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Abstract: An excruciating issue that arises in mathematical, theoretical and astro-physics concerns
the possibility of regularizing classical singular black hole solutions of general relativity by means
of quantum theory. The problem is posed here in the context of a manifestly covariant approach to
quantum gravity. Provided a non-vanishing quantum cosmological constant is present, here it is
proved how a regular background space-time metric tensor can be obtained starting from a singular
one. This is obtained by constructing suitable scale-transformed and conformal solutions for the
metric tensor in which the conformal scale form factor is determined uniquely by the quantum
Hamilton equations underlying the quantum gravitational field dynamics.
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1. Introduction

The discovery of the characteristic central singularity that may characterize black holes
(BH) is due to the genius of Karl Schwarzschild who in 1916 pointed out his famous exact
solution [1] of Albert Einstein’s namesake field equations, soon brilliantly followed by Hans
Reissner [2] and Gunnar Nordstrôm [3] who generalized it to the case of a charged BH,
namely a Schwarzschild-type BH carrying a total net charge Q. This motivated much of the
subsequent spur of related investigations. Nevertheless it was only in 1963 that Roy Kerr,
extending the Schwarzschild solution, discovered the exact solution for a vacuum rotating
object in general relativity [4]. Notably, however, the interpretation of a BH as a region of
space from which nothing can escape, although based to an earlier theoretical prediction
formulated in 1939 by Oppenheimer and Snyder [5], is usually attributed to a paper
published many years later in 1958 by David Finkelstein [6]. Finally, the term “black hole”
itself was coined only in 1967 by John Wheeler [7] (before that the names “singularity” [8],
“frozen star” [9] or “collapsed star” [10] were commonly used to refer to such objects).
Meanwhile, investigations pointed out that BHs are a frequent occurrence in classical
general relativity (GR [11,12]), including among others the Kottler–Schwartzchild–deSitter,
Reissner–Nordstrom and the Freeman-Lemaitre-Robertson-Walker(FLRW)–Schwarzschild–
deSitter cases (the first two being stationary, namely independent of coordinate time when
expressed in suitable native coordinates [13]).

In the following we restrict our analysis to the case of classical BH singularities.
A semantic clarification must be given concerning the behavior of the solution referred to
here as “singular”. In fact, by singularity of the metric field tensor, we mean the singularity
that occurs in the center of the BH (i.e., the origin of the coordinate system) and which
cannot be eliminated by means of suitable changes of GR-frame (coordinate system) to be
realized only by means of local point transformations (LPT). The latter ones are coordinate
diffeomorphisms of the type

r → r′ = r′(r), (1)
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forming the so-called LPT-group, which leaves unchanged the differential manifold of space-
time

{
Q4, ĝ(r)

}
, hereon for definiteness identified with a time-oriented 4−dimensional

Riemannian space-time with signature {1,−1,−1,−1}. Here, ĝ(r) denotes the associated
classical metric field tensor solution of the Einstein field equations (EFE), parametrized
with respect to a coordinate system r ≡ {rµ} and defined via its covariant and coun-
tervariant coordinate representations

{
ĝµν(r)

}
and {ĝµν(r)}. More precisely, adopting a

coordinate system in which the geometric center of the BH identifies the origin of spatial
coordinates, the singularity we are referring to here is actually that which characterizes
the covariant components ĝµν(r) and in particular its time–time component ĝ00(r) which
exhibits a divergent behavior when approaching the origin r = 0. This occurs when at
least one of these components diverges (i.e., it is not locally defined, together with the
corresponding countervariant components ĝµν(r)). However, there is here another possible
related issue which arises. In fact the singularity affects also the prescription of the Riemann
distance, namely

ds2 = ĝµν(r)drµdrν. (2)

As a consequence, when some of the components ĝµν(r) locally diverge it follows that
certain contributions of the infinitesimal displacement tensor drµ must vanish identically
in order to warrant the regular character of ds, a requirement that may be in possible
contradiction with other fundamental physical requirements, such as the Heisenberg
uncertainty principle.

Nowadays it is generally acknowledged that space-time singularities, particularly
BH ones, actually play an essential role in GR, due to their widespread nature. On the
other hand, the very existence of such singularities represents a crucial conceptual issue,
possibly related to the limits of validity of GR itself, since these singularities cannot be
resolved/cured in the framework of classical GR or by recurring to higher-order curvature
and non-local models of classical gravity. On the contrary, the prevailing opinion is that
such singularities should be regarded as signatures of possible quantum effects that occur
in the presence of intense gravitational fields [14–16]. This is indeed one of the main
motivations that lies behind the investigation of strong field regimes of gravity through
the direct observation and detection of gravitational waves and BHs. Thus, properly
understanding the role of quantum gravity becomes increasingly urgent and meaningful.

The conjecture is that QG, realized by means of a suitable quantum theory of the
gravitational field, should allow the achievement of smoothly continuous and everywhere-
regular geometric representations of space-time. To state it more precisely:

• The regularization should be carried out by means of suitable quantum-based modifi-
cations of EFE capable of smoothing out all classical BH singularities.

• Such a regularization should have a universal character, i.e., it should hold for arbitrary
singular BH solutions.

• The said regularization should not require the introduction of “ad hoc” extra classical
or quantum fields.

The same theory of QG, in other words, should be capable of resolving the math-
ematical BH-singularities arising in classical GR, thus warranting the regularity of the
background metric tensor. Needless to say, however, the goal should be reached without
introducing any unwanted pathological behavior, such as:

• discontinuities and singularities associated with discrete quantum theories, which pos-
sibly violate, besides continuity, the principle of general covariance and the differential
manifold structure of space-time;

• the occurrence of absolute minimum lengths, a feature that by itself implies breaking
the principle of general covariance;

• intrinsically frame-dependent theories, such as ADM quantum theory, violating some
of the fundamental symmetries characteristic of EFE, i.e., the properties of manifest
covariance and gauge invariance.
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Possible relevant applications include both the description of the structure and dynam-
ics of the universe in the framework of cosmology, as well as the prediction of quantum
phenomena arising in GR scenarios associated with black holes and event horizons (EH).

Nevertheless, the identification of the relevant quantum phenomenology depends
very much on the precise choice of the model of quantum gravity to be adopted. Therefore,
the choice of the quantum gravity model becomes an issue by itself. In this regard, one
of the practical obstacles to most attempts to quantization of classical gravity in GR is
undoubtedly the vast complexity of some of these theories. A feature that makes quanti-
tative comparisons or even simple logical rational deductions based on such theories is
practically impossible. One such case is the notorious issue about the (possible) quantum
regularization of BH singularities.

However, the manifestly covariant nature of EFE, as well of all relativistic classical and
quantum theories also outside GR, suggests a possible censorship on the class of admissible
quantum theories.

In fact, just like classical theories, also quantum theories and in particular QG should
satisfy, at a certain level, the so-called manifest covariance principle, requiring their frame-
independent character, namely their tensor property with respect to the group of local
point transformations (1). Such a property, however, necessarily demands the adoption of
a so-called “background” space-time viewpoint. In other words, a “background” space-
time picture should be adopted, where space-time should be represented by a differential
manifold

{
Q4, ĝ(r)

}
, with Q4 ⊆ R4 being a 4−dimensional time-oriented (“background”)

Riemann space-time and its metric field tensor

ĝ(r) ≡
{

ĝµν(r)
}
≡ {ĝµν(r)} (3)

to be considered prescribed (i.e., once the coordinates r ≡ {rµ} are defined). Such a tensor
field is referred to as “background” metric tensor.

In this regard, a serious obstacle (which most of such theories exhibit) occurs already
at the classical level. This is the issue of the rigorous connection between QG and the
classical Einstein field equations, which should be suitably recovered in the context of QG.
As a consequence, since EFE is manifestly covariant, i.e., it is set in manifest 4−tensor form
with respect to the LPT-group (1), an obvious requirement to be set on QG is that it should
exhibit the same property of manifest covariance.

Despite major theoretical developments achieved in the past, a theory fulfilling the
same principles has remained until very recently largely unsolved. The fundamental
reason is that a corresponding manifestly covariant, and possibly constraint-free, classi-
cal Hamiltonian theory of GR is actually required for the completion of such a task, a
feature that is missing in previous literature. For this reason in this paper the so-called
manifestly covariant approach to QG (CQG-theory) recently developed in Refs. [17–29]
will be adopted.

The reason why, ultimately, CQG-theory should be considered as a possible candidate
adequate for the task is that it is based on a manifestly covariant and truly classical
Hamiltonian structure for EFE. In other words, denoting r ≡ {rµ} a generic 4−position, i.e.,
a point of the set Q4, this means that such a Hamiltonian structure should be necessarily
represented by a set of the type {xR(r), HR}, with xR(r) ≡

{
gµν, πµν

}
and HR denoting

respectively a suitable classical canonical state with gµν and πµν classical variational
tensor fields and an appropriate classical Hamiltonian density. We stress that all these
quantities, i.e., gµν, πµν and HR, are identified with suitable 4−tensor fields with respect to
the aforementioned background metric field tensor ĝ(r) (3). However, in order for such
Hamiltonian structure to exist, both the said canonical state and the Hamiltonian density
must depend parametrically on a suitably-prescribed 4−scalar dynamical parameter s,
denoted as proper time. As a consequence, this means that both the canonical state xR(r),
the background field ĝ(r) and the Hamiltonian density HR(xR(r), r) must be considered as
suitably parametrized in terms of s. This is achieved by setting, in particular, r = r(s), where
s is the arc length (proper-time) prescribed along a geodesic curve C(ro ,r1)

belonging to a
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prescribed family of geodesics
{

C(ro ,r1)

}
, which is defined with respect to the background

space-time
{

Q4, ĝ(r)
}

. For the appropriate definitions, we refer the interested reader to
Ref. [29], where a precise definition of the proper-time s is also provided (together with
relevant comparisons with the customary ADM theory). Thus, in the same reference the
prescription of a generic geodesic curve of the family, C(ro ,r1)

, emerges naturally in the
context of a path-integral variational formulation for the classical Hamiltonian structure
{xR(r), HR}. As a consequence, it follows, in particular, that C(ro ,r1)

is necessarily identified
with a finite length geodetics of the type

C(ro ,r1)
=
{

r|r = r(s′), ro = r(so), r1 = r(s1), s′ ∈ [so, s1] ,ro ∈ Σ3
0, r1 ∈ Σ3

1

}
, (4)

where [so, s1] ≡ I ⊂ R denotes a finite proper-time interval, while Σ3
0 and Σ3

1 are two 3D
suitable subsets of Q4 to which the initial and final 4−positions ro = r(so) and r1 = r(s1)
belong.

The corresponding quantum theory, denoted as CQG-theory, is based on the manifestly
covariant canonical quantization of the classical Hamiltonian structure {xR, HR}, whereby
classical and quantum Hamiltonian field variables or operators, including continuum
coordinates, conjugate momenta and Hamiltonian densities are represented by tensor
fields. The involved notion of manifest covariance given here is unambiguously defined
only by prescription of the differential-manifold structure of the background space-time
on which it is displayed and which is self-consistently achieved by CQG-theory (see
related discussion in Ref. [23]). The foundations of CQG-theory lie on the preliminary
establishment of a variational formulation of classical GR achieved in the context of a
covariant DeDonder–Weyl-type approach to continuum field-Hamiltonian dynamics. As
such, CQG-theory is endowed with a number of further unprecedented key features, since:
(A) unlike ADM theory, it is based on a truly Hamiltonian structure of GR (see Ref. [28]); (B)
it preserves the background metric tensor, which is identified with a classical field tensor;
(C) it preserves the probabilistic physical interpretation of quantum mechanics to be applied
to the quantum gravitational field; (D) it satisfies the quantum unitarity principle, i.e., the
quantum probability is conserved in the absence of gravitational sinks; (E) it is constraint-
free, in the sense that the quantum variables are identified with independent tensor fields;
(F) it is non-perturbative so that the quantum fluctuations of field variables and momentum
operators need not be regarded as asymptotically “small” in some appropriate sense
with respect to the background metric tensor; (G) CQG-theory provides the physical
interpretation of the cosmological constant as being due to quantum Bohm interactions
arising among collisionless gravitons.

In view of these considerations, CQG-theory can be said to realize at the same time
both a canonical and a manifestly covariant quantization method, in this way overcoming
the limitations of former either canonical or non-canonical, but non-manifestly covariant
and non-gauge invariant, literature approaches. In fact, it must be stressed that CQG-
theory is conceptually intrinsically different and distinguishes itself from these approaches.
This provides a promising and innovative theoretical framework that should be regarded
as a plausible route (to QG) in view of the axiomatically self-consistent, perspicuous
and mathematically-tractable formalism as well as a number of conceptual new features
of CQG-theory that depart it in several ways from previous literature. This conclusion
is supported by the theoretical outcomes established so far by CQG-theory and the re-
markable number of analytical results, experimentally-testable predictions and even basic
conceptual innovations achieved so far in such a framework, which concern, for exam-
ple, the existence of an invariant discrete-energy spectrum for the quantum gravitational
field [20] and the consequent graviton mass estimate, the emergent gravity picture related
to the generalized-Lagrangian path representation of CQG-theory [22], the novel quantum-
gravity interpretation of the cosmological constant as arising due to the Bohm vacuum
graviton self-interaction [23,25,26], the non-unitary generalization of CQG-theory due to
graviton sinks/sources [24], the quantum screening effect of the cosmological constant [25],
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the discovery of the stochastic nature of the deSitter event horizon [26], the validity of
generalized Heisenberg inequalities expressed in 4-tensor form [21], particularly in con-
nection with the discovery of the proper time-conjugate canonical momentum Heisenberg
inequality and the related new statistical interpretation of the concept of invariant minimal
length arising in the context of QG [27].

Based on these outcomes, the main goal of the paper deals with the regularization
of space-time singularities and the study of the phenomenon of emergent gravity in the
framework of manifestly covariant quantum gravity theory. This means exploring the
statistical connection between fluctuating quantum gravitational fields and the classical
background metric tensor fixing the geometric properties of space-time. Accordingly, from
the physical point of view, the background metric tensor should be effectively interpreted as
arising from a statistical average of stochastic fluctuations of the quantum gravitational field
whose quantum-wave dynamics is described by generalized Lagrangian path trajectories
predicted by CQG-theory (see Ref. [22]). The non-local quantum-gravity interaction is
expected to permit the non-perturbative mathematical resolution of classical singularities
and their physical characterization, suggesting physically-detectable imprints of quantum
processes occurring in these contexts. The goal is therefore to address in such a framework
the problem of regularization of classical BH solutions. In this regard, an open question
concerns what should be the expected characteristic features of such gravitational fields,
with particular reference to the following issues:

• Preliminary issue #1: Whether and eventually how quantum gravity models, and specif-
ically CQG-theory, can cure all BH singularities, giving rise to a suitable quantum-
modified background metric field tensor (MFT).

• Preliminary issue #2: What is the possible role of the cosmological constant and how
its quantum and therefore ubiquitous character could actually be significant for the
regularization of singular space-time solutions.

• Preliminary issue #3: What are (if any) the possible large-scale effects produced by the
local quantum modifications of MFT.

• Preliminary issue #4: Whether there is a possible connection between the occur-
rence/prediction of asymptotic/local inflationary regimes, i.e., which are charac-
terized by high values of the cosmological constant, and the expected phenomenon of
BH-singularities-quenching.

The present approach is based on the construction of an appropriate conformal-like
solution of the quantum Hamilton equations holding in CQG-theory for the quantum
gravitational field. Such a solution is shown to be regular in the presence of a Kottler
(Schwarzschild–deSitter) background singular BH space-time, as well for the Reissner–
Nordstrom–deSitter and the FLRW–Schwarzschild–deSitter space-times. As we intend to
show below, in principle arbitrary singular BH solutions can be regularized in the same way.

2. CQG-Quantum Hamilton Equations

A characteristic feature of CQG-theory [20] is that the quantum-wave function should
be of the form ψ(s) ≡ ψ(g, ĝ(s), s, r(s)), namely depending simultaneously on the con-
tinuous Lagrangian coordinates represented by the variational symmetric field tensor
g ≡

{
gµν

}
which spans the 10-dimensional configuration space Ug ⊆ R10, and on the

background field tensor ĝ ≡
{

ĝµν

}
, which for definiteness is assumed here of the form

ĝµν(s) ≡ ĝµν(r). In addition, r = r(s) denotes the 4−position along a local field geodesic
trajectory C(ro ,r1)

, which belongs to the background space-time
(
Q4, ĝ(r)

)
and s is the

Riemann length evaluated along a suitable family of field geodetics
{

C(ro ,r1)

}
prescribed

so that for each r ∈ Q4, by assumption there is a unique s ∈ I such that r = r(s). The
prescription of s depends on the precise definition of the family of geodetics

{
C(ro ,r1)

}
. As

recalled above, this is established according to Ref. [23].
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In Ref. [20], it was proved that ψ(s) is required to obey an evolution hyperbolic PDE,
referred to as CQG-quantum-wave equation, determined in terms of suitable quantum
Hamiltonian operators, namely of the form

dψ(s)
ds

=
[

H(q)(s), ψ(s)
]
= H(q)(s)ψ(s). (5)

Such an equation determines the proper-time evolution of ψ(s) along a field geode-
tics subject to suitable initial conditions of the type ψ(so) = ψo(g, ĝ(so), so, r(so)), with
ĝ(so) ≡ ĝ(r(so)) denoting the background metric tensor evaluated at initial position r(so).
As shown elsewhere [23], it is possible to show that the CQG-quantum-wave Equation
(5) can be equivalently cast in terms of a suitable set of quantum hydrodynamic equa-
tions upon introducing the Madelung representation for the wave function ψ(s). In the
framework of CQG-theory one can show that these equations are realized by the so-called
quantum continuity equation (see Appendix B) and a set of quantum Hamilton equations,
which correspond to an equivalent quantum Hamilton–Jacobi equation (see again Ref.
[23]).

Here we start our analysis by considering the initial-value problem associated with
the quantum Hamilton equations, which are represented by the set of ODEs{ dgµν

ds = ∂H
∂πµν ,

dπµν

ds = − ∂H
∂gµν

,
(6)

with corresponding initial conditions{
gµν(so) = g(o)µν (r(so), so),

πµν(so) = πµν(o)(r(so), so).
(7)

Here the notation is standard. Thus, x ≡
{

gµν(s), πµν(s)
}

denotes the canonical
quantum-hydrodynamic state, with{

gµν(s) = gµν(r(s), s),
πµν(s) = πµν(r(s), s),

(8)

being the corresponding continuous Lagrangian coordinate and conjugate canonical mo-
mentum. Furthermore, x ≡

{
gµν(s), πµν(s)

}
and H = H(x, ĝ, r, s) denote now corre-

sponding quantum functions, i.e., respectively the quantum canonical state and a suitable
quantum 4−scalar Hamiltonian density (see below), with gµν(s) and πµν(s) that now iden-
tify the quantum gravitational field, namely the variational Lagrangian coordinate, and
conjugate canonical momentum, respectively, both represented by second order 4−tensors.
Equations (6) are defined with respect to the background space-time

{
Q4, ĝ(r)

}
, with

ĝ(r) ≡
{

ĝµν(r)
}
≡ {ĝµν(r)} denoting the background metric tensor, parametrized with

respect to a suitable GR-frame r ≡ {rµ}, which raises and lowers tensor indices and
prescribes the geometry of the same space-time. Furthermore, as indicated above, here
r = r(s), being s ∈ I the proper time along a geodetics belonging to r. This means that
in Equation (6) the partial derivatives with respect to gµν ≡ gµν(s) and πµν ≡ πµν(s) are
performed keeping constant ĝ(r(s)) (hereon denoted for brevity ĝ(s)) and all tensor func-
tions of ĝ(s) such as the Ricci tensor R̂µν ≡ Rµν(ĝ(s)). Moreover, d

ds denotes the covariant
s−derivative whose definition, recalled in Appendix A (see Equation (A1)), is such that by
construction the equation

d
ds

ĝ(s) = 0 (9)

holds identically. Finally, following Ref. [20], the quantum Hamiltonian density H =
H(x, ĝ, r, s) is defined as

H = T + V + VQM, (10)
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with T denoting the effective kinetic energy

T =
πµνπµν

2αL
, (11)

while V = V(g, ĝ, r, s) is the classical potential energy, namely
V(g, ĝ, r, s) ≡ σVo(g, ĝ) + σVF(g, ĝ, r, s),

Vo(g, ĝ) ≡ h(g(s))αLgµν(s)R̂µν,
VF(g, ĝ, r) ≡ hLF(g, ĝ, r),

(12)

with Vo(g, ĝ) and VF(g, ĝ, r) representing the classical vacuum and external effective poten-
tials and σ = ±1 denoting a signature factor to be properly determined. In the previous
equations h denotes the variational weight factor

h(g(s)) = 2− 1
4

gαβ(s)gαβ(s), (13)

which is a characteristic term of the synchronous variational principle at the basis of the
manifestly covariant classical theory of GR and of CQG-theory (see Ref. [20]). Finally,
VQM = VQM(g, ĝ, r, s) is the Bohm quantum effective potential

VQM(g, ĝ, r, s) ≡ σ
}2

8αL
∂ ln ρ

∂gµν

∂ ln ρ

∂gµν
− σ

}2

4αL
∂2ρ

ρ∂gµν∂gµν , (14)

which arises when a Bohmian-like representation is adopted for the quantum-gravity wave
function ψ in terms of the Madelung variables, so that the quantum-wave equation can
be equivalently expressed by the couple of quantum-hydrodynamic equations formed by
the continuity and momentum equations. As a result, the function ρ ≡ ρ(∆g− ĝ(s)) is the
Gaussian quantum probability density function (PDF) that is a solution of the quantum
continuity equation (see Appendix B) and is given by

ρ(∆g− ĝ(s)) =
1
〈〈1〉〉 ρ̂(s) exp

{
− (∆g(s)− ĝ(s))2

r2
th

}
, (15)

with 〈 〈1〉〉 and ρ̂(s) being a suitably prescribed (see Appendix B). Explicitly, the exponent
(∆g(s)− ĝ(s))2 can be equivalently expressed as

(∆g− ĝ(s))2 ≡
[
∆gαβ − ĝαβ(s)

][
∆gαβ − ĝαβ(s)

]
. (16)

Equation (14) can then be evaluated explicitly. This implies that the Bohm potential
can be represented as VQM(g, ĝ, r, s) ≡ VQM(∆g− ĝ(s), ĝ) and is given by

VQM(∆g− ĝ(s), ĝ) =
σ}2

4αL
8p2(s)

r2
th
− σ

2
Λ(e f f )

QM (s)(∆g− ĝ(s))2, (17)

with

Λ(e f f )
QM (s) ≡ ΛQM p3(s), (18)

ΛQM ≡ }2

αLr4
th

, (19)

denoting the effective and constant quantum cosmological constants, respectively, and with
p(s) being a suitable quantum function, previously reported in Ref. [22] and recalled in
Equation (A7) of Appendix B. The rest of the notations is standard. Thus, h̄ is the reduced
Planck constant, rth is a suitable dimensionless constant 4−scalar while, following Ref. [20],



Entropy 2021, 23, 370 8 of 27

α and L are the dimensional constant α = mocL and L is the Compton length associated
with the graviton mass mo, respectively, namely L = h̄

moc . As a consequence, the Hamilton
Equations (6) written explicitly yield

dgµν

ds = 1
αL πµν,

dπµν

ds = − ∂(V(g(s),ĝ(s),r,s+VQM(∆g−ĝ(s),ĝ(s)))
∂gµν

,
(20)

and thus they are equivalent to the Lagrange equations

d2gµν

ds2 = − 1
αL

∂V(g, ĝ, r, s)
∂gµν + Bµν(r, s). (21)

Here, explicit evaluation of the partial derivative with respect to gµν(s) (and performed
at constant ĝ(s)) delivers

− 1
αL

∂V(g, ĝ, r, s)
∂gµν = −σh(g(s))R̂µν +

σ

2
gµνgikR̂ik, (22)

while the second term on the rhs of the Lagrange equation, namely

Bµν(r, s) ≡ − 1
αL

∂

∂gµν VQM(g, ĝ, r, s), (23)

yields what is referred to as a Bohm source tensor field [23], namely

Bµν(r, s) ≡
σΛ(e f f )

QM (s)

αL
[
∆gµν − ĝµν

]
. (24)

Background Equilibrium Solution of EFE

We remark that in the previous equations the background space-time metric tensor
ĝ(s) is not arbitrary. The equation that determines it follows, in fact, in a consistent manner
from the same canonical equations stated above, i.e., Equation (3). As discussed in Ref. [23]
it is obtained subject to the following requirements:

(A) The stationarity condition

d
ds

ĝ(s) = 0, (25)

i.e., the requirement that the conjugate momentum vanishes identically

π̂(s) ≡
{

π̂µν(s)
}
≡ {π̂µν(s)} ≡ 0. (26)

(B) The extremum condition

∂
(
V(g(s), ĝ(s), r, s + VQM(∆g− ĝ(s), ĝ(s))

)
∂gµν

∣∣∣∣∣
g(s)=ĝ(s)

= 0. (27)

(C) Setting in Equation (27) also the extremal deterministic condition ∆g ≡ 0, namely

∂
(
V(g(s), ĝ(s), r, s + VQM(∆g− ĝ(s), ĝ(s))

)
∂gµν

∣∣∣∣∣g(s)=ĝ(s)
∆g≡0

= 0. (28)

We notice in fact that ∆g denotes the quantum stochastic displacement field associated
with the quantum stochastic trajectories associated with the quantum PDF and driven
by the Bohm potential, which characterizes the quantum field g(s). Thus for condition
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(A) to apply the Christoffel connections contained in the covariant derivative must be
prescribed in terms of ĝ(s). Assuming without loss of generality VF(g, ĝ, r) = 0, namely
the vacuum condition, from Equation (27) and condition (C) one obtains the second order
PDE that identifies the quantum-modified EFE carrying the contribution of the quantum
cosmological constant, namely

− σR̂µν +
σ

2
ĝµν(s)R̂− σĝµν(s)Λ

(e f f )
QM (s) = 0, (29)

where R̂µν ≡ Rµν(ĝ(s)) and R̂ ≡ R(ĝ(s)) denote the Ricci tensor and Ricci 4−scalar,
respectively, both expressed in terms of ĝ(s). Therefore this delivers

R̂ ≡ R(ĝ(s)) = 4Λ(e f f )
QM (s). (30)

In particular, one can show (see Appendix B and Ref. [22]) that under suitable as-
sumptions the function p(s) appearing in Equation (18) can be set equal to p(s) = 1. In the
following, for simplicity we shall ignore possible quantum effects of this type, thus setting
p(s) = 1. Hence, Λ(e f f )

QM (s) reduces to the constant Λ(e f f )
QM (s) = ΛQM, i.e., the constant

quantum-produced CC which, in the absence of other classical effects (for example so-called
gravitational sigma-models [30]) is predicted by CQG-theory [23]. Furthermore, we shall
assume that the quantum cosmological constant is independent of s so that Equation (29)
reduces to

− σR̂µν +
σ

2
ĝµν(s)R̂− σĝµν(s)ΛQM = 0, (31)

which implies in turn
R̂ ≡ R(ĝ(s)) = 4ΛQM. (32)

We stress that Equation (32) recovers exactly the Einstein field equation in vacuum
for the background metric tensor field ĝ(s). As a consequence CQG-theory embodies
consistently all the relevant physics associated with EFE, such as the occurrence of BH’s and
associated event horizons, as well as multiple scale effects when both CC and Newtonian
scales are present, the latter being represented through the gravitational radius GM/c2 [31].

3. Search of Non-Stationary Scale-Transformed Solutions

In this section, we set the mathematical framework for the construction of non-
stationary solutions of the quantum Hamilton equations (i.e., see Equation (6)), in order to
subsequently investigate whether they can provide a valuable route for the regularization
of classical singularities in BH solutions (see also subsequent Sections 6 and 7). As we
intend to show, such solutions, unlike Equation (25) invoked above for the determination
of the background MFT ĝ(s), are characterized by a suitably-prescribed, non-vanishing and
non-constant canonical momentum π ≡

{
πµν

}
≡ {πµν}. More precisely, the generalized

coordinate are now sought of the (4−tensor) form

g(d)(s) = N(s)g(r(s), s), (33)

ĝ(d)(s) = N(s)ĝ(s), (34)

with N(s) denoting a suitable non-vanishing 4−scalar function of the proper time s and
ĝ(s) being the background metric tensor (3). We stress that here: (a) The same multiplicative
factor N(s) occurs both in the covariant and in the counter-variant components, namely{

g(d)µν (s) = N(s)gµν(r(s), s),
g(d)µν(s) = N(s)gµν(r(s), s),

(35)

and {
ĝ(d)µν (s) = N(s)ĝµν(s),

ĝ(d)µν(s) = N(s)ĝµν(s);
(36)
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(b) in the same Equations (35) and (36) all tensor indexes are raised and lowered by
the background metric tensor ĝ(s) only. Equations (33) and (34) represent respectively
transformations of the quantum fluid field g(s) ≡ g(r(s), s) and the background field ĝ(s)
that are generated via the scale transformation{

g(r(s), s)→ g(d)(s) = N(s)g(r(s), s),
ĝ(s)→ ĝ(d)(s) = N(s)ĝ(s).

(37)

For this reason the tensor field ĝ(d)(r(s)) and the scalar function N(s) (with N(s) still
to be suitably determined) are referred to here as scale-transformed fields and scale form
factor, respectively.

Let us now pose the problem of (determining) the proper-time evolution of the scale
for factor N(s). The required prescription follows from the quantum Hamilton Equation (6)
by introducing the scale transformation (37). As we intend to show now, this allows us to
determine uniquely a constraint equation for the scalar form factor. Indeed the equation
for ĝ(d)(s) follows from Equation (6) by introducing the replacements

g(r(s), s)→ N(s)g(r(s), s) ≡ g(d)(s),
∆g(s)→ N(s)∆g(s),

ĝ(s)→ N(s)ĝ(s) ≡ ĝ(d)(s),
h(g(r(s), s, ĝ(s))→ h(N(s)g(r(s), s), ĝ(s)).

(38)

In particular, one needs to evaluate the corresponding ODEs holding for ĝ(d)µν (s), which
are implied by Equations (6) and (31) (and equivalently Equation (21)). The procedure to
obtain it is analogous to that for ĝ(s) (see related discussion in Ref. [23]). For later use, first
one notices that multiplying Equation (31) term by term by N(s) one obtains

− σN(s)R̂µν +
σ

2
ĝ(d)µν (s)R̂− σĝ(d)µν (s)ΛQM = 0, (39)

which implies the (obvious) conclusion that EFE determines uniquely also the scale-
transformed field ĝ(d)µν (s). Second, let us represent Equation (6) in terms of Equation (38).
Upon first setting ∆g = 0, i.e., requiring the vanishing of the stochastic displacement tensor
that characterizes the Bohm interaction term one obtains

dN(s)gµν

ds = 1
αL πµν,

1
αL

dπµν

ds = − 1
αL

∂V(ĝ(d)(s),ĝ(s),r,s)
∂gµν − σΛQM

αL N(s)ĝµν.
(40)

Then, upon setting g(s) = ĝ(s), we notice that unlike Equation (20), the canonical
momentum πµν remains now non-vanishing and precisely such that

πµν(s) = αLĝµν
dN(s)

ds
. (41)

Thus, the previous canonical equations now reduce to the Lagrange equations

ĝµν
d2N(s)

ds2 = − 1
αL

∂V
(

ĝ(d)(s), ĝ(s), r, s
)

∂gµν

∣∣∣∣∣∣− σΛQM

αL
N(s)ĝµν. (42)

Direct evaluation of the rhs yields
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− 1
αL

∂V
(

ĝ(d)(s), ĝ(s), r, s
)

∂gµν

∣∣∣∣∣∣g(s)=ĝ(s)
∆g=0

= −σh(N(s)ĝ(s))N(s)R̂µν

+
σ

2
ĝµνN3(s)gikR̂ik, (43)

where σ = ±1 is a still undetermined signature factor to be determined below (see next
sections), while the variational factor becomes

h(N(s)ĝ(s)) = 2− 1
4

N2(s)ĝαβ(s)ĝαβ(s) = 2− N2(s). (44)

Equation (42) thus delivers

ĝµν(s)
d2N(s)

ds2 = σ
[

N2(s)− 2
]

N(s)R̂µν +
σ

2
N3(s)ĝµν(s)R̂− σN(s)ΛQM ĝµν(s), (45)

where ĝµν(s) satisfies by construction the Einstein field Equation (39). We intend to show
that such an equation is integrable by quadratures.

4. Proper-Time Evolution Equation of the Scale-Form Factor N(s)

In this section we explicitly determine the proper-time evolution of the scale-form
factor N(s) indicated above. For this purpose, to illustrate the procedure we assume
first the case of Kottler (i.e., Schwarzschild–deSitter) metric space-time. This in fact is a
representative solution that can be extended later to other BH configurations. In such a
setting one notices that by construction R̂ = 4ΛQM. Then, saturation by ĝµν yields from
Equation (45)

d2N(s)
ds2 = −3σ

[
1− N2(s)

]
N(s)ΛQM. (46)

Such an equation, subject to the prescription of the initial conditions
{

N(so),
dN(s)

ds

∣∣∣
so

}
determines the proper-time evolution of the scale form-factor N(s).

Let us briefly point out its crucial qualitative properties.

• First, we notice that d2 N(s)
ds2 → 0 either if N2(s) → 1 or N(s) → 0. The case N(s) = 1

corresponds the standard background solution ĝ(r) of EFE (see above Equation (29)).
Notice that although by assumption N(s) 6= 0, nevertheless it can become infinitesimal
(so that N(s)→ 0). This property, as shall be clarified below, will become crucial for
the regularization of singular BH solutions.

• Second, the same Equation (46) is conservative. As a consequence it can therefore be
reduced by a quadrature to an equivalent first order ODE. In fact it delivers:

dN(s)
ds

d2N(s)
ds2 =

d
ds

1
2

[
dN(s)

ds

]2

= 3σ
dN(s)

ds

[
N2(s)− 1

]
N(s)ΛQM =

3σ

4
d
ds

[
N2(s)

(
N2(s)− 2

)
ΛQM

]
, (47)

which yields

1
2

[
dN(s)

ds

]2

− 1
2

[
dN(s)

ds

]2

s=so

=
3σ

4

[
N2(s)

(
N2(s)− 2

)
ΛQM

]
− 3σ

4

[
N2(so)

(
N2(so)− 2

)
ΛQM

]
. (48)

As a consequence, setting the initial constant

E =

[
dN(s)

ds

]2

s=so

− 3σ

2

[
N2(so)

(
N2(so)− 2

)
ΛQM

]
, (49)
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Equation (46) yields the two possible ODE solutions

dN(s)
ds

= ±
√

E +
3σ

2
[
N2(s)(N2(s)− 2)ΛQM

]
, (50)

which are again solvable by quadratures. Notice that the requirement E = 0 for
N(so) = 1 requires setting also[

dN(s)
ds

]
s=so

= ±
√
−3σ

2
ΛQM, (51)

where for the reality of
[

dN(s)
ds

]
s=so

necessarily one must set σ = −1, while the sig-

nature of the square root depends on whether the solution for s > so is considered
as growing or decaying. Notice, in particular, that if N(so) = 1 on a given EH, and
if the orientation of the proper time s axis changes sign across the same EH, then

the signature of the root ±
√

3σ
2
[
ΛQM

]
should change sign across the same EH. As a

consequence, an internally decaying (growing) solution should change to a growing
(decaying) one outside. However, to determine the precise asymptotic behavior of
dN(s)

ds and N(s) a suitable classification must be adopted. The problem is analyzed
separately in the following section.

5. Qualitative Properties of the Solutions

Let us now investigate in detail the qualitative properties of the solutions of Equation (46).
Three cases are distinguished:

1. Monotonically decaying solution in the inner BH domain.
2. Monotonically growing/decaying solutions in the intermediate domain between two

EH’s (N2(so) > 1).
3. Monotonically decaying solution in the exterior BH domain.

A preliminary remark concerns the prescription of the signature factor σ = ±1. The
same factor appears in the prescription of the effective potential V (see Equation (12))
and (consequently) in the proper-time evolution equation for the scale-form factor N(s)
(Equations (46) and (50)). In Ref. [20], the choice σ = −1 was adopted. Indeed this was
shown to permit the existence of a discrete spectrum for the stationary CQG-wave equation
and consequently the existence of a ground-state mass estimate for the graviton. The
same prescription is introduced here for consistency. As we shall see, besides appropriate
regularity conditions, it warrants the existence of monotonically decreasing/increasing
solutions for N(s) to be pointed out below.

5.1. Monotonically Decaying Solution in the Inner BH Domain

Let us first consider the case of the interior domain of a BH in the case of a positive
cosmological constant (CC). We seek a monotonically-decreasing solution for N(s) which

vanishes asymptotically in r = 0 and such that both d2 N(s)
ds2 and dN(s)

ds vanish in turn
asymptotically only when also N(s)→ 0. Direct inspection shows that this actually requires
initial conditions such that:

(a) E = 0, namely such that
[

dN(s)
ds

]2

s=so
+ 3σ

2 N2(so)
(

N2(so)− 2
)
ΛQM = 0;

(b) N2(so) < 2, where in view of the prescription indicated above σ = −1. Incidentally
we notice that such a choice is necessary for the validity of condition (a). Hence, in validity
of the initial condition (b), dN(s)

ds becomes

dN(s)
ds

= −
√

3
2
[
N2(s)(2− N2(s))ΛQM

]
, (52)
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which implies that N(s) is indeed monotonically decreasing to zero for s→ +∞, so that for
all s > so, N2(s) < 2. The previous equation can then be integrated by quadratures yielding

N(s)∫
N(so)

dN

N
√

3
2
[
(2− N2)ΛQM

] = so − s, (53)

which in the limit for s→ ∞ yields

lim
s→+∞

N(s)∫
N(so)

dN

N
√

3
2 (2− N2)ΛQM

= −∞. (54)

Since N(s) decays to zero it follows that

lim
s→+∞

N(s)∫
N(so)

dN

N
√

3
2 (2− N2)ΛQM

∼ lim
s→+∞

LQM ln N(s) = −∞, (55)

with

LQM ≡
1√

3ΛQM
=

1√
3× 1.2× 10−52

m ∼= 0.527× 1026 m, (56)

LdeSitter = 3LQM , (57)

where LQM and LdeSitter denote respectively the CC characteristic scale length and the
deSitter radius. This yields more precisely for s→ ∞

LQM ln N(s) ∼ −s. (58)

This proves therefore that the asymptotic behavior of the form factor N(s) for s→ ∞
is that of an exponential decay:

N(s) ∼ exp(−s/LQM), (59)

which therefore occurs on the characteristic scale length LQM.
Here we consider, as model test examples:
(1) The case of a two-parameter Kottler–Schwarzschild–deSitter space-time endowed

with two EH’s (i.e., the inner Schwarzschild and the boundary deSitter EH’s, respectively)
and a positive CC, with line element given by

ds2 = α(r)c2dt2 − 1
α(r)

dr2 − r2dΩ2, (60)

α(r) = 1− rs

r
−

ΛQMr2

3
. (61)

(2) The case of a three-parameter Reissner–Nordstrom–deSitter space-time (charged
BH and two EH’s), having line element

ds2 = α(r)c2dt2 − 1
α(r)

dr2 − r2dΩ2, (62)

α(r) = 1− rs

r
+

r2
Q

r2 −
ΛQMr2

3
, (63)

r2
Q =

GQ2

4πε0c4 , (64)
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with G and 1/4πε0 being the universal gravitational constant and the Coulomb interaction
coupling constant, respectively.

(3) The case of a four-parameter FLRW–Schwarzschild–deSitter space-time (three
EH’s), with line element

ds2 = α(r)c2dt2 − R(t)
β(r)

[
dr2 − α(r)r2dΩ2

]
, (65)

β(r) =

(
1 +

kr
4

2
)2

− rs

r
−

ΛQMr2

3
, (66)

α(r) = 1− rs

r
−

ΛQMr2

3
. (67)

For the three cases indicated above, we consider in detail the internal problem, i.e.,
in the domain inside the inner EH. We intend to prove that for all such space-times the
following asymptotic limit holds

lim
s→+∞

N(s)ĝµν(r(s)) ∼ exp
nLQM

rs
, (68)

where LQM
rs
∼= 0.527× 1023/rs (km), being rs measured in km and n = 1 in cases (1) and

(3), while n = 2 in case (2). As a consequence in all such cases the conformally modified
solution N(s)ĝµν is necessarily regular in the origin r = 0.

The proof is as follows. The Riemann distance in the case of the quantum-modified
Kottler solution N(s)ĝµν(r(s)) is obtained letting

ds2 = N(s)α(r)c2dt2 − N(s)
α(r)

dr2 − N(s)r2dΩ2, (69)

where one can set
(

rdΩ
ds

)2
≡ 0 in the case of purely radial displacements. In the limit

s→ ∞ for pure radial motion it therefore follows that

1 = N(s)α(r)
(

cdt
ds

)2
− N(s)

α(r)

(
dr
ds

)2
∼ rs

r(s)

(
cdt
ds

)2
, (70)

where assuming without loss of generality (cdt)2 ∼ (dr)2 the contribution of the second

term on the rhs is negligible, so that necessarily in the same limit N(s)α(r)
(

cdt
ds

)2
∼ 1. This

means that in a neighborhood of the origin r = 0, s becomes infinite and as a consequence

lim
s→∞

r(s)
rs

= 0. (71)

This means that asymptotically for s→ ∞, r(s)
rs

is an infinitesimal. Analogous conclu-
sion holds in case (2), where instead it occurs

lim
s→∞

r2(s)
r2

Q
= 0. (72)

To estimate the asymptotic behavior of the product N(s)α(r) in the neighborhood of
the r(s) = 0 let us estimate asymptotically, for greater generality, the ratio∣∣∣∣∣∣∣

exp(−s/LQM)(
r(s)
Rs

)n

∣∣∣∣∣∣∣ ∼
∣∣∣∣∣∣∣

(
Rs

r(s)

)n

exp(s/LQM)

∣∣∣∣∣∣∣, (73)
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with n ≥ 1 being an arbitrary real exponential and Rs identifying respectively rs or rQ. The
asymptotic estimate (68) follows by taking the logarithm of numerator and denominator
and upon differentiating them. It follows∣∣∣∣∣∣

n ln Rs
r(s)

ln exp(s/LQM)

∣∣∣∣∣∣ ∼
∣∣∣∣∣∣
n 1

r(s)
dr(s)

ds
1

LQM

∣∣∣∣∣∣. (74)

But since r(s)
Rs
∼ dr(s)

ds , it follows that∣∣∣∣∣∣∣
ln
(

Rs
r(s)

)n

ln exp(s/LQM)

∣∣∣∣∣∣∣ ∼
nLQM

Rs
, (75)

which implies Equation (68). The conclusion is therefore that in all cases indicated above for
the background metric field tensor ĝµν(r), the scale-transformed field g(d)µν (s) = N(s)ĝµν

remains regular in the origin r = 0 in the sense that in an arbitrary GR-frame and for all
µ, ν = 0, 3:

lim
s→∞

∣∣N(s)ĝµν(r(s))
∣∣ ∼ lim

s→∞
∼

nLQM

Rs
< ∞, (76)

where n is a suitable integer, LQM is the characteristic length (56) and Rs is identified
with the invariant characteristic length scales rs or rQ, respectively. In particular, in the

case of the conformally modified Kottler solution one obtains nLQM
Rs
≡ LQM

rs
with n = 1.

Analogous conclusions hold for the Reissner–Nordstrom–deSitter space-time in which
nLQM

Rs
≡ 2LQM

rQ
where again n = 2, as well in the case of FLRW–Schwarzschild–deSitter

space-time (provided the expansion coefficient R(t) remains strictly positive), where again
nLQM

Rs
≡ LQM

rs
. Nevertheless, since in all cases considered here the factor nLQM

Rs
is� 1, the

same conformal field is strongly peaked in the origin r = 0.

5.2. Monotonically Growing/Decaying Solutions in the Intermediate Domain Between Two EH’s
(N2(so) > 1)

Let us now consider the case of the intermediate region between two EH’s (inter-
mediate domain problem). A prototype of such an occurrence is the Kottler space-time,
characterized by a inner Schwarzschild EH and external deSitter EH. We intend to show
that both growing and decaying monotonic solutions exist.

Let us consider first the case of a growing solution. For definiteness, let us require that
so and s1 denote the initial and final proper times along a geodetics, with r(so) = ρo and
r(s1) = ρ1 denoting the initial and final radii (of the same curve) with ro and r1, respectively,
assumed to be suitably close to the two EH, namely such that

r1 < ρo < r1 + ε2, (77)

LdeSitter − ε2 < ρo < LdeSitter + ε2, (78)

such that they are located outside the radius r1 of the Schwarzschild’s EH and inside the
corresponding radius of the deSitter EH. Setting again σ = −1, let us then consider a first
integral of the form

dN(s)
ds

=

√
E− 3

2
N2(s)(N2(s)− 2))ΛQM, (79)

which is assumed subject to the initial conditions such that
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 N2(so) = 1 + ∆2,[
dN(s)

ds

]2

s=so
= E− 3ΛQM

2
(
1 + ∆2)(∆2 − 1)

)
= E− 3ΛQM

2
(
∆4 − 1

)
≥ 0,

(80)

and where ∆2 is in principle an arbitrary real number such that
[

dN(s)
ds

]2

s=so
≥ 0. It follows

that for s > so the solution of Equation (79) N(s) is necessarily monotonically growing for
E− 3

2 N2(s)
(

N2(s)− 2
)
ΛQM ≥ 0 because then dN(s)

ds ≥ 0, but also bounded and such that

1 ≤ N(so) ≤ N(s) ≤ Nmax. (81)

Here the upper bound Nmax depends on the initial “energy” E, being such that

Nmax = 1 +

√
1 +

2E
3ΛQM

. (82)

As an example, setting ∆ = 0 in Equation (80) and E = −3ΛQM/2 this implies that

identically dN(s)
ds = 0 and N(so) = N(s) = Nmax = 1. We stress that provided the said

initial “energy” E is suitably prescribed then Nmax can become arbitrarily large. This
happens provided √

1 +
2E

3ΛQM
� 1⇒ Nmax � 1. (83)

As we shall see below this is equivalent to an inflationary condition. Thus, we conclude
that in validity of the initial conditions (80), Equation (79) determines a monotonically
increasing solution with energy-dependent upper bound Nmax.

Instead the other root

dN(s)
ds

= −
√

E− 3
2
[
N2(s)(N2(s)− 2))ΛQM

]
(84)

corresponds to a decreasing solution, of the type

Nmin ≤ N(s) ≤ N(so) ≤ Nmax, (85)

where

Nmin = 1−
√

1 +
2E

3ΛQM
. (86)

can become negative. Thus we conclude that in validity of the initial conditions (80),
Equation (84) determines a mononically decreasing solution with energy-dependent lower
bound. Such a solution becomes negative if

√
1 + 2E

3ΛQM
> 1. However, if one demands

that N(s) remains strictly positive such a solution should be considered nonphysical.

5.3. Monotonically Decaying Solution in the Exterior BH Domain

Let us now consider the exterior problem, i.e., in the domain outside the EH of a BH,
assuming that the external domain is infinite (i.e., that no other EH is present). We claim
that, setting again σ = −1, in such a case admissible solutions are again bounded as in the
intermediate case considered above. As a consequence, ruling out nonphysical decaying
solutions in which N(s) vanishes or becomes negative, it follows that for s→ ∞, N(s) is of
the type given by Equation (79). N(s) is therefore necessarily monotonically growing for
E− 3

2 N2(s)
(

N2(s)− 2)
)
ΛQM ≥ 0 and is bounded because N(s) = Nmax for s→ ∞.

6. Construction of Background Conformal MFT Solutions

In this section we intend to prove that the (covariant and countervariant) represen-
tations ĝ(d)µν (s) and ĝ(d)µν(s) given above (see Equation (36)) for the scale-transformed
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field ĝ(d)(s) actually allow the realization of two different space-time conformal tensor
fields, here labeled as ĝ(C)(s) and ĝ(C1)(s), respectively. The question is whether the same
tensor fields can also be viewed as representing admissible realizations of the background
space-time metric field tensor (MFT).

First, let us consider the prescription of the fields ĝ(C)(s) and ĝ(C1)(s): this based on
Equation (36), whereby the tensor fields ĝ(C)µν (s) and ĝ(C1)

µν (s) are prescribed as follows{
ĝ(C)µν (s) = N(s)ĝµν(s),

ĝ(C)µν(s) = 1
N(s) ĝµν(s),

(87)

and respectively {
ĝ(C1)

µν (s) = 1
N(s) ĝµν(s),

ĝ(C1)µν(s) = N(s)ĝµν(s).
(88)

As an obvious consequence it then follows that both ĝ(C)(s) and ĝ(C1)(s) are conformal
fields [32] satisfying the orthogonality conditions{

ĝ(C)µα (s)ĝ(C)µβ(s) = δ
β
α ,

ĝ(C1)
µα (s)ĝ(C1)µβ(s) = δ

β
α .

(89)

We stress that analogous conformal representation can be obtained also for the generic
quantum field g(s) as well for the stochastic quantum displacement field ∆g, in terms
of their covariant and counter-variant components, namely gµν(s), ∆gµν and gµν(s), ∆gµν,
respectively, thus yielding in particular{

g(C)µν (s) = N(s)gµν(r(s), s),
g(C)µν(s) = 1

N(s) gµν(r(s), s),
(90)

and {
∆g(C)µν (s) = N(s)∆gµν,

∆g(C)µν(s) = 1
N(s)∆gµν.

(91)

6.1. Conformal Riemann Tensor, Ricci Tensor and 4–Scalar

As a further step, let us proceed identifying in each case the corresponding (i.e.,
here referred to as “conformal”) Riemann and Ricci 4−tensors as well as the correspond-
ing Ricci scalars, i.e., Rρ

σµν(ĝ(C)(s)), Rρ
σµν(ĝ(C1)(s)), Rµν(ĝ(C)(s)), Rρ

ρµν(ĝ(C)(s)) and finally
R(ĝ(C)(s)) and R(ĝ(C1)(s)), respectively. Here, we wish to determine the relationships
holding among them. Such relationships are in fact relevant to assess their physical inter-
pretation and in particular for the identification of the corresponding Einstein field equa-
tions holding for them, in analogy with Equation (31), which applies for the background
metric tensor field ĝ(s). The determination of such relationship is actually straightfor-
ward. Let us start noting, in fact, that by construction, the Christoffel symbols satisfy the
invariance property:

Γρ
νσ(ĝ(s)) = Γρ

νσ(ĝ(C)(s)) = Γρ
νσ(ĝ(C1)(s)). (92)

As a consequence also the Riemann tensor

Rρ
σµν(ĝ(s)) = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ (93)

is similarly invariant, since by construction it then follows that{
Rρ

σµν(ĝ(C)(s)) = Rρ
σµν(ĝ(s)),

Rρ
σµν(ĝ(C1)(s)) = Rρ

σµν(ĝ(s)).
(94)
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Therefore, the same invariance property occurs also for the covariant components of
the Ricci tensor, namely {

Rµν(ĝ(C)(s)) = Rρ
ρµν(ĝ(C)(s)),

Rµν(ĝ(C1)(s)) = Rρ
ρµν(ĝ(C1)(s)).

(95)

Therefore, this implies that the Ricci 4−scalars satisfy the relationships{
R(ĝ(C)(s)) = ĝ(C)µν(s)Rµν(ĝ(C)(s)) = R(ĝ(s))

N(s) ,

R(ĝ(C1)(s)) = ĝ(C1)µν(s)Rµν(ĝ(C)(s)) = N(s)R(ĝ(s)),
(96)

which imply in turn necessarily the prescription of suitably scaled-down (or increased)
Ricci 4−scalars {

R(ĝ(C)(s)) = 1
N(s)R(ĝ(s)),

R(ĝ(C1)(s)) = N(s)R(ĝ(s)).
(97)

Thus, denoting conventionally ΛQM(ĝ) the cosmological constant defined by Equation (19)
and based on Equation (32) one obtains{

R(ĝ(C)(s)) = 4ΛQM(ĝ(s))
N(s) ≡ 4ΛQM(ĝ(C)(s)),

R(ĝ(C1)(s)) = 4N(s)ΛQM(ĝ(s)) ≡ 4ΛQM(ĝ(C1)(s)).
(98)

This implies in turn for consistency that also the cosmological constant must be, in the
two cases, suitably scaled-down or increased according to the prescription

ΛQM(ĝ(C)(s)) =
ΛQM(ĝ(s))

N(s)
, (99)

ΛQM(ĝ(C1)(s)) = N(s)ΛQM(ĝ(s)). (100)

This shows that:

• The effective quantum CC ΛQM(ĝ(C)(s)) is actually scaled-down by the factor 1
N(s) .

This means that the effective cosmological constant that characterizes the quantum-
modified equilibrium ĝ(C)µν (s) actually diverges when N(s)→ 0.

• Conversely, instead, the effective CC ΛQM(ĝ(C1)(s)) is actually increased by the factor
N(s). This means that the effective cosmological constant that characterizes the
alternate (regular) quantum-modified equilibrium ĝ(C1)µν(s) = N(s)ĝµν(r(s)) and its
conformally conjugate metric tensor ĝ(C1)

µν (s) = 1
N(s) ĝµν(r(s)) actually tends to zero

when N(s)→ 0.

However, the most relevant physical aspect concerns the regularity of the same
solutions, and in particular the question of which of the two solutions is therefore the correct
one. For this purpose one needs to take into account only the covariant components of the
two conformal solutions, namely ĝ(C)µν (s) = N(s)ĝµν(r(s)) and ĝ(C1)

µν (s) = 1
N(s) ĝµν(r(s)),

respectively; it follows that only the first one, namely ĝ(C)µν (s), exhibits the correct asymptotic
behavior, requiring for all µ, ν = 0, 3:

lim
s→+∞

ĝ(C)µν (s) < ∞. (101)

6.2. “Conformal” Einstein Field Equations

It is immediate to prove that the conformal fields ĝ(C)(s) and ĝ(C1)(s) satisfy corre-
sponding, i.e., “conformal”, Einstein field equations. The form of such equations for the
conformal fields ĝ(C)(s) and ĝ(C1)(s) follows, in fact, in a straightforward way by direct
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comparison with Equation (31). Thus, for example, in the case of ĝ(C)(s) the corresponding
realization of EFE takes the form

− σRµν(ĝ(C)(s)) +
σ

2
ĝ(C)µν (s)R(ĝ(C)(s))− σĝ(C)µν (s)ΛQM(ĝ(C)(s)) = 0. (102)

The proof is immediate. In fact, one notices, first, that thanks to Equation (95) the Ricci ten-
sor, just as the Riemann tensor, remains invariant. Second, thanks to Equations (87) and (97)

ĝµν(s)R(ĝ(s)) = ĝ(C)µν (s)R(ĝ(C)(s)), (103)

and, third, that similarly thanks to Equation (99) it follows

ĝµν(s)ΛQM(ĝ(s)) = ĝ(C)µν (s)ΛQM(ĝ(C)(s)). (104)

An equivalent proof of Equation (102) follows from Equation (39). In fact dividing it
term by term by N(s) one obtains:

− σR̂µν +
σ

2
ĝ(d)µν (s)

R(ĝ(s))
N(s)

− σĝ(d)µν (s)
ΛQM(ĝ(s))

N(s)
= 0, (105)

which, in the validity of Equations (96) and (98), recovers Equation (102) again.

6.3. “Conformal” Gaussian Quantum PDF and Quantum Continuity Equations

As a final issue, it should be mentioned that the conformal fields (87) and (88) are also
consistent with:

(a) The prescription of the Gaussian quantum PDF ρ(∆g− ĝ(s)) defined by Equation (15)
and with exponent (16).

(b) The quantum continuity Equation (A9) (see Appendix B).
To prove that indeed Equations (87) and (88) represent admissible solutions it is

sufficient to notice that the Gaussian PDF (15) remains unchanged under the transformation{ [
∆gαβ − ĝαβ(s)

]
→
[
∆gαβ − ĝαβ(s)

]
N(s) ≡ ∆g(C)αβ − ĝ(c)αβ (s),[

∆gαβ − ĝαβ(s)
]
→
[
∆gαβ − ĝαβ(s)

] 1
N(s) ≡ ∆g(C)αβ − ĝ(c)αβ(s),

(106)

with Ω(s) = N(s) or 1/N(s). Equation (106) are obtained invoking the transformations (87)
and (91). This means that the Gaussian PDF (15) holds both for the stationary solution
ĝ(s) as well as for arbitrary simultaneous conformal solutions of the type (87)–(91). As a
consequence it follows

ρ(∆g− ĝ(s)) = ρ(∆(C)g− ĝ(C)(s)). (107)

The equation of continuity (A9) remains similarly invariant. The proof follows by
noting that, upon denoting V(C)

µν = 1
N(s)Vµν, one obtains

∂

∂gµν

(
Vµνρ(∆g− ĝ(s))

)
=

∂

∂g(C)µν

(
V(C)

µν ρ(∆(C)g− ĝ(C)(s))
)

. (108)

6.4. Conformal Fields as Possible New MFT

We conclude that:

- Both ĝ(C)(s) and ĝ(C1)(s) define conformal fields, which by construction satisfy the
required orthogonality conditions.

- Both fields fulfill suitable Einstein field equations, with suitably (scaled-down or
increased) values of the Riemann 4−scalar and cosmological constant.

- The prescription of the Gaussian quantum PDF remains unchanged.
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- The quantum continuity equation is fulfilled also in the case of conformal field.

This proves that in principle both fields ĝ(C)(s) and ĝ(C1)(s) can be treated as MFT
in place of the background MFT ĝ(s). However, of the two conformal fields defined
above, only the first one, ĝ(C)(s), which is constructed in terms of ĝ(C)µν (s) = ĝ(d)µν (s), is
actually regular in the origin, in the sense that the regularity condition (76) holds. The two
solutions nevertheless coincide when N(s) = 1. Therefore, outside the EH of the BH, the
two solutions might in principle coexist giving rise to different possible physical scenarios.
This leaves us with the possible physical implications to be discussed in the next section.

7. Physical Interpretation

A general comment is in order about the physical interpretation of the mathematical
scale-transformed solution pointed out above for the regularization of classical black hole
singularities of space-time. The starting consideration concerns the fact that the quantum
gravitational field possesses a manifestly covariant Hamiltonian dynamics, which is a
direct consequence of the analogous Hamiltonian structure holding for classical GR and
the adoption of a synchronous variational principle for the derivation of the Einstein field
equations. The synchronous variational formulation in fact is characterized by adoption
of superabundant variables and the distinction between the variational (gµν(s)) and back-
ground (ĝµν(s)) tensor fields, whereby the variational and background ones are allowed
to carry different physical properties. More precisely, in such a picture the background
metric tensor ĝµν(s) has a geometrical connotation, in the sense that it is normalized so that
ĝµν(s)ĝµν(s) = δ

µ
µ , it raises/lowers tensor indices and defines the Christoffel symbols and

the background Ricci tensor. In addition, the same tensor ĝµν is by definition characterized
by having identically-vanishing covariant derivative, namely ∇̂α ĝµν = 0. This equation
defines the Christoffel symbols in terms of the metric tensor and is known in the literature
as metric-compatibility condition. Borrowing a term from plasma ideal magnetohydro-
dynamics, we can interpret it as a “frozen-in” condition that establishes the link between
the space-time geometrical structure and the gravitational tensor field, so that we can say
that the metric field is the geometry. On the contrary, in the same framework, the field
gµν(s) is allowed to have non-vanishing covariant derivative, i.e., ∇̂αgµν(s) 6= 0, so that
gµν(s) can acquire a non-null generalized kinetic energy. When canonical quantization
is performed on the Hamiltonian structure, this generates a quantum gravitational field
gµν(s) characterized by non-vanishing canonical momenta. The remarkable consequence
is that, in the realm of quantum theory, while the background field ĝµν(s) keeps on re-
taining its geometric meaning consistent with the picture of GR, the field gµν(s) acquires
the physical meaning of a quantum field that is permitted to deviate from ĝµν(r) and to
exhibit a dynamics over the background space-time, thus violating at the quantum level
the frozen-in condition ∇̂α ĝµν(s) = 0 (which is nevertheless warranted at classical level,
see details in Ref. [20]). This is precisely the feature that allows the quantum regularization
of the classical singularity to be reached, as expressed by the scale-transformed solution
reported above. In fact, the quantum gravitational field gµν(s) is no longer forced to follow
the background geometry, but can deviate from it. Hence, while the classical metric tensor
diverges with the geometry at the BH singularity, violation of the frozen-in condition
for gµν(s) due to non-vanishing canonical momenta makes it possible to escape the BH
singularity with a regular behavior. This feature is peculiar and unique of CQG-theory
with respect to other quantum-gravity models proposed in the literature. In the present
picture, manifest covariance is preserved and it is not the geometry to be quantized, but the
field, while the background space-time metric tensor is obtained as a consistent solution of
quantum-modified Einstein field equations.

Based on these conceptual preliminaries, the following physical scenarios can be
distinguished in the framework of CQG-theory.
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7.1. Inner BH Domain Behavior

CQG-theory allows for the existence of a unique regular background MFT solution that
holds in all singular BH solutions considered here. Such a solution is realized by the conformal
field ĝ(C)(s) in which the scale form factor N(s) tends to zero in the central position r = 0,
which corresponds to the limit

lim
s→∞

N(s) = 0, (109)

and tends to unity on the EH (where N(so) = 1). As shown above, in the same limit
the covariant and countervariant components ĝ(C)µν (s) and ĝ(C)µν(s) remain finite. This
explains also how CQG-theory actually cures the BH singularities and answers the first
open question pointed out in the introduction (preliminary issue #1). One can envisage why
this happens and what is the role of the cosmological constant. As shown elsewhere [23],
an ubiquitous feature that occurs in the quantum-modified EFE is the appearance of a
non-vanishing quantum cosmological constant. Such a cosmological constant enters in
arbitrary MFT solutions of the same equation. However, as shown above (see Section 6) in
the case of conformal MFT solutions the cosmological constant is modified in terms of the
scale form factor N(s) or its reciprocal 1/N(s).

Let us now consider the possible connection with (asymptotic/localized) inflationary
regimes (see also preliminary issue #4). Also in this case the answer is positive, in the sense
that in the same limit the effective quantum cosmological constant ΛQM(ĝ(C)(s) diverges

lim
s→∞

ΛQM(ĝ(C)(s) = lim
s→∞

ΛQM

N(s)
= +∞, (110)

which means that the conformal solution becomes infinitely inflationary. In other words, a
characteristic feature of the occurrence of ĝ(C)(s) is necessarily its infinite-inflation property.

7.2. Intermediate Domain Behavior

As a work hypothesis we shall assume that the scale form factor N(s) is a continuous
function across all EHs. This means, in particular, that in the internal EH necessarily one
should expect N to be equal to unity. This implies that it should be N(so) = 1 also in the
outer side of the same EH. As a consequence in the intermediate domain one expects the
scale form factor N(s) to be either constant (N(s) = 1) or monotonically increasing as a
function of s (see Equation (79)). Then the basic implication is therefore that in such a
domain two possible realizations exist for background MFT:

• The first one is provided by the conformal solution ĝ(C)(s). In such a case the corre-
sponding effective cosmological constant is provided by Equation (99). In this case
N(s) is a monotonically increasing function of s but is also bounded from above.
This implies that the effective cosmological constant should decrease toward the outer
regions of the universe (included in the domain inside the deSitter space-time) but remain
bounded from below.

• The second possible realization is provided instead by the conformal solution ĝ(C1)(s). In
this case the corresponding effective cosmological constant is provided by Equation (100).
Again for a monotonically increasing scale form factor N(s) this means that effective
cosmological constant must increase toward the outer regions of the universe (which are
inside the deSitter space-time) but remain similarly bounded from above. If N(s) � 1
then such a case corresponds to an inflationary solution, i.e., characterized by a strong
enhancement of the effective cosmological constant for which ΛQM

(
ĝ(C1)(s1)

)
is

larger (or even much larger) than ΛQM(ĝ(C1)(r(so)).
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7.3. Exterior BH Domain

In the semi-infinite external domain, ruling out a possible divergent behavior (which
would generate a singular background MFT solution), the only admissible behavior of the
scale form factor N(s) is the one which asymptotically behaves so that

lim
s→∞

N(s) = Nmax. (111)

The implication is that also in this case two possible realizations exist for the back-
ground MFT:

• The first one is provided by the conformal solution ĝ(C)(s). In such a case the cor-
responding effective cosmological constant is provided by Equation (99). The scale
form factor N(s) is a monotonically decreasing function of s, which in the limit s→ ∞
satisfies Equation (111). Such a solution should be viewed as the continuation of the
corresponding conformal solution that holds in the intermediate domain. This implies
that the corresponding effective cosmological constant should grow monotonically,
reaching at infinity a stationary finite value.

• The second possible realization is provided, instead, by the conformal solution ĝ(C1)(s).
Again this can be regarded as the continuation of the analogous solution holding in
the intermediate domain. In this case the initial value of the corresponding effective
cosmological constant (provided by Equation (100)) can be expected larger (or even
much larger) than ΛQM (inflationary initial state), while for s→ ∞ it decays monotoni-
cally reaching again at infinity a stationary value not necessarily identical with the
other one indicated above.

7.4. The Initial Conformal Deformation of Space-Time

The emerging physical interpretation in the context of CQG-theory is therefore that
quantum regularization of singular BHs is unique, at least in the inner BH domain described
above. But the question is why such a state should be the privileged one, somehow selected
by nature among all possible singular solutions.

Let us try to provide a possible physical explanation. Thus, if one introduces for
definiteness the Boltzmann–Shannon (B-S) entropy [24]

SBS(ρ(∆g, s)) = −
∫

Ug
d(∆g(s))ρ(∆g, s) ln ρ(∆g, s), (112)

and the notion of quantum expectation value

〈A〉 =
∫

Ug
d(∆g(s))Aρ(∆g, s) (113)

for an arbitrary summable function A = A(∆g, s), one expects/requires the same B-S
entropy SBS(ρ(∆g, s)) to be maximal at some initial proper time so which can be chosen
to coincide with the initial proper time introduced in the first subsection of Section 5.
Thus, invoking the Principle of Entropy Maximization (PEM [33,34]) implies suitably
prescribing the initial values of the quantum expectation values 〈1〉 = 1, N(so)

〈
∆gµν(so)

〉
,

1
N(so)
〈∆gµν(so)〉 and

〈
∆g(so)2〉 ≡ 〈∆gµν(so)∆gµν(so)

〉
, i.e., more precisely setting:

N(so)
〈
∆gµν(so)

〉
= ĝ(C)µν (so) ≡ N(so)ĝµν(so), (114)

1
N(so)

〈∆gµν(so)〉 = ĝ(C)µν(so) ≡
1

N(so)
ĝµν(so), (115)〈

∆g(so)
2
〉

= 8r2
th. (116)
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Notice that here N(so), ĝµν(so), ĝµν(so) identify classical observables, while r2
th is a

quantum parameter to be determined separately (for its evaluation see related discussion
in Ref. [23]). Furthermore, ∆gµν(so) and ∆gµν(so) denote the covariant and countervariant

components of the stochastic displacement tensor, respectively, while ĝ(C)µν (so), ĝµν(so) and
ĝ(C)µν(so), ĝµν(so) are the components of the conformal tensor field ĝ(C)(so) (defined by
Equation (87)) and of the background MFT ĝ(so), respectively. It is then possible to show
that PEM requires ρ(∆g(so), so) to be again a Gaussian PDF of the form:

ρ(∆g(so), so) = ρG(∆g(so)− ĝ(so)) ≡
1
〈〈1〉〉 exp

{
− (∆g(so)− ĝ(so))

2

r2
th

}
, (117)

with 〈〈1〉〉 denoting here the normalization constant

〈〈1〉〉 =
∫

Ug
d(∆g(so)) exp

{
− (∆g(so)− ĝ(so))

2

r2
th

}
(118)

(see also Appendix B), and (∆g(so)− ĝ(so))
2 being defined according to Equation (106).

The initial conditions (114)–(116), together with the normalization 〈1〉 = 1, prescribe the
initial values of N(so) and ρ(∆g, so). Validity of the quantum continuity Equation (A9)
then implies that ρ(∆g(s), s) is given according to Equation (A12) in Appendix B. We notice
that if PEM is required to hold for arbitrary s ≥ so then it follows necessarily that the
condition (A8) reported in Appendix B must apply. This means that the background metric
tensor must be defined also in the limit s→ ∞. This permits in turn the same conformal
tensor field ĝ(C)(s) to be everywhere regular (this condition to be intended again in the
sense of the regularity conditions (68)). As a fundamental consequence the correspondence

ĝ(s)→ ĝ(C)(s) (119)

effectively generates a conformal deformation of space-time whereby the differential-manifold
structure of space time

{
Q4, ĝ(s)

}
is replaced with

{
Q4, ĝ(C)(s)

}
.

This provides an answer to the issue raised above: since PEM holds at arbitrary
proper times, it must hold also asymptotically so that ĝ(C)(s) must exist also in the limit
s→ ∞, thus ultimately requiring the background metric tensor, represented by ĝ(C)(s), to
be regular in the same limit.

8. Conclusions

It is generally acknowledged that space-time singularities, particularly black hole (BH)
ones, actually play a crucial role in general relativity (GR). In fact, apart their ubiquitous
presence in the optically accessible (or non accessible) universe, the very existence of sin-
gular BHs represents a crucial conceptual issue. Indeed it is generally agreed that these
singularities arise because of the failure of classical GR to describe them properly. The
prevailing opinion in fact is that such singularities, which occur at the classical level, i.e.,
characterize the solutions of the Einstein field equations, are just the manifestation of possi-
ble but still unknown underlying quantum effects that arise in the presence of extremely
intense gravitational fields. Thus, the proper understanding of the role of quantum gravity
(QG) in this context becomes increasingly urgent and meaningful.

The issue in turn is intimately related to the kind of QG-theory required for such
a task.

As shown here a convenient choice is represented by a theory that, by construction,
should satisfy both the principles of general covariance and of manifest covariance with
respect to the group of local point transformations (LPTs), i.e., coordinate diffeomorphisms
mutually mapping in each other different GR frames. Our claim is that the manifestly
covariant quantum gravity theory (CQG-theory) recently proposed fits well into the scheme.
Indeed, the presence of extremely intense classical gravitational fields, with the implied
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consequence of possibly-related relativistic (or ultra-relativistic) particle effects, suggests
that the gravitational field should be properly treated, a fact that rules out the adoption
of possible approximations related to the (hitherto) classical structure of space-time. The
obvious consequence is that such a theory should be set in manifestly covariant form with
respect to arbitrary coordinate transformations which leave unchanged the structure of
space-time. In other words it should always be possible to cast such a theory in explicit
4−tensor form with respect to the (yet to be determined) local space-time structure. In
addition, one should agree that, in order for a quantum theory to be possible at all, it is
obvious that a classical Hamiltonian structure should be (possibly non-uniquely) associated
with the Einstein Field Equations. Needless to say, both the classical and corresponding
quantum Hamiltonian structures should be manifestly covariant. These features are all
embodied in CQG-theory.

In our view the adoption of such a type of tensor setting is actually expedient for
the identification of the conformal background metric field tensors (MFT) described here.
In this paper we have shown, in fact, that CQG-theory permits the explicit prescription
of a suitable 4−scalar N(s), denoted as scale form factor, which allows their explicit
determinations. Indeed, the prescription of N(s) as a function of the proper-time s (the arc
length along a geodesic trajectory associated with the same background MFT) follows from
a suitable set of manifestly covariant quantum Hamilton equations. Such equations, a chief
characteristic of CQG-theory, depend on the geometry of space-time, i.e., the background
Ricci tensor. In turn the latter depends on the quantum-produced cosmological constant,
which in the context of CQG-theory, is found to be generated by the Bohm vacuum graviton
interaction. This explains its ubiquitous nature and the fact the cosmological constant
actually can affect also strong-field domains arising in the vicinities and particularly
inside BHs.

With these considerations in mind, the starting point of the paper has been the inves-
tigation of the quantum Hamilton equations of CQG-theory. In particular we have first
shown the existence of non-stationary scale-transformed solutions of the CQG-quantum
Hamilton equations of the form ĝ(d)(s) = N(s)ĝ(s), with N(s) denoting a deterministic
proper-time dependent scale-form factor and ĝ(s) a particular solution of the quantum-
modified Einstein field equations. We have shown that N(s) is uniquely determined by
a suitable second-order ODE subject to prescribed initial conditions. The qualitative
properties of the scale-form factor in different cases have been categorized distinguish-
ing respectively: (1) an internal problem (inside the inner EH); (2) intermediate problem
(between two EHs); (3) an external problem (outside the outer EH).

The main results concern:

• The discovery of a regular conformal representation of the background MFT that
holds inside the BH domain in principle for arbitrary singular BH solutions. The
regularization effects is purely quantum and arises due to the combined effect of
the quantum-produced cosmological constant (ΛQM) together with the Hamiltonian
character of the underlying quantum hydrodynamic equations.

• The prediction of the large-scale behavior of the corresponding external conformal
background MFTs, i.e., occurring in the external domains of the BH. Such predictions
are obtained based on the assumption of continuity of the scale form factor N(s)
across event horizons.

However, further notable features emerge which provide further physical insight
regarding:

• How CQG-theory actually can cure BH singularities, giving rise to a suitable quantum-
modified background metric field tensor (MFT).

• The role of the cosmological constant and how its quantum character actually affects
the regularization of singular space-time solutions.

• The identification of the possible large-scale effects produced by the local quantum
modifications of MFT.
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• The possible connection between the occurrence/prediction of asymptotic/local infla-
tionary regimes, characterized by high values of the cosmological constant and the
expected phenomenon of BH-singularities-quenching.

These conclusions suggest a possible new mechanism of quantum-regularization of
BHs, with profound physical implications on the large-scale structure of the universe.
As shown here, in the context of CQG-theory, this is brought about by the occurrence
of a conformal deformation of space-time whereby the singular space-time

{
Q4, ĝ(s)

}
is

replaced with
{

Q4, ĝ(C)(s)
}

, which is generated by the regular conformal background

MFT ĝ(C)(s).
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Appendix A. Covariant s−Derivative

As shown in Ref. [23], provided the background metric tensor is the form ĝ = ĝ(s),
the covariant s-derivative takes the form

d
ds

=
d
ds

∣∣∣∣
s
+

d
ds

∣∣∣∣
r
, (A1)

where the notation is as follows. First, d
ds

∣∣∣
s
≡ tα∇α identifies the directional covariant

derivative, with

tα =
drα(s)

ds
≡ d

ds

∣∣∣∣
s
rα(s) (A2)

being the tangent to the geodetic curve r(s) ≡ {rα(s)}. Second, d
ds

∣∣∣
r

denotes now the
covariant s−partial derivative. When it operates on a 4−scalar this coincides with the
ordinary partial derivative, so that

d
ds

∣∣∣∣
r
=

∂

∂s
. (A3)

Appendix B. Quantum Continuity Equation in the Generalized Lagrangian Path
(GLP) Representation

The content in this appendix is largely based on the paper [22]. This concerns the
so-called generalized Lagrangian path (GLP) representation of the CQG-quantum wave
equation, based in turn on the GLP-parametrization, i.e., the replacement

g(r(s), s)→ g(r(s), s) = G(r(s), s) + ∆g(s), (A4)

with ∆g(s) ≡
{

∆gµι(s)
}
≡ ∆gµν(s) denoting a suitable stochastic displacement 4−tensor

prescribed so that identically

D
Ds

∆g(s) ≡
[

d
ds

+ Vµν
∂

∂gµν

]
∆g(s) = 0, (A5)
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where the partial derivative ∂/∂gµν is performed keeping constant the background metric

tensor ĝ(s). Here, Vµν is tensor field Vµν = 1
αL

∂S (q)
∂gµν , which according to Ref. [22], can be

identified with the quantum vector field

Vµν(GL(s), ∆g, s) = p(s)a(s)∆gµν + p(s)bµν(s), (A6)

where p(s) is the quantum phase-function

p(s) =

1 +
2

αL

s∫
so

ds′a(s′)

−1/2

. (A7)

Hence it follows that a(s) ≡ 0 implies:

p(s) ≡ 1. (A8)

The notable aspect of this representation (i.e., the GLP-representation) is that it permits
the construction of dynamically-consistent analytic solutions of the CQG-wave equation.
In particular, this concerns the quantum continuity equation for the quantum PDF ρ(s) =
ρ(∆g−Ωĝ(s), s), namely

d
ds

ρ(s) +
∂

∂gµν

(
Vµνρ(s)

)
= 0. (A9)

In the GLP-representations it reads in fact

D ln ρ(s)
Ds

+
∂Vµν

∂gµν
= 0, (A10)

where direct evaluation of ∂Vµν

∂gµν
in terms of (A6) yields

∂Vµν

∂gµν
= 16p2(s)a(s). (A11)

An elementary consequence of the GLP representation and Equation (A5) is the fact
that the partial derivative ∂/∂gµν in Equation (A10) is performed at constant ĝ(s). It then
follows that a particular solution of the quantum continuity Equation (A9) takes the form
(15), namely it is of the type

ρ(∆g(s)− ĝ(s), s) = ρG1(s)ρG(∆g(s)− ĝ(s)). (A12)

Here the notation is as follows. First, ρG(∆g(s)− ĝ(s)) denotes the shifted Gaussian

ρG(∆g(s)− ĝ(s)) =
1
〈〈1〉〉 exp

{
− (∆g(s)− ĝ(s))2

r2
th

}
, (A13)

with rth > 0 being a constant real scalar parameter, 〈〈1〉〉 =
∫

Ug

d(∆g) exp
{
− (∆g(s)−ĝ(s))2

r2
th

}
,

while ρG1(s) is the restoring function

ρG1(s) = exp

−16
s∫

so

ds′p2(s′)a(s′)

. (A14)

Thanks to the identity (16), the same conclusions hold for the conformal metric field
tensors ĝ(C)(s) and respectively ĝ(C1)(s).
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