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Abstract: Weak measurements have been under intensive investigation in both experiment and
theory. Numerous experiments have indicated that the amplified meter shift is produced by the
post-selection, yielding an improved precision compared to conventional methods. However, this
amplification effect comes at the cost of a reduced rate of acquiring data, which leads to an increasing
uncertainty to determine the level of meter shift. From this point of view, a number of theoretical
works have suggested that weak measurements cannot improve the precision, or even damage the
metrology information due to the post-selection. In this review, we give a comprehensive analysis of
the weak measurements to justify their positive effect on prompting measurement precision. As a
further step, we introduce two modified weak measurement protocols to boost the precision beyond
the standard quantum limit. Compared to previous works beating the standard quantum limit, these
protocols are free of using entangled or squeezed states. The achieved precision outperforms that of
the conventional method by two orders of magnitude and attains a practical Heisenberg scaling up
to n = 106 photons.

Keywords: weak measurement; Heisenberg scaling; quantum enhanced precision

1. Introduction

A measurement is normally implemented by coupling a measurement apparatus (MA)
to a test quantum system (QS) and detecting the level of meter shift, which is decided
by the coupling strength. Thus, any parameter related to the coupling strength can be
estimated from the meter shift of the MA. In conventional measurement (CM), the meter
shift level is within the range of the maximal eigenvalue of the QS operator, which is (in
appropriate units) 1 for spin-1/2 particles. When the coupling is weak, the meter shift is
much smaller than the uncertainty of the MA’s observables and is hard to decipher. In this
case, one cannot make a precise estimation of the parameter of interest.

In contrast, weak value amplification (WVA) can result in a meter shift beyond the
eigenvalue when an adequate post-selection is made on the QS operator Â after the weak
coupling, e.g., the post-selection amplifies the outcome of a measurement on a spin-1/2
particle from 1 to 100 [1]. The degree of this amplification can be quantified by the so-called

weak value defined as Aw =
〈ψ f |Â|ψi〉
〈ψ f |ψi〉 , where |ψi〉 and

∣∣∣ψ f

〉
are the pre-and post-selection

states of the QS. When these two state vectors are (nearly) orthogonal, and their overlapping
〈ϕ|ψ〉 is small, the weak value can significantly exceed the normal eigenvalue and lead to
an amplified meter shift to overcome certain environmental disturbances [2–9]. Specifically,
the ultra-small transversal shift of a beam can be observed when WVA is introduced [10,11],
and the longitudinal optical phase can be precisely measured when an imaginary weak
value is explored [12,13]; what is more, the optical Kerr effect in a single-photon level can
also be amplified through WVA [14].
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Despite this progress in experimentation, a few theoretical works raise serious ques-
tions about the overall precision obtained from the post-selected probes [15–17]. In general,
these theoretical works have appealed to the quantum Fisher information (QFI) in the
post-selected probes and conclude that the post-selection can only damage the overall
precision compared to the CM [18–20]. These debates put WVA in a dilemma: the observed
improvement in experiments is undoubtedly true, while the theoretical analysis also seems
reasonable, so which one is the true judgment?

Therefore, it is an interesting question to explore the unambiguous advantage of WVA
to endow us with unprecedented ability in various measurement tasks. In this review, we
will first make an in-depth analysis of the debates between experimentalists and theorists,
and then we introduce two advanced weak measurement (WM) protocols [21,22], which
beat the standard quantum limit or even approach the Heisenberg limit.

2. Standard-Quantum-Limited WM Protocols

In the theoretical analysis of WVA, the achievable precision is normally rigorously cast
in terms of Fisher information (FI), which represents the most extractable metrology infor-
mation, or the lower bound of uncertainty in estimating a parameter with an experimental
design [23]. In this sense, the FI quantifies the quality of any particular experimental design.
A poorly designed experiment necessarily elicits less FI about the estimated parameter
than will a well-designed experiment. Maximizing the FI over all the possible experimental
schemes, one can define the so-called QFI as the upper bound of the standard FI. In other
words, the full QFI is solely decided by the form of the coupling between QS and MA, and
can only be attained with an optimal measurement. We give a brief FI analysis for standard
WM and show that WVA fails to attain the full QFI theoretically available.

In order to estimate a parameter associated with the coupling between the QS and
MA, the QS operator Â is coupled to the MA operator P̂ through the coupling Hamiltonian
H = f (t)P̂Â, where f (t) is a coupling function with a finite support that satisfies

∫
f (t)dt =

g� 1. Normally, the QS is a two-level system with eigenstates |+ 1〉 and | − 1〉 and the
corresponding eigenvalues are +1 and −1. A standard WM protocol can be performed
through three procedures as shown in Figure 1, namely, pre- and post-selection of the
QS, and a coupling in between. The initial states of the QS and MA are, respectively,
|ψi〉 = cos(θi/2)| − 1〉+ sin(θi/2)eiφi |+ 1〉 and |ϕi〉. After the coupling, The QS and MA
evolve into a joint state:

|Ψi〉 = cos(θi/2)| − 1〉|ϕ−〉+ sin(θi/2)eiφi |+ 1〉|ϕ+〉, (1)

where |ϕ±〉 = e∓igP̂|ϕi〉. Without the loss of generality, the MA is normally prepared
in a Gaussian superposition state for both of the conjugate variables p and q, and the
corresponding states can be written as

|ϕi〉 =
∫

dp(2π−1δ2)1/4 exp[−δ2 p2]|p〉 =
∫

dq(2πδ2)−1/4 exp[− q2

4δ2 ]|q〉. (2)

The QFI in the joint state described by Equation (1) is calculated as 4δ2, which is the upper
bound of the elicited FI by any following protocol, including both CM and WM protocols.
When a post-selection into |ψ f 〉 = cos(θ f /2)| − 1〉+ sin(θ f /2)eiφ f |+ 1〉 is made on the QS, the

MA state is collapsed into |ϕ√〉 = cos(θi/2) cos(θ f /2)|ϕ−〉+ sin(θi/2) sin(θ f /2)ei(φi−φ f )|ϕ+〉
with a probability of p√, which can be calculated as

p√ =
1 + cos(θi) cos(θ f ) + sin(θi) sin(θ f ) cos(φi − φ f )e−2(gδ)2

2
. (3)

When the post-selection fails, the QS is projected into the orthogonal state of |ψ f 〉, and the

MA state is collapsed into |ϕ×〉 = cos(θi/2) sin(θ f /2)|ϕ−〉− sin(θi/2) cos(θ f /2)ei(φi−φ f )|ϕ+〉
with a probability of p× calculated as p× = 1− p√.
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Figure 1. Scheme for a standard weak measurement (WM) protocol. The quantum system (QS) is pre-selected into a
superposition of |+ 1〉 and | − 1〉, between which an extra phase is introduced after the coupling with the measurement
apparatus (MA). After the post-selection, the two observables of the MA, namely p and q, are shifted in proportion to the
real and imaginary parts of the weak value, as shown in (a,b), respectively. (Adapted from [12]).

Obviously, the three constituents of post-selection, i.e., the probability p√, the suc-
cessful mode |ϕ√〉 and failed mode |ϕ×〉, are all related to the coupling strength g. Conse-
quently, one can estimate g by exploring these three constituents, each of which contains
information about g. Denoting the QFI of |ϕ√〉 and |ϕ×〉 as Q√ and Q×, respectively,
the sum total of the classical and quantum FI contained at different stages of WM can be
calculated as Ftotal = p√Q√ + p×Q× + Fp. Specifically, p√Q√ and p×Q× represent the
maximum FI that can be elicited in the successful and failed modes, and Fp stands for the
classical FI in the distribution {p√, 1− p√} of the post-selection process.

With the form of |ϕ(
√

,×)〉 and p√, Q√, Q× and Fp can be calculated as

Fp =
(2δκλ)2

p√(1− p√)
, (4)

Q√ =
4δ2

p√
[p√ + λ(2κ2 − 1)− (λκ)2

p√
], (5)

Q× =
4δ2

1− p√
[1− p√ − λ(2κ2 − 1)− (λκ)2

1− p√
], (6)

where the measurement strength κ is defined as κ = gδ, and λ is expressed as λ =

sin θi sin θ f cos(φi − φ f )e−2δ2g2
.

The standard WM protocol utilizes solely the successful mode of post-selection, while
the other two constituents are normally discarded in the measurement. As a result, only
the metrology information in |ϕ√〉 is explored, and in this case we have FSWM = p√Q√.
In the weak coupling limit, i.e., the measurement strength κ → 0, the total accessible FI by
measuring the successful mode is

p√Q√ = 2δ2[1 + cos θi cos θ f − sin θi sin θ f cos(φi − φ f )]. (7)
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It can be seen that when either θi = −θ f and φi − φ f = 0 or θi = θ f and φi − φ f = π, FSWM

achieves the maximum value of 4δ2, which saturates the QFI in the joint system-meter state
of Equation (1). For other settings of {θi, φi, θ f , φ f }, WM can only elicit an amount of FI
lower than 4δ2; in other words, standard WM normally loses partial information in the
joint state since it solely concerns the successful mode of post-selection.

We can conclude that WM cannot enhance the measurement precision in an ideal
case from the above calculations. Actually, we can interpret this question more directly,
in terms of the signal-to-noise ratio. The WVA can enhance the meter shift (signal) by a

factor∼ 1/
√
|〈ϕ×|ϕ√〉|2. Correspondingly, the number of detection events is reduced by a

factor of ∼ |〈ϕ×|ϕ√〉|2; and thus, the normalized standard error (noise), which is inversely
proportional to the square root of the number of detection events, is also amplified by

a factor ∼ 1/
√
|〈ϕ×|ϕ√〉|2. Considering all these factors, the signal-to-noise ratio stays

constant and is not improved via WM.
In contrast, the existing experiments show that WM indeed leads to improved pre-

cision, which disagrees with the above theoretical analysis. The major reason for this
contradiction is the different situations considered in theory and experiment. The theoreti-
cal analysis usually ignores practical constraints, which can be overcome by standard WM
to attain better precision in experiment [9,16]. Similar to the signal-to-noise analysis above,
we consider a situation where a certain technique’s noise dominates various imperfections
in an experiment and generates an error ∆ in the meter shift. This technique noise, e.g., the
dark current of the detector, or the resolution of a spectrometer, does not change with the
number of detection events. Compared to the analysis above, the signal can be amplified
due to WVA, while the error remains unchanged before and after the post-selection. Con-
sequently, the signal-to-noise ratio is raised by a factor decided by the weak value. Other
practical factors may also confer WM the ability to outperform CM, e.g., when detector
saturation occurs, WM maintains a considerable amount of metrology information while
detecting an ultra-small fraction of probes. Vaidman proposed the conjecture about this
advantage [24], which was then rigorously verified in theory [25] and demonstrated in
experiment [26].

Let us return to FI analysis for standard WM. For some special settings of {θi, φi, θ f , φ f },
the QFI in the successful mode saturates the QFI in the system–meter joint state, which
is calculated as Ftotal = 4δ2. The best achievable precision of estimating g is given by the
Cramér–Rao bound ∆g ≥ 1

2
√

Nδ
, when the MA consists of N non-interacting subsystems.

Any additional technique noise inevitably damages the QFI; therefore, the resulted preci-
sion is even worse than 1

2
√

Nδ
and is undoubtedly subjected to the standard quantum limit.

It can be seen that the scaling of the precision is bounded by the QFI in the system–meter
state. Although standard WM can saturate this QFI in ideal cases, perhaps outperforming
CM in some practical situations, it cannot prompt scaling better than o(1/

√
N).

3. Heisenberg Scaling WM Protocols

Scaling is the main issue within quantum metrology, where the goal is to achieve a
precision that is inversely proportional to the number of resources (the so-called Heisenberg
limit) rather than to the square root of this quantity (which is the standard quantum limit
(SQL)). There have been ongoing and significant efforts over the last couple of decades.

The Heisenberg limit is defined as the limit attainable by using all possible quantum
resources, and it is normally difficult to saturate in practical measurement tasks. Alterna-
tively, quantum metrology pursues the precision differing from the Heisenberg limit with
a small constant-factor before, namely, the Heisenberg scaling. When the constant-factor
is small, the Heisenberg scaling beats the SQL with a small number of resources. The
relative works attaining Heisenberg scaling generally exploit quantum effects, mainly
entanglement [27–31]. A technical issue preventing the application of entanglement to
practical measurement is that it is difficult to produce large-size entangled states; therefore,
the short-living Heisenberg scaling fails to outperform the conventional method. Besides,
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the squeezed state also renders precision surpassing the SQL [32–35], while the limited
squeezing ratio prevents it from attaining Heisenberg scaling. Adaptive strategies have
been proposed to achieve a standard deviation scaling at the Heisenberg limit, which has
been implemented with photons [36], the NV center in diamond [37] and superconducting
transmon circuits [38]. Regarding the nonlinear metrology, super-Heisenberg scaling arises
from the high-order nonlinear effect itself [39], rather than a technical innovation.

The QFI arising from the coupling determines the scaling of the precision to estimate
the coupling strength; therefore, two conditions promise the achievement of Heisenberg
scaling, i.e., the QFI is proportional to the square of N, and a specific technique to elicit a
considerable proportion of this QFI.

We consider a situation in which the overall interaction is related to the number of
particles involved in the interaction. The Hamiltonian is expressed as H = gÂn̂, where
Â and n̂ represent the number of two-group particles participating in the interaction. A
practical example described by this Hamiltonian is the cross-phase modulation between
photons, i.e., the Kerr effect between photons. When the task is assigned as measuring
the Kerr effect generated by single photons, the QS and MA are pulses containing 1
and n photons, respectively. In this measurement, single photons are prepared into a
superposition of the eigenstates of Â, i.e., |ψi〉 = |0〉+ |1〉, where 0, 1 represents the particle
number participating in the interaction. Normally this can be achieved by entangling
the photon number with another degree of freedom, e.g., preparing the single photons
into |ψi〉 = |0〉|H〉+ |1〉|V〉 (V and H represent the vertical and horizontal polarization,
respectively). With the polarization as a control qubit, only the H polarized component
interacts with the strong pulse containing n photons, as has been done in [40]. In this
experiment, Matsuda et al. observed the Kerr effect in single photon level as low as
10−8 rad in a photonic crystal fiber. The major factor limiting the precision is the self-
phase modulation, since this unexpected effect adds to inherent fluctuation of the strong
pulse, which is eventually measured as a probe in this experiment. Taking this self-phase
modulation into account, the Hamiltonian is written as H = gÂn̂ + gsn̂2, where gs is the
coupling strength of self-phase modulation.

The interaction strength g can be probed with strong pulses in either pure or mixed
states, as shown in Figure 2. To determine the best attainable precision in the estimation of
g, firstly we calculate the QFI in the system–meter state for both pure and mixed probes.
Consider some state, pure at this stage, |ψ〉|ϕ〉 , where |ψ〉 is the state of the system, related
to Â, and |ϕ〉 is the state of the meter, related to n̂. The QFI is given by

Iq = 4∆H2 = 4〈ψ|Â2|ψ〉〈ϕ|n̂2|ϕ〉 − 4〈ψ|Â|ψ〉2〈ϕ|n̂|ϕ〉2 = 4〈ψ|Â2|ψ〉∆n2 + 4∆A2〈ϕ|n̂|ϕ〉2, (8)

where ∆O2 = 〈Ô2〉 − 〈Ô〉2 is the variance of an operator with respect to the initial state.
Setting |ψ〉 to an eigenstate of Â with eigenvalue ξ would yield Iq = 4ξ2∆n2, which for
coherent states amounts to Iq = 4ξ2n, with n = |α|2 being the average photon number.
For n2 � 1 and ∆A 6= 0, the other term in Iq dominates and we have Iq ≈ 4∆A2n2. Note
that this does not depend on the particular state |ϕ〉, i.e., it is valid for coherent states just
as much as it is for Fock states. The QFI is bounded by the a limit scaling with n2, which
allows the best precision beating SQL and attaining Heisenberg scaling.
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(a) (b)

Figure 2. The precision to estimate coupling strength g with different probing states. (a) Probing with
coherent state |α〉: the precision of measuring a phase Arg(α) is limited by the inherent uncertainty
∆Re[α] = ∆Im[α] = 1/2, hence it is standard-quantum-limited. (b) Probing with mixed state: the
initial state is a statistical ensemble of |α〉, each of which acquires a phase decided by |α|, and interferes
(with itself) with varying probability due to the post-selection. A shift in the radical direction is
generated and its level is proportional to the length squared. For a mixed state, the length can be
increased to ∼ |α|, which leads to Heisenberg scaling precision. (Adapted from [21]).

However, choosing the initial state and showing that it contains sufficient information
after the interaction does not ensure that we can extract it efficiently. One should specify how
to perform the final measurement and show that indeed the required amount of information
can be obtained. To this end, we will show that the standard WM protocol cannot elicit the
FI scaling with n2 even though it is achievable by the QFI bound. Compared to the method
in [40], WM applies a post-selection by projecting the single photons into |ψ f 〉 = |0〉 − e−iε|1〉.

In this case, we obtain a purely imaginary weak value Aw =
〈ψ f |Â|ψi〉
〈ψ f |ψi〉 = i/ε, which means

we can estimate g by observing the photon number change after the post-selection. For a
single probe pulse, we assume the initial state to be a coherent state written as

|α〉 = e−|α|
2/2Σk

αk
√

k!
|k〉, (9)

where |k〉 denotes the Fock state with photon number as k, and the mean photon number
of this coherent state is n = |α|2. The evolution operator is then U = e−iH = e−i(gÂn̂+gs n̂2).
By replacing Â with Âw, the final state of the probe (before normalization) is

|ϕ√〉 = e
g
ε n̂−igs n̂2 |α〉 = e

− |α|
2

2 + |αe
g
ε |2
2 −i gsn̄2

e
g
ε |αe

g
ε 〉. (10)

Using e
g
ε ' 1 + g

ε , we can see that the normalization is given by e|α|
2 g

ε , which also means
that the dependency of the probability for post-selection, on the meter state, is given by

p√ ∼ e2|α|2 g
ε ' 1 + 2|α|2 g

ε
. (11)

The average photon number for the final state is

〈n̂〉 = |α|2e2 g
ε ' |α|2(1 + 2

g
ε
), (12)

with the mean photon number change as

∆n ' |α|2 2g
ε

. (13)

It can be seen that this mean photon number change acquires an amplification of 1
ε due to

the WVA; what is more, the self-modulation item in the Hamiltonian does not contribute
to the photon number change. In this case, the self-modulation effect, which harms the
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measurement precision in [40], can be circumvented here by measuring the photon number
change instead of the phase. However, the normalized change ∆n

|α|2 = 2g
ε is approximately

in the order of 10−6, which cannot be detected with currently available techniques since
the amplitude resolution of an electrical signal is inversely proportional to the response
bandwith. Regarding the scaling of the precision probing with a pure coherent state, of
which the quantum fluctuation is ∼ |α|, the precision is calculated as

∆g =
|α|
∂∆n
∂g

=
ε

2
√

n
. (14)

Not unexpectedly, the scaling is still standard-quantum-limited with the probe of a coher-
ent state.

In the following section, we show that a phase-interacting scenario with the coupling
proportional to the number of interacting particles can provide the QFI, and two modified
WM protocols can elicit this QFI to achieve practical Heisenberg scaling precision.

3.1. Heisenberg Scaling WM Protocol Probing with Mixed States

In this section we review a modified WM technique to measure the interacting strength
of two groups of particles. We will show that by utilizing a mixed probe of various coherent
states with significantly different α, the QFI scales with the square of the mean photon
number such as that for the pure coherent state; what is more, by observing the mean
photon number change in the post-selected pulses, this QFI can be elicited to render an end
precision attaining Heisenberg scaling. To show how the mixed probe state works, as usual,
we calculate the QFI bound for it. We can extend the QFI calculation for the pure state to
mixed states by taking a weighted average of the Iq. For a statistical mixture of states |ϕa〉
with probability pa, the convexity of the QFI implies that the QFI of the mixed state, Im

q , is
bounded by Im

q ≤ ∑a pa Ia
q, where Ia

q is the QFI in Equation (8) for a state |ϕa〉. That is

Im
q ≤ 4 ∑

a
pa

(
〈ψ|Â2|ψ〉∆an2 + ∆A2n2

a

)
, (15)

where na = 〈ϕa|n̂|ϕa〉 is the average photon number of state |ϕa〉, ∆an2 = 〈n̂2〉 − 〈n̂〉2 is
the variance for that state. In the case of coherent states, n

∆n =
√

n so when n� 1, the term
containing n2

a in the QFI dominates and the bound can be approximated by:

4 ∑
a

pa

(
〈ψ|Â2|ψ〉∆an2 + ∆A2(na)

2
)
' 4 ∑

a
pa∆A2n2

a = 4∆A2(var(n) + N2), (16)

where var(n) and N are, respectively, the variance and average for the distribution of
the photon number of the mixed state. We can see that by mixing coherent states one can
increase the variance so that var(n) ∝ N2, giving a bound that is ∝ 2N2, which improves
the upper bound to the QFI.

To show that this mixed probe not only gives rise to QFI of ∝ N2, we assume N ==∫
d|α|2P

(
|α|2

)
|α|2 and its variance

∫
d|α|2P

(
|α|2

)(
|α|2 − N2)2

= σ2, with P
(
|α|2

)
denoting

the weight for each continuous component state |α〉. Since the probability of post selection
depends on the initial state of the meter, the distribution above will change according to
Pf ∼ P

(
|α|2

)
p√. To calculate the average photon number after post-selection we have



Entropy 2021, 23, 354 8 of 16

N′ =

∫
d|α|2P

(
|α|2

)
P√〈n〉α∫

d|α|2P(|α|2)P√

=

∫
d|α|2P

(
|α|2

)(
1 + 2|α|2 g

ε

)
|α|2

(
1 + 2g

ε

)
∫

d|α|2P(|α|2)
(
1 + 2|α|2 g

ε

)
=

(
N + 2 g

ε

(
σ2 + N2))(1 + 2g

ε

)
1 + 2N g

ε

' N + 2
g
ε

(
σ2 + N

)
,

(17)

where in the last step we use 1
1+x ' 1− x and drop any orders higher than 1 in g/ε .

From the above equation, the mean photon number change is

δNmixed ' 2
g
ε

(
σ2 + N

)
. (18)

Compared to the mean photon number change when probing with a coherent state, an
extra item 2g

ε σ2 appears here that greatly boosts the change of mean photon number. Since
the mixed state can be generated through the amplitude-modulation of a certain coherent
state |α0〉, the standard deviation σ exceeds quantum fluctuation |α0| and reaches a level of
σ ∝ N. Correspondingly, the estimation precision of g with ν probe pulses is calculated as

∆g ' σ

√
ν

∂
2gσ2

ε
∂g

∝
ε

2N
√

ν
, (19)

Considering ν ∼ ν̃
∣∣∣〈ψ f |ψi

〉∣∣∣2 ∼ ν̃ε2

4 with ν̃ denoting the number of incident pulses, the
scaling of the precision is

∆g ∝
1√
ν̃N

, (20)

which is independent of the post-selection probability. By defining N as the number of
used resources, it can be seen that when the probe is a mixture of various coherent states,
the precision in estimating g can beat the SQL and attain the Heisenberg scaling.

To show the achieved scaling with N by observing the photon number change in the
post-selected pulses, we can also calculate the classical Fisher information as

Ic = ν〈
(

∂ ln Pf

∂g

)2

〉 = 4ν
σ2

ε2 ∝ ν̃N2, (21)

which indicates a practical Heisenberg scaling precision.
In the calculation of classical Fisher information, we merely focus on the post-selected

pulses, and discard others failing the post-selection. In general, the post-selection is rare.
This can diminish the precision due to a decrease in the number of successful post-selecting

events ν ∼ ν̃
∣∣∣〈ψ f |ψi

〉∣∣∣2 ≈ ν̃ε2

4 . However, due to the weak value amplification, one obtains

another amplification factor of ε−2 on the meter shift. Consequently, by calculating the
Fisher information, the dependence on the post-selection probability cancels. It is somewhat
surprising that although both pure and mixed probes generate QFI scaling with N2, by
measuring the meter shift of the successful mode of post-selection, only a mixed probe
renders Heisenberg scaling in the estimation of g. An experimental work applies this
method to measure the optical Kerr effect in a single photon level [21], with the setup
shown in Figure 3.
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Figure 3. Setup of estimating single photon Kerr effect with mixed probe state. Single photons of 785
nm interact with strong pulses of 800 nm in the photonic crystal fiber (PCF). The amplitude of the
strong pulses is modulated to generate a mixture with different coherent states. Post-selecting the
single photons and detecting the intensity of corresponding strong pulses with a full HD oscilloscope,
the coupling strength g can be estimated from the mean photon number shift of the strong pulses.
The achieved precision ∆g is inversely proportional to the mean photon number N, which is the
so-called Heisenberg scaling. (Adapted from [21]).

The two interacting parties are heralded single photons from a spontaneous parametric
down-conversion process, and classical strong pulses from a femtosecond laser. The mixed
coherent states are generated after modulating strong pulse amplitude by an acoustic
optical modulator (AOM), and the pulse intensity varies with time to form a mixed state
for which the fluctuation amplitude (standard deviation) is ∝ N. The single photon state
is set as (|V〉 + |H〉)/

√
2 (V and H represent the vertical and horizontal polarization,

respectively). After entering the polarization Sagnac interferometer, only the V component
is synchronized with the strong pulses in the photonic crystal fiber to generate a single
photon Kerr effect; therefore, the system becomes |ψi〉 = (|1〉V + |0〉H)/

√
2, where {0, 1}

represents the interacting photon number. The interacting Hamiltonian is expressed as
H = gÂn̂, in which Â = |H〉〈H|+ |V〉〈V|.

The measurement is performed by post-selecting the single photons in |ψ f 〉 = (|V〉 −
e−iε|H〉)/

√
2, and using the successful events to trigger a full HD oscilloscope that records

the intensity of corresponding strong pulses. This full HD oscilloscope provides a resolution
of 1/4096 of the amplitude, and the mean photon number change can be exactly detected.
Through analyzing the mean intensity of these post-selected strong pulses, we can estimate

g through the equation δNmixed '
2gσ2

ε . The measurement precision is estimated from
Equation (19), and by plotting the precision against N, an evident Heisenberg scaling is
observed as shown in Figure 4. The attained Heisenberg scaling maintains up to N ∼ 105

photons and the ultimate precision outperforms that in [40] by one order of magnitude.
To summarize, by mixing a series of pure states, the uncertainty of the probe state

is increased, whereas the end uncertainty in the estimation of g is minimized. What is
more, this estimation uncertainty vanishes linearly with the mean photon number N in the
probe; and thus, a practical Heisenberg scaling precision is attained. This method is either
entanglement or squeezing free, and the relying quantum resource is the single photon
superposition, which is easy to generate and operate. In this scheme, the imaginary weak
value is explored, and hence the photon number change is measured instead of measuring
the phase (real weak value). On one hand, this is a technique issue since it is easier to
implement photon counting rather than measuring an ultra-small phase shift directly. On
the other hand, in order to achieve the Heisenberg scaling, a mixed probe state is required.
A mixed state in a photon number is easy to produce by modulating the intensity of laser
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pulses with an acoustic–optical modulator. Furthermore, the self-modulation effect, which
harms the measurement precision of the phase, can be circumvented here by measuring
the photon number.

10

6

-10

-9

-8

510 610

810

910

1010

   
N

Figure 4. A practical Heisenberg scaling in experiment.The estimation precision of g against the mean
photon number N of the mixed state is plotted. For N < 105, the precision follows a Heisenberg
scaling of ∆g ' 6.3× 10−4N−1 rad, shown as a green line, obtained by fitting these points. The red
line is a bound on the precision for mixed states, taking account of the QFI for each member in the
ensemble, given by ∆gmin ' 0.95× 10−4N−1 rad. (Adapted from [21]).

It is worth noting that both the theoretical calculations and the experimental results are
based on the approximation expanding exp(g/ε) to the first order in g. In experiment, the
smallest ε is decided by the extinction ratio of the polarizer used for post-selection, which
is normally in the order of 10−2, while g is in the order of 10−8. As a result, we always
have g/ε � 1 with the current experimental setup. In this sense, the ability to further
reduce ε necessarily implies the possibility to measure smaller g, without diminishing the
end precision.

3.2. Heisenberg Scaling WM Protocol by Measuring the Post-Selection Probability

Regarding the FI calculation for a pure state probe, the QFI is ∼ n2 while it cannot
be elicited by a standard WM protocol. A natural question is this: is it possible to make
full use of this QFI to attain the Heisenberg scaling with a proper protocol? To answer this
question, we return to the FI analysis of the three constituents in a standard WM protocol.

For a WM protocol with the pre- and post-selected states as |ψi〉 = |0〉 + |1〉 and
|ψ f 〉 = |0〉 − e−iε|1〉, respectively, the interaction strength g can be estimated by exploring
the three constituents, i.e., the post-selection probability, the successful and failure modes in
post-selection. The corresponding FI contained in these three constituents is calculated as

Fp = n2, (22)

PdQd = (1− ε2/4)n, (23)

PrQr = ε2n/4, (24)

and the successful post-selection probability is

P√ =
1− cos(gn + ε)

2
. (25)

Considering the two parties involved in the interaction, i.e., the strong pulses consist-
ing of a substantial amount of photons and the single photon pulses, in principle both of
these two parties can be measured to estimate the interaction strength between them. Intu-
itively, the strong pulses are the primary choice to be measured since more photons usually
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imply more metrology information. From this point of view, [14,40] measure the phase shift
of strong pulses and observe the Kerr effect in a single photon level; however, the precision
achieved in these two works is still standard-quantum-limited. Despite containing only
a single photon, single photon pulses provide a quantum-enhanced FI of Fp = n2, which
can be elicited by simply measuring the successful post-selection probability of the single
photons. Conversely, strong pulses containing n photons only provide a negligible amount
of FI, hence can be completely discarded after the interaction with the single photons.
Figure 5 shows the calculated Fp against the post-selection parameter ε and the interaction
strength g. It can be seen that for an ultra-small g and a small value of ε, Fp is approximately
equal to n2, which suggests a Heisenberg scaling precision of estimating g.

Figure 5. The classical information Fp contained in the post-selection process. Fp is calculated for
varying interaction strength g and post-selection parameter ε, when the mean photon number of
strong pulses is n = 5× 104. As g→ 0, Fp becomes dominant in Ftot and scales with n2, which means
a practical Heisenberg scaling precision is attainable by measuring the successful post-selection
probability. (Adapted from [22]).

The achievable precision can also be predicted from the ratio of the uncertainty on
the meter and the sensitivity of the meter shift to g. In this case, the meter is selected as
the successful post-selection probability of single photons. Specifically, the sensitivity is

calculated as s =
∂p√

∂g = n sin(gn + ε)/2 ' n(gn + ε)/2 when (gn + ε) � 1, and in this

case the uncertainty of the measured p√ is ∆p√ = (p√)1/2 ' (gn + ε)/2. The precision is
calculated as

∆g '
∆p√

s
=

1
n

. (26)

By defining n as the used resources, this expression implies the accessibility of Heisenberg-
limited precision with this scheme.

An experimental demonstration of this modified WM protocol is implemented in [22],
with the setup shown in Figure 6. The two interacting parties are uniform laser pulses
in a coherent state and heralded single photons from a spontaneous parametric down-
conversion process. The single photons separate into an equal superposition of clockwise
and counter-clockwise propagation at the entrance of the polarization Sagnac interferometer
(PSI), and the horizontally polarized strong pulses from an 800 nm visible laser (VISL)
are coupled into PSI by PBS2. The strong pulses are synchronized and collinear with
785 nm single photons, then they are coupled into the photonic crystal fiber (PCF). Only
the clockwise component of the single photons can interact with the strong pulse; hence,
the photon number state becomes |ψi〉 = (|1〉H + |0〉V)/

√
2, where {0, 1} represents the

interacting photon number. The photon polarization is maintained after the PCF, and the
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birefringence is eliminated by two Faraday units, each consisting of a 45◦ Faraday rotator
and an HWP. After exiting the PCF, strong pulses depart the PSI from PBS3 and two counter-
propagating components of single photons are finally combined at PBS1. Eventually, single
photons are projected into |ψ f 〉 = |H〉 + ei(π−ε)|V〉. The rates of accepted and rejected
events are simultaneously recorded to calculate the successful post-selection probability p√.
By measuring p√ for different values of g, the sensitivity s can be determined as the slope
of the fitting line. The uncertainty in the meter is determined as the standard deviation
σν for ν times measurement of p√. The achieved precision is defined as the ratio of σν

and s, and the results shown in Figure 7a are consistent with the theoretical prediction in
Equation (26).

UVL
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FU1

FR
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DM
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VISL
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HWP
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SP

PBS
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id
e

n
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        U
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Figure 6. Setup for estimating single photon Kerr effect by measuring the post-selection probability.
The 815 nm photons serve as triggers and the heralded 785 nm photons interact with strong pulses
(800 nm) in an 8 m long photonic crystal fiber (PCF), centering in a polarization Sagnac interferometer
(PSI). The interaction strength g is estimated from the distribution of successful and failed post-
selection probabilities. (Adapted from [22]).

(a) (b)

Figure 7. A practical Heisenberg scaling approaching the Heisenberg limit.(a) Experimental veri-
fication of Heisenberg-limited precision. The achieved precision shows good agreement with the
1/n fitting line up to n = 106 photons, and an ultimate precision of ∼ 10−10 rad is obtained. (b) The
amount of extracted Fisher information (FI) for different n. The n2 scaling also indicates that the
Heisenberg limit is approached in this measurement. (Adapted from [22]).

With the measured Pd and s, the extracted classical FI can be calculated as [20]

Fp =
1
Pd

(
∂Pd
∂g

)2 +
1

1− Pd
(

∂(1− Pd)

∂g
)2, (27)
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and the results are shown in Figure 7b. The classical FI in the experiment is all located on
the line of n2, implying the practical precision nearly saturates the QFI in the system–meter
joint state.

As the WM protocol utilizes a mixed probe, only single photon superposition is
required here to achieve the Heisenberg scaling, without the usage of entanglement or
squeezing. Furthermore, the measurement relies on single photon counting, which is easy
to implement in experiment. Another major advantage is that the self-phase modulation of
the strong pulses is insignificant here, since the strong pulses are discarded and only the
single photons are measured finally.

4. The Implementation of the Scheme in a Ramsey-Type Model with Qubits

In order to describe our scheme in a more general context, it is meaningful to apply
the weak measurement proposals into qubit–qubit system [41]. In this section, we will
show these two methods can also be applied to a Ramsey-type model with qubits, such as
the interaction between photons and atoms.

When a single spin (system) is coupled to an ensemble of other N spins (probes), the
interaction Hamiltonian is expressed as H = gσ̂zŜz, where σ̂z (Ŝz = ∑N

i=1 σi
z) is system

(probe) operator, respectively. To estimate g, normally one measures the phase that the
pure probes accumulate due to the interaction; however, this method is limited by the SQL,
∆g ∼ 1/

√
N. We will show with the two modified WM protocols introduced in this review,

that the achieved precision is significantly improved from SQL to Heisenberg scaling. First
we consider a single pure probe state |ϕa〉 with the mean photon number as n, where the
single spin is prepared in a state |ψi〉 and after the interaction is post-selected to

∣∣∣ψ f

〉
.

Assuming that gn� 1, the joint system–meter state after coupling is

|χ〉 ' (I− igσz ⊗ Sz)|ψi〉|ϕa〉, (28)

The post-selection leads to the final state of the probe as

∣∣∣ϕa
f

〉
' 1
√p√

〈ψ f | χ〉 '
〈ψ f | ψi〉
√p√

e−ig(σz)wSz |ϕa〉, (29)

These standard operations in a weak measurement result in a purely imaginary weak

value expressed as (σz)w =
〈ψ f |σz |ψi〉
〈ψ f |ψi〉 = i/ε.

The post-selection probability is calculated as

p√ = Tr(
∣∣∣ψ f

〉〈
ψ f

∣∣∣⊗ Ip|χ〉〈χ|)

=

∣∣∣〈ψ f |ψi

〉∣∣∣2
4

(1 + 2gIm(σz)w〈ϕa|Sz|ϕa〉+ g2n2

ε2 ), (30)

where Ip is the identity matrix operating on the probes’ subspace. In the case that |ϕa〉 is
a coherent state with mean photon number n, the post-selection probability to obtain the
post-selected state

∣∣∣ϕa
f

〉
is

p√ = (
gn + ε

2
)2, (31)

which is exactly consistent with the result in Equation (25). Combining with the analysis in
Section 3.2, it is possible to attain the Heisenberg scaling in this experimental scenario by
measuring the post-selection probability of the single spin.
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Otherwise, one can using a mixed probe state ρp = ∑a pa|ϕa〉〈ϕa|, where pa denotes
the weight of |ϕa〉 in this ensemble of spins and the mean photon number of this mixed
state is N. In this case, the interaction leads to a system–meter state

ρ ' (I− igσz ⊗ Sz)|ψi〉〈ψi| ⊗ ρp(I+ igσz ⊗ Sz), (32)

and the post-selection results in the final state of the probes

ρ
f
p '

1
Nρ

∑
a

pa p√
∣∣∣ϕa

f

〉〈
ϕa

f

∣∣∣, (33)

The probability of obtaining
∣∣∣ϕa

f

〉
is the product of the weight in the ensemble and the

post-selection probability of |ϕa〉, expressed as pa p√. By summing up these probabilities
over a, the re-normalization Nρ is calculated as Nρ = ∑a pa p√. Then the observable Sz
appearing in the Hamiltonian is measured, resulting in

〈Sz〉 = Tr[ρ f
pSz]

' 1
Nρ

Tr
[(

∑
a

pa

∣∣∣〈ψ f |ψi

〉∣∣∣2(I+ gIm(σz)w ⊗ Sz)|ϕa〉〈ϕa|(I+ gIm(σz)w ⊗ Sz)

)
Sz

]
. (34)

Keeping only terms of first order in g we have that

〈Sz〉 '
1

Nρ
∑
a

pa

∣∣∣〈ψ f |ψi

〉∣∣∣2(〈ϕa|Sz|ϕa〉+ 2gIm(σz)w〈ϕa|S2
z |ϕa〉

)
. (35)

Substituting pϕ|a and Nρ into the above equation, and canceling the items of high order in
g, we conclude that

〈Sz〉 '
∑a pa

∣∣∣〈ψ f |ψi

〉∣∣∣2(〈ϕa|Sz|ϕa〉+ 2gIm(σz)w〈ϕa|S2
z |ϕa〉

)
∑a pa

∣∣∣〈ψ f |ψi

〉∣∣∣2(1 + 2gIm(σz)w〈ϕa|Sz|ϕa〉)

=
〈Sz〉0 + 2gIm(σz)w〈S2

z〉0
1 + 2gImσw〈Sz〉0

' Sz0 + 2gIm(σz)w
(
〈S2

z〉0 − 〈Sz〉20
)
, (36)

where 〈•〉0 means a weighted average over a with regard to ρp before the interaction. For
the modified state 〈Sz〉 ' 〈Sz〉0 + 2gIm(σz)w

(
〈S2

z〉0 − 〈Sz〉20
)
. This yields an estimation for

g with a precision of ∆g = ∆〈Sz〉
| d〈Sz〉

dg |
∼ 1

∆H . Combining with the analysis in Section 3.1, when

the probe is in a mixed state with ∆H ∼ N, i.e., ρ = 1
2
(
∏N

i=1
∣∣↑i

z
〉〈
↑i

z
∣∣+ ∏N

i=1
∣∣↓i

z
〉〈
↓i

z
∣∣), one

can attain the Heisenberg scaling in the estimation of g.
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