)) =

1
2
(w1 + w2)

Tx +
1
2
(b1 + b2).

For extending the linear TSVR to a nonlinear one, we use the kernel-generated nonpar-
allel hyperplanes, that is, f1(x) = K(xT , AT)w1 + b1 and f2(x) = K(xT , AT)w2 + b2. The
optimization problem in this case is similar to the linear TSVR, and the nonlinear TSVR
regressor is obtained as follows:

f (x) =
1
2
( f1(x) + f2(x)) =

1
2
(w1 + w2)

TK(A, x) +
1
2
(b1 + b2).

3.3. Particle Swarm Optimization Method

In a standard PSO algorithm [34], a set of d hyperparameters are considered as a
particle of d-dimensional vector in search region S = {p = (p1, . . . , pd)

T ∈ Rd; lk ≤ pk ≤
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uk with lk, uk ∈ R for k = 1, . . . , d}. Here, N particles are modeled to move in S, with
the position pi = (pi1, . . . , pid)

T and velocity vi = (vi1, . . . , vid)
T for i = 1, . . . , N. The

previous best position of the i-th particle is represented by pbest
i = (pbest

i1 , . . . , pbest
id )T , and

the previous best position of all particles is represented by gbest = (gbest
1 , . . . , gbest

d )T . At
each iteration k, where 1 ≤ k ≤ Kmax with maximum iteration number Kmax, the velocity
and position of the i-th particle are updated as follows:

vk+1
i = wkvk

i + c1r1(pbest,k
i − pk

i ) + c2r2(gbest,k − pk
i ),

pk+1
i = pk

i + vk+1
i ,

where c1 and c2 are two acceleration factors, r1 and r2 are two random variables following
a uniform distribution over [0,1], and wk is an inertia factor defined by

wk = (wstart − wend)

(
Kmax − k

Kmax

)
+ wend,

where wstart and wend are initial and final values of inertia. Since the positions of particles
are updated, pbest

i and gbest are also updated as follows:

pbest,k+1
i =

{
pk+1

i , if f (pk+1
i ) < f (pbest,k

i )

pbest,k
i , otherwise

gbest,k+1 = argminpbest,k+1
i

f (pbest,k+1
i ).

The finally updated gbest in the above procedure is used as an optimal hyperparameter in
estimating the SVR and TSVR models as seen below.

3.4. PSO-TSVR Model-Based CUSUM Test

In this subsection, we explain how to estimate Xt in Model (4) using the SVR and TSVR
methods with PSO as described above and how to construct the CUSUM test based on the
residuals obtained from the SVR-INGARCH model. In the following steps, we assume that
a time series {Y1, . . . , Yn, Yn+1, . . . , Yn+n′} has no change points.

• Step 1. As in Section 3.3, in order to apply the PSO method, we set a space of hyperpa-
rameters and initialize the positions {p0

1, . . . , p0
N} and velocities {v0

1, . . . , v0
N} of particles

to be evaluated within this space. Subsequently, we divide the given time series into
two groups of time series, {Y1, . . . , Yn} and {Yn+1, . . . , Yn+n′}. The former is used as a
training set while the latter is used as a validation set.

• Step 2. Compute the initial estimates of Xt based on the training time series. For this task,
we use two different methods. The first method is using moving averages (Niemira, 1994):

X̃t =
1
m

m

∑
j=1

Yt−j+1, (17)

where m is a positive integer. When t is smaller than m, X̃t is computed as an average
of the first to the t-th squares of observations, i.e. X̃t = ∑t

j=1 Yt−j+1/t when t < m.
The second method is using the Poisson QMLE [54] assuming that the time series
follows Model (1), for example,

X̃t = ω̂ + α̂X̃t−1 + β̂Yt−1. (18)

These estimates play the role of proxy of Xt and replace the true conditional volatility.
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• Step 3. For particles pk
i , k = 1, 2, . . . Kmax, we train (yt, xt)T , either with yt = X̃t and

xt = (X̃t−1, Yt−1)
T or yt = Yt and xt = (X̃t−1, Yt−1)

T with proxy X̃t−1 to the SVR and
TSVR models to obtain ĝ. Subsequently, for the first, we obtain

X̂t = ĝ(Yt−1, X̃t−1), (19)

named “X̂t-targeting”, and for the second,

Ŷt = ĝ(Yt−1, X̃t−1), (20)

named “Ŷt-targeting”, where Ŷt is an estimate of Yt, which is an estimate Xt as well
since Ŷt itself is the conditional expectation.

• Step 4. Applying the estimated SVR and TSVR models and using the same proxy
formula as in Step 2 for the validation time series, the mean absolute error (MAE) is
computed as follows:

MAE =
1
n′

n+n
′

∑
t=n+1

|X̂t − X̃t|

for the case of Equation (19), and

MAE =
1
n′

n+n
′

∑
t=n+1

|Ŷt − X̃t|

for the case of Equation (20). The MAE is employed here because it is more robust
against outliers in a model fitting than the root mean square error.

• Step 5. Update the pk
i , vk

i , pbest,k
i , and gbest,k as in Section 3.3 and repeat Steps 3 and 4

until the MAE in Step 4 converges within a limit or k reaches the maximum iteration
number Kmax.

• Step 6. Apply the estimated SVR and TSVR models with selected parameters in Step 5
to a testing time series to perform the CUSUM tests in Equations (5) and (6) based on
the residuals ε̂t = Yt − ĝ(Yt−1, X̃t−1).

4. Simulation Results

In this section, we apply the PSO-SVR and -TSVR models to the INAR(1) and IN-
GARCH(1,1) models, and evaluate the performance of the proposed CUSUM tests. For this
task, we generate a time series of length 1000 (n = 500, n′ = 500) to evaluate the empirical
sizes and powers at the nominal level of 0.05. The size and power are calculated as the
rejection number of the null hypothesis of no changes out of 500 repetitions. The simu-
lations were conducted with R version 3.6.3, running on Windows 10. Moreover, we use
the following R packages: “pso” for the PSO [60], “kernlab” for the Gaussian kernel [61],
and “osqp” [62] for solving the quadratic problem. The procedure for the simulation is
as follows.

• Step 1. Generate a time series of length n = 1000 to train the PSO-SVR and -TSVR models.
• Step 2. Apply the estimation scheme described in Section 4. For the proxy of moving

averages, we used m = 5. In this procedure, we divide the given time series into
n = 500 and n′ = 500 in Step 1 of Section 4.

• Step 3. Generate a testing time series of length n = 1000 to evaluate the size and
power. For computing sizes, we generate a time series of no changes, whereas to
examine the power, we generate a time series with a change point in the middle.

• Step 4. Apply the estimated model in Step 2 to the time series of Step 3 and conduct
the residual CUSUM and CUSUM of squares tests.

• Step 5. Repeat the above steps N times, e.g., 500, and then compute the empirical
sizes and powers.
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We consider the INGARCH(1,1) and INAR(1) models, as these are the most acclaimed
models in practice:

• Model 1. Yt|Ft−1 ∼ Poisson(Xt), Xt = ω + αXt−1 + βYt−1,
• Model 2. Yt = φ ◦Yt−1 +Zt, Zt ∼ Poisson(ω), where ◦ is a binomial thinning operator

and |φ| < 1.

Further, upon one referee’s suggestion, we also consider the softplus INGARCH(1,1)
model in [63]:

• Model 3. Yt|Ft−1 ∼ Poisson(Xt), Xt = sc(ω + αYt−1 + βXt−1), where sc(x) =
c log(1 + exp(x/c)).

Under the null hypothesis, we use the parameter settings as follows.

• Model 1:

– Case 1: ω = 3, α = 0.3, β = 0.3;
– Case 2: ω = 5, α = 0.3, β = 0.3;
– Case 3: ω = 3, α = 0.6, β = 0.3;
– Case 4: ω = 3, α = 0.3, β = 0.6;

• Model 2:

– Case 1: ω = 3, φ = 0.3;
– Case 2: ω = 5, φ = 0.3;
– Case 3: ω = 3, φ = 0.7;

• Model 3:

– c = 1, ω = 3, α = 0.3, β = 0.3.

Under the alternative hypothesis, we only consider the case of one parameter change,
while the other parameters remain the same. Tables A1–A4 in Appendix A summarize the
results for Model 1. Here, MA and ML denote the proxies obtained from the moving average
in Equation (17) and Poisson QMLE in Equation (18), and Ŷt and X̂t, respectively, denote the
two targeting methods in Equation (20) and Equation (19). The tables show that the difference
between the SVR and TSVR methods is marginal. Moreover, in most cases, T̂square

n appears to
be much more stable than T̂res

n ; that is, the latter test suffers from more severe size distortions.
In terms of power, T̂res

n with the ML proxy and X̂t-targeting tends to outperform the others.
However, the gap between this test and T̂square

n is only marginal; therefore, considering the
stability of the test, T̂square

n is highly favored for Model 1. Tables A5–A7 summarize the result
for Model 2, showing that T̂res

n exhibits a more stable performance for the INAR models
than for the INGARCH models. However, it is still not as stable as T̂square

n and tends to
outperform T̂square

n in terms of power. Table A8 summarizes the result for Model 3, showing
no significant differences from the results of the previous models. This result, to a certain
extent, coincides with that of Lee and Lee (2020) who considered parametric INGARCH
models for a change point test. Overall, our findings strongly confirm the reliability of
using T̂square

n , particularly with the ML proxy and X̂t-targeting. However, in practice, one
can additionally implement T̂res

n because either test can react more sensitively to a specific
situation in comparison to the other.

Table A9 lists the computing times (in seconds) of the SVR and TSVR methods when
implemented in R on Windows 10, running on a PC with an Intel i7-3770 processor
(3.4 GHz) with 8 GB of RAM, wherein the figures denote the averages of training times in
simulations, and the values in the parentheses indicate the sample standard deviations.
In each model and parameter setting, the values of the two quickest results are written in
boldface. As reported by [21,30], the TSVR method is shown to markedly reduce the CPU
time. In particular, the results indicate that the computational speed of the TSVR-based
method, with the ML proxy and X̂t-targeting, appears to be the fastest in most cases. The
result suggests that using the TSVR-based CUSUM tests is beneficial when computational
speed is of significance to the implementation.
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5. Real Data Analysis

In this section, we analyze the return times of extreme events constructed based on
the daily log-returns of GS stock prices from 1 January 2003, to 28 June 2019, obtained
using the R package “quantmod.” We used data from 2 January 2003, to 29 June 2007, as
the training set and that from 1 July 2009, to 28 June 2019, as the test set. Figures 1 and 2
exhibit the GS stock prices and 100 times the log-returns, with their ranges denoted by the
green and blue vertical lines, respectively. As shown in Figure 2, the time series between
the training and test sets has severe volatility, owing to the financial crisis that occurred in
2008; therefore, it is omitted from our data analysis.
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Figure 1. Goldman Sachs stock price.
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Figure 2. Log-return of Goldman Sachs stock price.

Before applying the PSO-SVR-INGARCH and PSO-TSVR-INGARCH methods, sim-
ilarly to [12,14], we first transform the given time series into the hitting times τ1, τ2, . . .,
for which the log-returns of the GS stock fall outside the 0.15 and 0.85 quantiles of the
training data, that is, -1.242 and 1.440, respectively. More specifically, τ1 = inf{t ≥ 1; wt /∈
[−1.242, 1.440]}, τ2 = inf{t ≥ τ1; wt /∈ [−1.242, 1.440]}, . . ., where wt denote the 100 times
log-returns. We then set Yt := τt − τt−1, which forms the return times of these extreme
events. Consequently, the training set is transformed into an integer-valued time series of
length 341, and the test set is transformed into that of length 844 (see Figure 2), plotting Yt.
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To determine whether the training set exhibits change, we apply the Poisson QMLE
method and CUSUM of squares test from [54]. The result shows that the CUSUM statistics
T̂square

n has a value of 0.590, which is smaller than the theoretical critical value of 1.358; thus,
the null hypothesis of no change is not rejected at the nominal level of 0.05, supporting
the adequacy of the training set. The residual-based CUSUM of squares tests based on the
SVR and TSVR models with the ML proxy and X̂t-targeting are then applied; subsequently,
both tests detect a change point at the 441st observation of the testing data, corresponding
to 16 October 2013. The red vertical line in Figure 3 denotes the detected change point.

To examine how the change affects the dynamic structure of the time series, we fit a
Poisson linear INGARCH model to the training and testing time series before and after
the change point. For the training time series, the fitted INGARCH model appears to have
ω̂ = 0.334, α̂ = 0.813, and β̂ = 0.086. Conversely, for the testing time series before the
change, we obtain ω̂ = 0.135, α̂ = 0.878, and β̂ = 0.067, which are not as different as those
from the training time series case. However, after the change point, the fitted parameters
are shown to be ω̂ = 1.045, α̂ = 0.560, and β̂ = 0.147, thus confirming a significant change
in the parameters. For instance, the sum of α and β in the training data is 0.899, which
changes from 0.945 to 0.707 in the testing data.
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Figure 3. Return time of extreme events of Goldman Sachs stock prices.

6. Concluding Remarks

In this study, we proposed the CUSUM test based on the residuals obtained with the
SVR and TSVR-INGARCH models to detect a parameter change in the conditional mean
of the time series of counts. To improve accuracy and efficiency, we also employed the
PSO method to obtain an optimal set of hyperparameters. Monte Carlo simulations were
conducted using the INAR and INGARCH models with various parameter settings. The
results showed that the TSVR method using the ML proxy and the conditional mean X̂t-
targeting method is recommendable, as it generally performs well and markedly reduces
computational time. Our method was then applied to the analysis of the return times of
extreme events constructed based on the daily log-returns of Goldman Sachs stock prices
and, subsequently, detected one change. Overall, our findings, based on a simulation study
and real data analysis, demonstrated the validity of our method. Although the proposed
method performs well in general, it might have a limitation in its performance when the
amount of available training data is not large enough or the dataset has features that can
violate the stationarity, e.g., high volatilities. The method can also suffer from over-fitting
to a specific training sample. Thus, it would be an important task to develop more robust
methods, which we leave as our future project.
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Appendix A

Table A1. Empirical sizes and powers for the INGARCH(1,1) model, Case 1.

ω = 3 Method SVR TSVR

α = 0.3 Target Ŷt X̂t Ŷt X̂t

β = 0.3 Proxy MA ML MA ML MA ML MA ML

size
T̂res

n 0.072 0.104 0.000 0.096 0.076 0.064 0.000 0.074

T̂square
n 0.040 0.034 0.032 0.042 0.036 0.038 0.032 0.046

power

ω → 5
T̂res

n 1.000 1.000 0.640 1.000 0.984 0.860 0.274 0.996

T̂square
n 0.968 0.980 0.776 0.994 0.984 0.964 0.808 0.990

ω → 10
T̂res

n 1.000 1.000 1.000 1.000 0.972 0.962 0.948 0.956

T̂square
n 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

α→ 0.5
T̂res

n 1.000 1.000 0.978 1.000 0.976 0.868 0.620 0.982

T̂square
n 0.986 0.994 0.936 0.944 0.986 0.992 0.944 1.000

β→ 0.5
T̂res

n 1.000 1.000 0.988 1.000 0.982 0.870 0.664 0.982

T̂square
n 0.952 0.950 0.826 0.956 0.916 0.924 0.826 0.980

https://finance.yahoo.com
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Table A2. Empirical sizes and powers for the INGARCH(1,1) model, Case 2.

ω = 5 Method SVR TSVR

α = 0.3 Target Ŷt X̂t Ŷt X̂t

β = 0.3 Proxy MA ML MA ML MA ML MA ML

size
T̂res

n 0.062 0.114 0.000 0.104 0.072 0.068 0.000 0.084

T̂square
n 0.048 0.044 0.048 0.044 0.038 0.048 0.050 0.046

power

ω → 3
T̂res

n 1.000 1.000 0.878 1.000 1.000 0.986 0.826 1.000

T̂square
n 0.620 0.558 0.636 0.566 0.556 0.520 0.590 0.504

ω → 10
T̂res

n 1.000 1.000 1.000 1.000 0.962 0.920 0.770 1.000

T̂square
n 0.996 0.996 0.996 1.000 0.992 1.000 0.986 1.000

α→ 0.5
T̂res

n 1.000 1.000 1.000 1.000 0.974 0.918 0.790 1.000

T̂square
n 0.996 0.994 0.988 1.000 0.986 0.980 0.956 1.000

β→ 0.5
T̂res

n 1.000 1.000 1.000 1.000 0.976 0.928 0.824 1.000

T̂square
n 0.990 0.988 0.902 0.994 0.946 0.948 0.870 1.000

Table A3. Empirical sizes and powers for the INGARCH(1,1) model, Case 3.

ω = 3 Method SVR TSVR

α = 0.6 Target Ŷt X̂t Ŷt X̂t

β = 0.3 Proxy MA ML MA ML MA ML MA ML

size
T̂res

n 0.176 0.278 0.002 0.230 0.154 0.180 0.000 0.180

T̂square
n 0.036 0.036 0.042 0.046 0.032 0.048 0.040 0.042

power

ω → 5
T̂res

n 1.000 1.000 0.990 1.000 0.970 0.928 0.746 1.000

T̂square
n 0.964 0.948 0.856 0.948 0.956 0.956 0.866 0.972

α→ 0.3
T̂res

n 1.000 1.000 1.000 1.000 0.998 0.996 1.000 1.000

T̂square
n 0.998 0.998 1.000 0.998 0.994 0.972 0.996 1.000

β→ 0.1
T̂res

n 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

T̂square
n 0.992 0.998 0.974 0.998 0.958 0.908 0.860 0.998

Table A4. Empirical sizes and powers for the INGARCH(1,1) model, Case 4.

ω = 3 Method SVR TSVR

α = 0.3 Target Ŷt X̂t Ŷt X̂t

β = 0.6 Proxy MA ML MA ML MA ML MA ML

size
T̂res

n 0.258 0.260 0.020 0.174 0.172 0.158 0.018 0.100

T̂square
n 0.036 0.040 0.032 0.030 0.032 0.026 0.024 0.030

power

ω → 5
T̂res

n 0.992 0.996 0.820 0.998 0.934 0.904 0.422 0.848

T̂square
n 0.492 0.472 0.326 0.428 0.602 0.586 0.570 0.776

α→ 0.1
T̂res

n 1.000 1.000 0.994 1.000 0.996 0.994 0.994 1.000

T̂square
n 0.800 0.780 0.436 0.604 0.634 0.674 0.406 0.644

β→ 0.3
T̂res

n 1.000 1.000 0.996 1.000 0.998 0.994 1.000 1.000

T̂square
n 0.926 0.920 0.716 0.862 0.882 0.890 0.712 0.956
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Table A5. Empirical sizes and powers for the INAR(1) model, Case 1.

ω = 3 Method SVR TSVR

φ = 0.3 Target Ŷt X̂t Ŷt X̂t

Proxy MA ML MA ML MA ML MA ML

size
T̂res

n 0.052 0.070 0.000 0.070 0.064 0.060 0.000 0.060

T̂square
n 0.048 0.060 0.064 0.054 0.066 0.052 0.058 0.062

power

ω → 5
T̂res

n 1.000 1.000 0.466 1.000 0.996 0.990 0.156 1.000

T̂square
n 0.960 0.994 0.800 1.000 0.982 0.990 0.810 1.000

ω → 10
T̂res

n 1.000 1.000 1.000 1.000 0.984 0.966 0.838 0.976

T̂square
n 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

φ→ 0.1
T̂res

n 0.906 0.932 0.000 0.940 0.922 0.922 0.000 0.934

T̂square
n 0.218 0.150 0.166 0.080 0.084 0.078 0.178 0.072

φ→ 0.5
T̂res

n 1.000 1.000 0.106 1.000 0.994 0.992 0.026 1.000

T̂square
n 0.600 0.598 0.164 0.584 0.606 0.562 0.186 0.542

Table A6. Empirical sizes and powers for the INAR(1) model, Case 2.

ω = 5 Method SVR TSVR

φ = 0.3 Target Ŷt X̂t Ŷt X̂t

Proxy MA ML MA ML MA ML MA ML

size
T̂res

n 0.068 0.084 0.000 0.070 0.068 0.068 0.000 0.060

T̂square
n 0.062 0.044 0.038 0.048 0.042 0.048 0.036 0.040

power

ω → 3
T̂res

n 1.000 1.000 0.630 1.000 1.000 0.998 0.692 1.000

T̂square
n 0.578 0.566 0.716 0.442 0.492 0.552 0.708 0.452

ω → 10
T̂res

n 1.000 1.000 0.992 1.000 0.976 0.962 0.688 1.000

T̂square
n 0.986 0.998 0.996 1.000 1.000 1.000 0.998 1.000

φ→ 0.1
T̂res

n 0.990 1.000 0.002 0.996 0.998 0.996 0.000 0.996

T̂square
n 0.282 0.224 0.162 0.096 0.122 0.148 0.170 0.112

φ→ 0.5
T̂res

n 1.000 1.000 0.340 1.000 1.000 0.996 0.138 1.000

T̂square
n 0.800 0.822 0.172 0.830 0.812 0.774 0.204 0.812

Table A7. Empirical sizes and powers for the INAR(1) model, Case 3.

ω = 3 Method SVR TSVR

φ = 0.7 Target Ŷt X̂t Ŷt X̂t

Proxy MA ML MA ML MA ML MA ML

size
T̂res

n 0.116 0.072 0.002 0.054 0.092 0.056 0.000 0.048

T̂square
n 0.048 0.058 0.034 0.054 0.054 0.052 0.038 0.058

power

ω → 5
T̂res

n 1.000 1.000 0.762 1.000 0.978 0.916 0.426 0.976

T̂square
n 0.940 0.960 0.648 0.942 0.940 0.936 0.728 0.990

φ→ 0.3
T̂res

n 1.000 1.000 0.896 1.000 1.000 1.000 0.946 1.000

T̂square
n 0.852 0.846 0.284 0.836 0.854 0.906 0.210 0.898
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Table A8. Empirical sizes and powers for the softplus INGARCH(1,1) model.

c = 1, ω = 3 Method SVR TSVR

α = 0.3, β = 0.3 Target Ŷt X̂t Ŷt X̂t

Proxy MA ML MA ML MA ML MA ML

size
T̂res

n 0.072 0.114 0.000 0.108 0.080 0.062 0.000 0.072

T̂square
n 0.034 0.032 0.034 0.038 0.032 0.036 0.030 0.046

power

ω → 5
T̂res

n 1.000 0.998 0.666 1.000 0.978 0.862 0.284 0.996

T̂square
n 0.966 0.982 0.792 0.992 0.984 0.962 0.828 0.986

α→ 0.5
T̂res

n 1.000 0.998 0.984 1.000 0.980 0.834 0.658 0.982

T̂square
n 0.982 0.986 0.932 0.994 0.982 0.988 0.924 1.000

β→ 0.5
T̂res

n 1.000 1.000 0.984 1.000 0.980 0.842 0.704 0.978

T̂square
n 0.948 0.938 0.810 0.950 0.926 0.936 0.830 0.964

Table A9. Computing times for training the SVR and the TSVR methods.

Method SVR TSVR

Target Ŷt X̂t Ŷt X̂t

Proxy MA ML MA ML MA ML MA ML

INGARCH

ω = 3, 918.02 863.33 1466.45 825.02 193.70 192.68 185.44 193.09
α = 0.3, β = 0.3 (190.61) (201.94) (247.97) (305.41) (19.79) (19.11) (15.94) (21.02)

ω = 5, 1633.97 1065.13 1231.81 1029.88 224.41 245.24 155.52 162.26
α = 0.3, β = 0.3 (319.64) (229.89) (191.73) (363.53) (22.42) (27.33) (16.06) (17.89)

ω = 3, 1979.82 1552.36 2456.07 1766.37 195.97 207.49 191.79 192.45
α = 0.6, β = 0.3 (242.94) (366.01) (395.27) (666.71) (20.59) (21.05) (19.60) (19.34)

ω = 3, 1877.27 1940.01 2697.95 2219.46 1198.25 196.93 186.23 189.34
α = 0.3, β = 0.6 (389.79) (347.92) (356.38) (587.99) (20.95) (20.56) (18.98) (21.95)

INAR

ω = 3, φ = 0.3 780.01 1379.59 1340.27 754.08 191.38 189.67 182.64 192.35
(189.10) (358.28) (256.68) (255.29) (20.17) (19.59) (16.42) (26.07)

ω = 5, φ = 0.3 1000.50 972.17 1128.04 1336.76 240.72 226.47 150.59 105.45
(235.13) (240.82) (217.57) (516.75) (31.46) (23.05) (12.85) (14.81)

ω = 10, φ = 0.3 828.82 1437.23 1542.48 769.35 194.25 193.05 184.82 194.41
(208.43) (378.40) (239.95) (288.29) (19.67) (17.84) (16.14) (21.17)

softplus c = 1, ω = 3 692.41 711.94 911.11 692.71 193.99 193.54 186.39 196.66
INGARCH α = 0.3, β = 0.3 (118.22) (146.43) (157.28) (206.60) (19.01) (18.86) (17.34) (20.83)

References
1. Al-Osh, M.A.; Aly, E.-E.A.A. First order autoregressive time series with negative binomial and geometric marginals. Commun.

Stat. Theory Methods 1992, 21, 2483–2492. [CrossRef]
2. Alzaid, A.A.; Al-Osh, M. An integer-valued pth-order autoregressive structure (INAR(p)) process. J. Appl. Probab. 1990, 27,

314–324. [CrossRef]
3. Ferland, R.; Latour, A.; Oraichi, D. Integer-valued GARCH process. J. Time Ser. Anal. 2006, 27, 923–942. [CrossRef]
4. Fokianos, K.; Rahbek, A.; Tjøstheim, D. Poisson autoregression. J. Am. Stat. Assoc. 2009, 104, 1430–1439. [CrossRef]
5. McKenzie, E. Some simple models for discrete variate time series1. J. Am. Water Resour. Assoc. 1985, 21, 645–650. [CrossRef]
6. Weiß, C.H. An Introduction to Discrete-Valued Time Series; Wiley: New York, NY, USA, 2018.
7. Kang, J.; Lee, S. Parameter change test for random coefficient integer-valued autoregressive processes with application to polio

data analysis. J. Time Ser. Anal. 2009, 30, 239–258. [CrossRef]
8. Kim, H.; Lee, S. Improved CUSUM monitoring of Markov counting process with frequent zeros. Qual. Reliab. Eng. Int. 2019, 35,

2371–2394. [CrossRef]
9. Lee, Y.; Lee, S.; Tjøstheim, D. Asymptotic normality and parameter change test for bivariate Poisson INGARCH models. Test

2018, 27, 52–69. [CrossRef]
10. Kim, B.; Lee, S. Robust change point test for general integer-valued time series models based on density power divergence.

Entropy 2020, 22, 493. [CrossRef] [PubMed]
11. Christou, V.; Fokianos, K. Quasi-likelihood inference for negative binomial time series models. J. Time Ser. Anal. 2014, 35, 55–78.

[CrossRef]

http://doi.org/10.1080/03610929208830925
http://dx.doi.org/10.2307/3214650
http://dx.doi.org/10.1111/j.1467-9892.2006.00496.x
http://dx.doi.org/10.1198/jasa.2009.tm08270
http://dx.doi.org/10.1111/j.1752-1688.1985.tb05379.x
http://dx.doi.org/10.1111/j.1467-9892.2009.00608.x
http://dx.doi.org/10.1002/qre.2519
http://dx.doi.org/10.1007/s11749-016-0510-6
http://dx.doi.org/10.3390/e22040493
http://www.ncbi.nlm.nih.gov/pubmed/33286266
http://dx.doi.org/10.1111/jtsa.12050


Entropy 2021, 23, 433 16 of 17

12. Davis, R.A.; Liu, H. Theory and inference for a class of nonlinear models with application to time series of counts. Stat. Sin. 2016,
26, 1673–1707. [CrossRef]

13. Jazi, M.A.; Jones, G.; Lai, C.D. First-order integer valued AR processes with zero inflated Poisson innovations. J. Time Ser. Anal.
2012, 33, 954–963. [CrossRef]

14. Kim, B.; Lee, S. Robust estimation for general integer-valued time series models. Ann. Inst. Stat. Math. 2019, 72, 1371–1396.
[CrossRef]

15. Zhu, F. A negative binomial integer-valued GARCH model. J. Time Ser. Anal. 2011, 32, 54–67. [CrossRef]
16. Ahmad, A.; Francq, C. Poisson QMLE of count time series models. J. Time Ser. Anal. 2016, 37, 291–314. [CrossRef]
17. Bezerra, P.C.S.; Albuquerque, P.H.M. Volatility forecasting via SVR–GARCH with mixture of Gaussian kernels. Comput. Manag.

Sci. 2017, 14, 179–196. [CrossRef]
18. Cao, L.; Tay, F.E. Financial forecasting using support vector machines. Neural. Comput. Appl. 2001, 10, 184–192. [CrossRef]
19. Chen, S.; Härdle, W.K.; Jeong, K. Forecasting volatility with support vector machine-based GARCH model. J. Forecast. 2010, 29,

406–433. [CrossRef]
20. Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17,

113–126. [CrossRef]
21. Lee, S.; Lee, S.; Moon, M. Hybrid change point detection for time series via support vector regression and CUSUM method. Appl.

Soft Comput. 2020, 89, 106101. [CrossRef]
22. Lee, S.; Kim, C.K.; Lee, S. Hybrid CUSUM change point test for time series with time-varying volatilities based on support vector

regression. Entropy 2020, 22, 578. [CrossRef]
23. Pérez-Cruz, F.; Afonso-Rodríguez, J.A.; Giner, J. Estimating GARCH models using support vector machines. Quant. Finance 2003,

3, 163–172. [CrossRef]
24. Shim, J.; Kim, Y.; Lee, J.; Hwang, C. Estimating value at risk with semiparametric support vector quantile regression. Comput.

Stat. 2012, 27, 685–700. [CrossRef]
25. Shim, J.; Hwang, C.; Seok, K. Support vector quantile regression with varying coefficients. Comput. Stat. 2016, 31, 1015–1030.

[CrossRef]
26. Vapnik, V.N. The Nature Of Statistical Learning Theory; Springer: New York, NY, USA, 2000. [CrossRef]
27. Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [CrossRef]
28. Lee, Y.J.; Hsieh, W.F.; Huang, C.M. ε-SSVR: A smooth support vector machine for ε-insensitive regression. IEEE Trans. Knowl.

Data Eng. 2005, 17, 678–685. [CrossRef]
29. Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [CrossRef]
30. Peng, X. TSVR: An efficient twin support vector machine for regression. Neural Netw. 2010, 23, 365–372. [CrossRef] [PubMed]
31. Gupta, D.; Pratama, M.; Ma, Z.; Li, J.; Prasad, M. Financial time series forecasting using twin support vector regression. PLoS

ONE 2019, 14, 1–27. [CrossRef]
32. Tomar, D.; Agarwal, S. Twin support vector machine: A review from 2007 to 2014. Egypt. Inform. J. 2015, 16, 55–69. [CrossRef]
33. Zhong, P.; Xu, Y.; Zhao, Y. Training twin support vector regression via linear programming. Neural. Comput. Appl. 2012, 21,

399–407. [CrossRef]
34. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [CrossRef]
35. Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [CrossRef]
36. Zhang, Y.; Wang, S.; Ji, G. A comprehensive survey on particle swarm optimization algorithm and its applications. Math. Probl.

Eng. 2015, 2015, 1–38. [CrossRef]
37. Page, E.S. A test for a change in a parameter occurring at an unknown point. Biometrika 1955, 42, 523. [CrossRef]
38. Chen, J.; Gupta, A.K. Parametric Statistical Change Point Analysis: With Applications To Genetics, Medicine, and Finance, 2nd ed.;

Birkhäuser: Boston, MA, USA, 2012.
39. Csörgö, M.; Horváth, L. Limit Theorems In Change-Point Analysis; John Wiley & Sons Inc.: New York, NY, USA, 2012.
40. Berkes, I.; Gombay, E.; Horváth, L.; Kokoszka, P. Sequential change-point detection in GARCH(p,q) models. Econ. Theory 2004, 20,

1140–1167. [CrossRef]
41. Inclán, C.; Tiao, G.C. Use of cumulative sums of squares for retrospective detection of changes of variance. J. Am. Stat. Assoc.

1994, 89, 913–923. [CrossRef]
42. Lee, S.; Ha, J.; Na, O.; Na, S. The cusum test for parameter change in time series models. Scand. Stat. Theory Appl. 2003, 30,

781–796. [CrossRef]
43. Oh, H.; Lee, S. Modified residual CUSUM test for location-scale time series models with heteroscedasticity. Ann. Inst. Stat. Math.

2018, 71, 1059–1091. [CrossRef]
44. Ross, G.J. Modelling financial volatility in the presence of abrupt changes. Physica A 2013, 392, 350–360. [CrossRef]
45. Kang, J.; Lee, S. Parameter change test for Poisson autoregressive models. Scand. Stat. Theory Appl. 2014, 41, 1136–1152. [CrossRef]
46. Fokianos, K.; Fried, R. Interventions in INGARCH processes. J. Time Ser. Anal. 2010, 31, 210–225. [CrossRef]
47. Franke, J.; Kirch, C.; Kamgaing, J.T. Changepoints in times series of counts. J. Time Ser. Anal. 2012, 33, 757–770. [CrossRef]
48. Fokianos, K.; Gombay, E.; Hussein, A. Retrospective change detection for binary time series models. J. Stat. Plan. Inference 2014,

145, 102–112. [CrossRef]

http://dx.doi.org/10.5705/ss.2014.145t
http://dx.doi.org/10.1111/j.1467-9892.2012.00809.x
http://dx.doi.org/10.1007/s10463-019-00728-0
http://dx.doi.org/10.1111/j.1467-9892.2010.00684.x
http://dx.doi.org/10.1111/jtsa.12167
http://dx.doi.org/10.1007/s10287-016-0267-0
http://dx.doi.org/10.1007/s005210170010
http://dx.doi.org/10.1002/for.1134
http://dx.doi.org/10.1016/S0893-6080(03)00169-2
http://dx.doi.org/10.1016/j.asoc.2020.106101
http://dx.doi.org/10.3390/e22050578
http://dx.doi.org/10.1088/1469-7688/3/3/302
http://dx.doi.org/10.1007/s00180-011-0283-z
http://dx.doi.org/10.1007/s00180-016-0647-5
http://dx.doi.org/10.1007/978-1-4757-3264-1
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1109/TKDE.2005.77
http://dx.doi.org/10.1023/A:1018628609742
http://dx.doi.org/10.1016/j.neunet.2009.07.002
http://www.ncbi.nlm.nih.gov/pubmed/19616409
http://dx.doi.org/10.1371/journal.pone.0211402
http://dx.doi.org/10.1016/j.eij.2014.12.003
http://dx.doi.org/10.1007/s00521-011-0525-6
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1007/s00500-016-2474-6
http://dx.doi.org/10.1155/2015/931256
http://dx.doi.org/10.1093/biomet/42.3-4.523
http://dx.doi.org/10.1017/S0266466604206041
http://dx.doi.org/10.1080/01621459.1994.10476824
http://dx.doi.org/10.1111/1467-9469.00364
http://dx.doi.org/10.1007/s10463-018-0679-4
http://dx.doi.org/10.1016/j.physa.2012.08.015
http://dx.doi.org/10.1111/sjos.12088
http://dx.doi.org/10.1111/j.1467-9892.2010.00657.x
http://dx.doi.org/10.1111/j.1467-9892.2011.00778.x
http://dx.doi.org/10.1016/j.jspi.2013.08.017


Entropy 2021, 23, 433 17 of 17

49. Rakitzis, A.C.; Castagliola, P.; Maravelakis, P.E. On the modelling and monitoring of general inflated poisson processes. Qual.
Reliab. Eng. Int. 2016, 32, 1837–1851. [CrossRef]

50. Lee, Y.; Lee, S. CUSUM test for general nonlinear integer-valued GARCH models: Comparison study. Ann. Inst. Stat. Math. 2019,
71, 1033–1057. [CrossRef]

51. De Pooter, M.; Van Dijk, D. Testing for Changes in Volatility in Heteroskedastic Time Series—A Further Examination. Available
online: https://repub.eur.nl/pub/1627/ (accessed on 28 July 2020).

52. Lee, S.; Tokutsu, Y.; Maekawa, K. The cusum test for parameter change in regression models with ARCH errors. J. Jpn. Stat. Soc.
2004, 34, 173–188. [CrossRef]

53. Lee, S. Location and scale-based CUSUM test with application to autoregressive models. J. Stat. Comput. Simul. 2020, 90,
2309–2328. [CrossRef]

54. Lee, S.; Lee, S. Exponential family QMLE-based CUSUM test for integer-valued time series. Commun. Stat. Simul. Comput. 2021,
accepted.

55. Lee, S. Residual-based CUSUM of squares test for poisson integer-valued GARCH models. J. Stat. Comput. Simul. 2019, 89,
3182–3195. [CrossRef]

56. Lee, S.; Kim, D.; Seok, S. Modelling and inference for counts time series based on zero-infated exponential family INGARCH
models. J. Stat. Comput. Simul. 2021, in press. [CrossRef]

57. Billingsley, P. Convergence of Probability Measures, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1999.
58. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
59. Khemchandani, R.; Chandra, S. Twin Support Vector Machines for Pattern Classification. IEEE Trans. Pattern Anal. Mach. Intell.

2007, 29, 905–910. [CrossRef]
60. Bendtsen, C. Pso: Particle Swarm Optimization. R Package Version 1.0.3. Foundation for Statistical Computing. Available

online: https://cran.r-project.org/web/packages/pso (accessed on 27 July 2020).
61. Karatzoglou, A.; Smola, A.; Hornik, K.; Zeileis, A. Kernlab—An S4 package for kernel methods in R. J. Stat. Softw. 2004, 11, 1–20.

[CrossRef]
62. Stellato, B.; Banjac, G.; Goulart, P.; Boyd, S. Osqp: Quadratic Programming Solver Using the ‘osqp’ Library. R Package Version

0.6.0.3; Foundation for Statistical Computing. Available online: https://cran.r-project.org/web/packages/osqp (accessed on
27 July 2020).

63. Weiss, C.H.; Zhu, F.; Hoshiyar, A. Softplus INGARCH models. Stat. Sin. 2020, in press.

http://dx.doi.org/10.1002/qre.1917
http://dx.doi.org/10.1007/s10463-018-0676-7
https://repub.eur.nl/pub/1627/
http://dx.doi.org/10.14490/jjss.34.173
http://dx.doi.org/10.1080/00949655.2020.1775833
http://dx.doi.org/10.1080/00949655.2019.1657865
http://dx.doi.org/10.1080/00949655.2021.1890732
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1109/TPAMI.2007.1068
https://cran.r-project.org/web/packages/pso
http://dx.doi.org/10.18637/jss.v011.i09
https://cran.r-project.org/web/packages/osqp

	Introduction
	INGARCH Model-Based Change Point Test
	SVR-INGARCH Model
	Support Vector Regression
	Twin Support Vector Regression
	Particle Swarm Optimization Method
	PSO-TSVR Model-Based CUSUM Test

	Simulation Results
	Real Data Analysis
	Concluding Remarks
	
	References

