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Abstract: Fractional-order chaos has complex dynamic behavior characteristics, so its application
in secure communication has attracted much attention. Compared with the design of fractional-
order chaos-based cipher, there are fewer researches on security analysis. This paper conducts a
comprehensive security analysis of a color image encryption algorithm using a fractional-order
hyperchaotic system (CIEA-FOHS). Experimental simulation based on excellent numerical statistical
results supported that CIEA-FOHS is cryptographically secure. Yet, from the perspective of crypt-
analysis, this paper found that CIEA-FOHS can be broken by a chosen-plaintext attack method owing
to its some inherent security defects. Firstly, the diffusion part can be eliminated by choosing some
special images with all the same pixel values. Secondly, the permutation-only part can be deciphered
by some chosen plain images and the corresponding cipher images. Finally, using the equivalent
diffusion and permutation keys obtained in the previous two steps, the original plain image can
be recovered from a target cipher image. Theoretical analysis and experimental simulations show
that the attack method is both effective and efficient. To enhance the security, some suggestions for
improvement are given. The reported results would help the designers of chaotic cryptography pay
more attention to the gap of complex chaotic system and secure cryptosystem.

Keywords: chaos; image encryption; cryptanalysis

1. Introduction

Nowadays, with the rapid development of optical fiber broadband access network, 5G
and other communication technologies, the security of multimedia data, especially digital
images, is of particular interest in communication networks [1]. As everyone knows, en-
cryption is an effective means of achieving security enhancements [2]. However, traditional
text encryption algorithms such as AES, DES, and IDEA are not suitable for digital images
because they featured with strong correlation between adjacent pixels. To deal with the
problem, various methodologies are introduced to design different image ciphers. Among
them, chaos-based image encryption is the most popular one, because chaos has character-
istics of sensitivity to initial values, dense periodic points, and long-term unpredictability of
orbits [3–5]. In the past two decades, chaotic image encryption technology has been widely
discussed and has become a research hotspot [6]. To improve the security performance of
chaotic image encryption technology, various chaotic systems with resistance to dynamic
degradation are studied, including quantum chaotic map [7], fractional-order chaos [8],
non-degenerated hyperchaos [9], economic chaotic map [10], and cascaded chaotic sys-
tems [11], etc. However, chaotic cryptography still lacks authoritative metrics, especially in
terms of security. Accordingly, many reported chaotic encryption algorithms have been
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broken [12–15]. As shown in Table 1, some previous chaos-based ciphers are vulnerable
upon various attack methods, including chosen-ciphertext attack [16], chosen-/known-
plaintext attack [12], differential cryptanalysis [17], even cipher-only attack [18]. Therefore,
research on security is extremely important and has received much attention [19–33].

Table 1. Some chaos-based ciphers broken by various attack methods.

Ciphers Broken by Attack Methods

Fridrich et al. [34] in 1998 Xie et al. [16] in 2017 Chosen-ciphertext attack
Zhao et al. [35] in 2015 Norouzi et al. [36] in 2017 Chosen-plaintext attack

Ye [37] in 2010 Li et al. [18] in 2017 Cipher-only attack
Zhou [38] in 2015 Chen et al. [17] in 2016 Differential cryptanalysis

Song et al. [15] in 2015 Wen et al. [13] in 2019 Chosen-plaintext/cipertext attacks
Shafique et al. [14] in 2018 Wen et al. [12] in 2019 Chosen-plaintext attack

As described in Ref. [39], fractional-order chaotic systems have higher complexity
and more optional key parameters and can be used as a competitive encryption scheme.
Correspondingly, image encryption algorithms based on fractional-order chaotic systems
have attracted the attention of researchers in recent years [35,40–42]. In 2013, Wang et al. [40]
introduced a fractional-order chaos into image encryption for the first time, and gave some
experiments to verify its performance. Since then, many image encryption schemes based
on fractional-order chaotic systems have been proposed [35,41,42]. For example, in 2017,
Zhang et al. [41] proposed a color image encryption scheme combing with fractional-
order hyperchaotic system and DNA encoding. Yet, cryptanalysts have reported that
some fractional-order chaotic image encryption algorithms have some fatal security issues.
Exactly, Norouzi et al. [36] pointed out that the image cipher that using an improper
fractional-order chaotic system was insecure, which was proposed in [35]. As far as we
know, there are still few research studies concerning cryptanalysis on the ciphers based
on fractional-order chaotic systems. Moreover, considering that each cryptosystem has
its intrinsic characteristics, it is necessary and urgent to perform cryptanalysis on these
existing ciphers.

In 2015, a color image encryption algorithm based on a fractional-order hyperchaotic
system was proposed [42]. In color image encryption algorithm using a fractional-order
hyperchaotic system (CIEA-FOHS), using the pseudo-random sequences generated by
the fractional-order hyperchaotic system, RGB-inter permutation, RGB-intra permutation
and pixel diffusion are successively performed to get cipher images from plain images.
Meanwhile, the relevant pixel correlation, histogram and other experimental analysis are
given to verify its security performance. However, from the perspective of cryptanalysis,
we found some security defects as follows:

• The existence of an equivalent key. CIEA-FOHS encrypts the image using a pseudo-
random sequence generated by fractional-order chaos. However, these sequences are
not related to plaintext. Thus, these sequences can be considered as equivalent keys.

• Two-stage permutations can be equivalently simplified to only once. The reason is
that the two permutations only change the position of the pixel without changing the
value of the pixel.

• The paradigm of the diffusion part is insecure. According to the conclusion of Ref. [43],
a class of diffusion encryption using module addition and XOR operations can be
cracked with only two special plain images and their corresponding cipher images.
Unfortunately, CIEA-FOHS is also the case.

Based on the three points, CIEA-FOHS cannot resist against a chosen-plaintext attack
method with the divide-and-conquer strategy. More specifically, under the scenario of
chosen-plaintext attack, firstly an equivalent diffusion key is obtained, and then an equiva-
lent permutation key is achieved, and finally the original images can be restored from the
encrypted images with the equivalent keys.



Entropy 2021, 23, 258 3 of 17

2. The Encryption Algorithm under Study

In this section, the fractional-order hyperchaotic system used in Reference [42] is
presented, and then the specific steps of CIEA-FOHS are introduced.

2.1. Fractional-Order Hyperchaotic System

The fractional-order hyperchaotic system used in CIEA-FOHS is derived from Ref. [39],
given as 

Dα
t x(t) = −z− w

Dα
t y(t) = 2y + z

Dα
t z(t) = 14x− 14y

Dα
t w(t) = 100(x− g(w))

(1)

where x, y, z, w are the four state variables, g(w) = w− (|w− 0.4| − |w− 0.8| − |w + 0.4| −
|w + 0.8|), Dα

t is the fractional derivative under the definition of Caputo and α is the deriva-
tive order. The attractor of the fractional-order hyperchaotic system is shown in Figure 1.
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Figure 1. Attractor phase diagrams of the fractional-order hyperchaotic system with different
variables: (a) (x, y, z); (b) (x, y, w); (c) (x, z, w); (d) (y, z, w).

2.2. Description of CIEA-FOHS

As shown in Figure 2, CIEA-FOHS consists of three main parts: inter-permutation,
intra-permutation and pixel diffusion. It is noted that, a two-dimensional image is trans-
formed into an one-dimensional sequence in raster scan order. Specifically, a color plain
image I of size H ×W × 3 is converted into three sequences of length H ×W expressed
as: IR, IG, and IB, which correspond to the three RGB channels of the image. The main
contents are briefly introduced as follows:
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Figure 2. The block diagram of CIEA-FOHS.

• The Secret Key:
The secret keys of CIEA-FOHS include (t f , α, h, x0, y0, z0, w0), where t f is the fractional
derivative defined by Caputo definition, α is the dimension, h is the step size for
discretization, and (x0, y0, z0, w0) are the four initial values of the fractional-order
hyperchaotic system defined in Equation (1), respectively. In CIEA-FOHS, these keys
are used to generate some chaos-based pseudo-random sequences for encryption [42].

• Initialization:
In Equation (1), by selecting the secret key as the initial values and parameters and it-
erating L times, one gets four chaos-based pseudo-random sequences {xi}L

i=1, {yi}L
i=1,

{zi}L
i=1 and {wi}L

i=1, where L = H ×W represents the number of pixels in a single
image channel.

• Stage 1. RGB-inter permutation:
The RGB-inter permutation refers to the process of pixel replacement between chan-
nels. This stage is implemented by two control vectors {selEi}L

i=1 and {selLeni}L
i=1,

which are given as  selEi = (|xi| × 1014) mod 6

selLeni = (|zi| × 1014) mod 3
(2)

where i = 1 ∼ L. More specifically, {selEi}L
i=1 is used to switch channels, as shown

in Table 2, and {selLeni}L
i=1 is to control the position and length of the permutation

pixel, given as

Table 2. The stutas of RGB-inter permutation under six rules.

Rule selE(i) 0 1 2 3 4 5

Permutation status

R→ R

G → G

B→ B

R→ R

G → B

B→ G

R→ G

G → R

B→ B

R→ B

G → R

B→ G

R→ G

G → B

B→ R

R→ B

G → G

B→ R


length = (sum(ER(pos : pos + length− 1)) mod 64), if selLeni = 0

length = (sum(EG(pos : pos + length− 1)) mod 64), if selLeni = 1

length = (sum(EB(pos : pos + length− 1)) mod 64), if selLeni = 2

(3)

where pos is the starting position, length is the length of the permautation pixels, and
sum is the cumulative function.

• Stage 2. RGB-intra permutation:
Sort {yi}L

i=1, {zi}L
i=1, and {wi}L

i=1 to get three index sequences {IYi}L
i=1, {IZi}L

i=1,
and {IWi}L

i=1 respectively, and their values range [1, L]. Use {IYi}L
i=1, {IZi}L

i=1, and
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{IWi}L
i=1 to permute ER, EG and EB respectively, given as ERi = ER(IYi), EGi =

EG(IZi) and EBi = EB(IWi).
• Stage 3. Pixel diffusion:

Perform pixel diffusion on ER, EG and EB, and then get three channels of the cipher
image C. Exactly, the three channels CR, CG and CB are defined as

CRi = SXi ⊕ ((ERi + SXi) mod 256)⊕ CRi−1

CGi = SYi ⊕ ((EGi + SYi) mod 256)⊕ CGi−1

CBi = SZi ⊕ ((EBi + SZi) mod 256)⊕ CBi−1

(4)

where i = 1 ∼ L, ⊕ is bitwise XOR operation, mod represents modulo operation,
and CR0 = SXL, CG0 = SYL, and CB0 = SZL. Here, three diffusion sequences
SX, SY and SZ are generated by SXi = round(xi) × 1014, SYi = round(yi) × 1014

and SZi = round(zi) × 1014 respectively, where round is a rounding operation on
real numbers.

Decryption is the inverse of encryption and is not described in detail here.

3. Security Analysis of CIEA-FOHS
3.1. Preliminary Analysis of CIEA-FOHS

Referring to the basic assumptions of cryptanalysis, everything about the cryptosys-
tem is public and only the secret key is unknown for attackers [13]. Chosen-plaintext
attack is a common and powerful method of cryptanalysis. It assumes that attackers can
arbitrarily choose the plaintext that is conducive to deciphering and obtain the correspond-
ing ciphertext [12]. Under the scenario of chosen-plaintext attack, attackers can construct
special plain images, such as all black and all white, and obtain the corresponding cipher
images to analyze the target cipher.

From the perspective of cryptanalysis, two-stage permutations of CIEA-FOHS can be
treated as a global pixel permutation because they only change the pixels’ position without
their values. The difference is that the number of pixels performing the permutation is
3HW instead of HW. Then, the algorithm structure of CIEA-FOHS is actually a classic
single-round permutation-diffusion. Moreover, the generation process of all chaos-based
pseudo-random sequences is independent of the plain image, which means that these
sequences can be regarded as an equivalent key. The reason is that, in the case of a
given secret key, these sequences are fixed for encrypting different plain images with the
same size. Then, CIEA-FOHS can be equivalently simplified as Figure 3, where PM is
an equivalent permutation key and three diffusion sequences SX, SY and SZ serve as an
equivalent diffusion key.

RGB color
plain image I

Pixel global
permutation

Pixel
diffusion

RGB color
cipher image C

Permutation matrix 
of size 3H W´PM 

Diffusion sequences
, , SX SY SZ

Figure 3. The block diagram of an equivalent simplified CIEA-FOHS.

Based on the above, under the scenario of chosen-plaintext attack and the strategy of
divide and conquer, one can get the equivalent keys and then recover the original plain
images. Specifically, firstly choose some plain images with same pixel values to cancel
the permutation and get the corresponding plain images to obtain the diffusion key; then
achieve the permutation key by the method of Reference [12]; finally, recover the images
by the equivalent keys.
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3.2. Analysis on the Diffusion Part

In this section, based on chosen-plaintext attack, it is assumed that the plaintext image
with the same pixel value is selected, and the corresponding ciphertext image is obtained.

• Step 1. Choose the all-zero plain image I(0) and get the corresponding cipher image
C(0) to determine SXL, SYL, SZL.
The reason for choosing the all-zero image is that the permutation is invalid at this time,
and the diffusion can be eliminated to the greatest extent. Then, Equation (4) becomes

CR(0)
i = CR(0)

i−1

CG(0)
i = CG(0)

i−1

CB(0)
i = CB(0)

i−1

(5)

when i = 1, one has CR(0)
1 = CR0. Since CR0 = SXL, thus SXL = CR(0)

i . Similarly,

one further gets SYL = CG(0)
i and SZL = CB(0)

i .
• Step 2. Choose two special plain images and get the corresponding cipher images to

determine SXi, SYi, SZi for i = 1 ∼ L− 1.
Referring to [43,44], the two chosen plaintexts are pure-color images with pixel values
of 85 and 170, represented as I(85) and I(170), respectively. Because for the combined
operation of module addition and bitwise XOR, choosing these two plain images can
minimize the number of solutions for SX, SY , SZ. Under the plain image I(85) and its
corresponding cipher image C(85), one gets

CR(85)
i = SXi ⊕ ((85 + SXi) mod 256)⊕ CR(85)

i−1

CG(85)
i = SYi ⊕ ((85 + SYi) mod 256)⊕ CG(85)

i−1

CB(85)
i = SZi ⊕ ((85 + SZi) mod 256)⊕ CB(85)

i−1

(6)

Similarly, given the plain image I(170) and its corresponding cipher image C(170),
one has 

CR(170)
i = SXi ⊕ ((170 + SXi) mod 256)⊕ CR(170)

i−1

CG(170)
i = SYi ⊕ ((170 + SYi) mod 256)⊕ CG(170)

i−1

CB(170)
i = SZi ⊕ ((170 + SZi) mod 256)⊕ CB(170)

i−1

(7)

By performing bitwise on Equations (6) and (7), one further gets
(85+̇SXi)⊕ (170+̇SXi) = CR(85)

i ⊕ CR(85)
i−1 ⊕ CR(170)

i ⊕ CR(170)
i−1

(85+̇SYi)⊕ (170+̇SYi) = CG(85)
i ⊕ CG(85)

i−1 ⊕ CG(170)
i ⊕ CG(170)

i−1

(85+̇SZi)⊕ (170+̇SZi) = CB(85)
i ⊕ CB(85)

i−1 ⊕ CB(170)
i ⊕ CB(170)

i−1

(8)

where +̇ is defined as a+̇b ∆
= mod(a + b, 256). It is worth pointing out that the reason

why 85 and 170 are chosen as the attack images is that their binary are 01010101 and
10101010 respectively. At this time, the number of possible solutions of SXi, SYi, SZi is
the smallest, which is two. More precisely, the difference between the two solutions is
128. Then, based on Equation (8), we propose Alogrithm 1 to determine SXi, SYi, SZi,
where i = 1 ∼ L− 1.

• Step 3. Eliminate the diffusion part by SX, SY , SZ.
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Corresponding to Equation (4), the decryption process of diffusion is given as
ERi = (SXi ⊕ CRi ⊕ CRi−1 − SXi) mod 256

EGi = (SYi ⊕ CGi ⊕ CGi−1 − SYi) mod 256

EBi = (SZi ⊕ CBi ⊕ CBi−1 − SZi) mod 256

(9)

Thus, ER, EG, EB can be restored from CR, CG, CB with SX, SY , SZ, respectively.

Algorithm 1: Determining SXi, SYi, SZi for i = 1 ∼ L− 1

Input: SXL, SYL, SZL, two chosen plain images I(85) and I(170), and their
corresponding cipher images C(85) and C(170).

Output: SXi, SYi, SZi for i = 1 ∼ L− 1
1 i← 1;
2 for x ← 0 to 255 do
3 if (85+̇x)⊕ (170+̇x) = CR(85)

1 ⊕ CR(170)
1 then

4 SX1 ← x;
5 end

6 if (85+̇x)⊕ (170+̇x) = CG(85)
1 ⊕ CG(170)

1 then
7 SY1 ← x;
8 end

9 if (85+̇x)⊕ (170+̇x) = CB(85)
1 ⊕ CB(170)

1 then
10 SZ1 ← x;
11 end
12 end
13 for i← 2 to L− 1 do
14 for x ← 0 to 255 do
15 if (85+̇x)⊕ (170+̇x) = CR(85)

i ⊕ CR(85)
i−1 ⊕ CR(170)

i ⊕ CR(170)
i−1 then

16 SXi ← x;
17 end

18 if (85+̇x)⊕ (170+̇x) = CG(85)
i ⊕ CG(85)

i−1 ⊕ CG(170)
i ⊕ CG(170)

i−1 then
19 SYi ← x;
20 end

21 if (85+̇x)⊕ (170+̇x) = CB(85)
i ⊕ CB(85)

i−1 ⊕ CB(170)
i ⊕ CB(170)

i−1 then
22 SZi ← x;
23 end
24 end
25 end
26 return SXi, SYi, SZi for i = 1 ∼ L− 1

3.3. Analysis on the Permutation Part

Once the diffusion part is broken, CIEA-FOHS degenerates into a permutation-only
cipher. Based on existing research, it cannot resist a chosen-plaintext attack. The basic idea
of attacking permutation-only is to construct a special plain image with unequal element
values, and get the corresponding permuted image. Taking 2× 2× 3 as an example, the pro-
cess of solving PM is described below. First, a chosen plain image and the corresponding
permuted image are given as

IR =

 0 1

2 3

; IG =

 4 5

6 7

; IB =

 8 9

10 11


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ER =

 5 8

3 11

; EG =

 1 10

2 9

; EB =

 6 4

0 7


For ease of explanation, a matrix of size H × 3W is obtained by connecting three

channels of size H ×W in a row connection manner. Then, the permutation process can be
described by  0 1 4 5 8 9

2 3 6 7 10 11

 PM−−→

 5 8 1 10 6 4

3 11 2 9 0 7


where PM is the permutation matrix of size H × 3W. Finally, PM is determined as

PM =

 (2, 5) (1, 3) (1, 6) (1, 1) (1, 2) (2, 4)

(2, 3) (2, 1) (1, 5) (2, 6) (1, 4) (2, 2)

 (10)

Obviously, one can recover (IR, IG, IB) from (ER, EG, EB) with PM. However, the
situation may be more complicated for large size images. For an 8-bit image, the pixel
value range is [0, 255]. Thus, when 3HW > 256, PM cannot be determined by only one
chosen plain image and its corresponding cipher image. Fortunately, this problem has been
solved in our latest research [12,13]. The basic idea is to combine multiple chosen plain
images in a weighted manner to form a matrix with different elements, and the number of
chosen plain images required for attacking permutation is

⌈
log256(3HW)

⌉
, where d.e is the

rounding up operation.
Based on the above, the steps for attacking permutation are briefly summarized as

follows:

• Step 1. Choose some special plain images and get their corresponding cipher images
to determine the permutation matrix PM;

• Step 2. Use the permutation matrix PM to recover the original images from the
permuted images.

3.4. The Proposed Chosen-Plaintext Attack Method

Following the above-mentioned discussion, CIEA-FOHS cannot resist the attack
method proposed in this paper. The flowchart of the attack method is shown in Figure 4,
and the specific steps based on chosen-plaintext attack are given as: firstly, get an equivalent
diffusion key (SX, SY , SZ) by the method in Section 3.2; secondly, achieve the permutation
matrix PM by the method in Section 3.3; finally, recover the original images with the
equivalent keys.

RGB color
cipher image C

Anti-
diffusion

Anti-
permutation

RGB color
plain image I

Diffusion sequences
, , SX SY SZ

Permutation matrix 
of size 3H W´PM 

Figure 4. The overall flowchart of attacking CIEA-FOHS.

Moreover, the complexity required for the attack method is discussed here. In terms
of data complexity, for color images of size H ×W × 3, the number of chosen plain images
required to decipher diffusion and permutation is 3 and

⌈
log256(3HW)

⌉
, respectively.

Hence, the total data complexity required is O(3 +
⌈
log256(3HW)

⌉
).
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4. Experimental Verifications and Discussions

To verify our security analysis, the algorithm steps of CIEA-FOHS strictly follow
Ref. [42]. Although Due to the complexity of fractional-order chaos, some parameters may
not be completely consistent, but this does not affect the effectiveness of security analysis.
We conduct simulation verification on the proposed image cryptosystem based on a PC
(personal computer) with MATLAB r2018b. The running PC is installed with Windows
10 64-bit OS (operating system), Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz and 8 GB
memory. We select some typical images listed in Table 3 for experiments. Among them,
the image “Lenna” of size 256× 256× 3 given in Ref. [42] is also included. In Equation (1),
we set the experimental secret key parameters for h = 0.001, α = 104, t f = 100, x0 = 1.002,
y0 = 0.949, z0 = 0.997 and w0 = 1.103.

• Case 1. Breaking CIEA-FOHS with an image of size 2× 2× 3:
In order to better illustrate the attack process, we first adopt an extremely simple
image with a size of 2× 2× 3. A pair of the given target plain and cipher images I and
C is shown in Figure 5a,c respectively, and their histograms are shown in Figure 5b,d
respectively. Accordingly, the numerical matrices of I and C are:

(a)

0 100 200
Pixel value

0

1

2

Fr
eq

ue
nc

y

(b) (c)

0 100 200
Pixel value

0

0.5

1

Fr
eq

ue
nc

y

(d)

Figure 5. A pair of plain and cipher images of size 2× 2× 3: (a) plain image I; (b) histogram of I; (c)
cipher image C; (d) histogram of C.

IR =

11 22

33 44

; IG =

55 66

77 88

; IB =

 99 100

111 122


CR =
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; CG =

231 154

118 28
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181 24

171 165


Firstly, following Step 1 in Section 3.2, choose the all-zero plain image I(0) shown
in Figure 6a and temporarily use the encryption machine of CIEA-FOHS, and then
get the corresponding cipher image C(0), as shown in Figure 6c. The all-zero plain
image I(0) and the corresponding cipher image C(0) and their histograms are shown
in Figure 6b,d, respectively. Similarly, the numerical matrices of I(0) and C(0) are:
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Figure 6. The all-zero chosen plain image I(0) and its corresponding cipher image C(0) of size
2× 2× 3: (a) I(0); (b) histogram of I(0); (c) C(0); (d) histogram of C(0).
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IR(0) =

0 0

0 0

; IG(0) =

0 0

0 0

; IB(0) =

0 0

0 0


CR(0) =

77 77

77 77

; CG(0) =

174 174

174 174

; CB(0) =

109 109

109 109


Then, one has SXL = 77, SYL = 174 and SZL = 109 because SXL = CR0, SYL = CG0
and SZL = CB0, where L = 2× 2 = 4.
Secondly, based on Step 2 in Section 3.2, choose the two plain images I(85) and
I(170), and get the corresponding cipher images, C(85) and C(170), which are shown in
Figure 7a–d, respectively. The values of their RGB three channels are:

IR(85) =

85 85

85 85

; IG(85) =

85 85

85 85

; IB(85) =

85 85

85 85



CR(85) =

176 186

77 85

; CG(85) =

 5 181

110 24

; CB(85) =

184 94

229 241


IR(170) =

170 170

170 170

; IG(170) =

170 170

170 170

; IB(170) =

170 170

170 170


CR(170) =

231 235

177 81

; CG(170) =

120 24

174 238

; CB(170) =

199 123

45 1



(a) (b) (c) (d)

Figure 7. The two chosen plain images I(85), I(170) and their corresponding cipher images C(85),
C(170)of size 2× 2× 3: (a) I(85); (b) C(85); (c) I(170); (d) C(170).

Then, combining Algorithm 1, we determine SX SY SZ as

SX =
[
84 86 89 77

]
; SY =

[
63 31 71 46

]
; SZ =

[
64 36 119 109

]
or

SX =
[
212 214 217 205

]
; SY =

[
191 159 199 174

]
; SZ =

[
192 164 247 237

]
Thirdly, by Step 3 in Section 3.2, the corresponding permuted image shown in
Figure 8c can be restored from the targeted cipher image Figure 8a with SX SY SZ.
Fourthly, following Step 1 in Section 3.3, construct some special attack images to obtain
the permutation matrix PM. For images of size 2× 2× 3, the process of solving PM
is exactly the same as Section 3.3. Then, we determine the PM as Equation (10). Fifth,
by Step 2 in Section 3.3, recover (IR, IG, IB) from (ER, EG, EB) with PM. Thus, the
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original plain image shown in Figure 8e can be recovered.
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Figure 8. A target cipher image, the permuted image, the original plain image and their histograms
of size 2× 2× 3: (a) a target cipher image; (b) histogram of (a); (c) its permuted image; (d) histogram
of (c); (e) its plain image; (f) histogram of (e).

• Case 2. Breaking CIEA-FOHS with “Lenna” of size 256× 256× 3:
Firstly, following Step 1 in Section 3.2, choose the all-zero plain image I(0) shown in
Figure 9a and temporarily use the encryption machine of CIEA-FOHS, and then get
the corresponding cipher image C(0), as shown in Figure 9b, and the corresponding
three channel images and their histograms of C(0) are shown in Figure 9c,d, respec-
tively. Exactly, one has SXL = 238, SYL = 168 and SZL = 91 owing to SXL = CR0,
SYL = CG0 and SZL = CB0.
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(d)

Figure 9. The all-zero chosen plain image I(0) and its corresponding cipher image C(0) of size
256× 256× 3: (a) I(0); (b) histogram of I(0); (c) C(0); (d) histogram of C(0).

Secondly, based on Step 2 in Section 3.2, choose the two plain images, I(85) and
I(170), and get the corresponding cipher images, C(85) and C(170), which are shown in
Figure 10a–d, respectively.
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Figure 10. The two chosen plain images I(85), I(170) and their corresponding cipher images C(85),
C(170)of size 256× 256× 3: (a) I(85); (b) histogram of I(85); (c) C(85); (d) histogram of C(85); (e) I(170);
(f) histogram of I(170); (g) C(170); (h) histogram of C(170).

Furthermore, one determines SXi, SYi, SZi for i = 1 ∼ L− 1 by Algorithm 1.
Thirdly, by the method in Section 3.3, choose the three plain images (shown in
Figure 11a–f) and get the corresponding cipher images (shown in Figure 11g–l), and
then use Algorithm 1 again to obtain their corresponding permuted images (shown in
Figure 11m–r). Then, we can get PM.
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Figure 11. Cont.
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Figure 11. Three chosen plain images, the corresponding cipher and permuted images for attacking
permutation: (a) 1# plain image; (b) The histogram of (a); (c) 2# plain image; (d) The histogram of (c);
(e) 3# plain image; (f) The histogram of (e); (g) 1# cipher image; (h) The histogram of (g); (i) 2# cipher
image; (j) The histogram of (i); (k) 3# cipher image; (l) The histogram of (k); (m) 1# permuted image;
(n) The histogram of (m); (o) 2# permuted image; (p) The histogram of (o); (q) 3# permuted image;
(r) The histogram of (q).

Finally, we recover the original image from the cipher image of “Lenna” shown in
Figure 12a. First, the permuted image shown in Figure 12c is obtained from the
cipher image with (SX, SY , SZ). Then, the plain image is restored by PM, which is
shown in Figure 12e.
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Figure 12. The cipher image, the permuted image, the original plain image of “Lenna” and their
histograms of size 256× 256× 3: (a) the cipher image; (b) histogram of (a); (c) its permuted image;
(d) histogram of (c); (e) its plain image; (f) histogram of (e).

Without loss of generality, we do the experiments based on other images with different
sizes. The experimental results are shown in Table 3 and Figure 13. They both verify the
effectiveness of our attack method. Besides, it can be seen from Table 3 that the proposed
attack is efficient. Taking the image “Lenna” of size 256× 256× 3 as an example, when the
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encryption time is 0.6391 s, the time needed for the corresponding attack is just 129.4039 s.
Even if the image size increases, the time required for the attack is still within an acceptable
range. Thus, it verifies that our method is computationally feasible.

Moreover, we verified the data complexity required for the attack. As discussed in Sec-
tion 3.4, the total data complexity required for breaking CIEA-FOHS is O(3 +

⌈
log256(3HW)

⌉
).

In our experiment with chosen-plaintext attack, the number of attack images required for
sizes 2× 2× 3 and 100× 100× 3 are 4 and 5, respectively. And for sizes 300× 200× 3,
256× 256× 3 and 512× 512× 3, the number of attack images required are all 6. Therefore,
the experimental verification is consistent with the theoretical calculation.

Table 3. The time required for breaking CIEA-FOHS by our proposed attack method (unit: second).

Images Sizes
Encrytion Attacking Diffusion Attacking Permutation Totol

Time Step 1 Step 2 Step 3 Step 1 Step 2 Attacking Time

Figure 5a 2 × 2 × 3 0.0280 0.1559 0.1811 1.0297 0.0244 2.7151 4.1502
Figure 13b 100 × 100 × 3 0.1539 0.0920 19.6092 1.1407 0.2764 2.7102 24.0427
Figure 13d 300 × 200 × 3 0.3280 0.5092 101.7737 0.7872 0.9055 2.4353 106.8545
Figure 12e 256 × 256 × 3 0.6391 0.6913 120.4768 1.6147 1.9642 3.7725 129.4039
Figure 13f 512 × 512 × 3 3.5386 2.8134 988.3704 1.9930 4.2884 5.0459 1004.4617

(a) (b) (c)

(d) (e) (f)

Figure 13. Attacking results with three images of size 100× 100× 3, 300× 200× 3 and 512× 512× 3
respectively: (a) cipher image of size 100× 100× 3; (b) plain image of (a); (c) cipher image of size
300× 200× 3; (d) plain image of (c); (e) cipher image of size 512× 512× 3; (f) plain image of (e).

5. Suggestions for Improvement

On the basis of the above, CIEA-FOHS is insecure against a chosen-plaintext attack
method because of its inherent security defects. To enhance the security, some suggestions
for improvement are listed below:

• Suggestion 1. Ensuring the substantial security contribution of the fractional-order
chaos to the corresponding cipher. The attractor phase diagram of the fractional-
order hyperchaotic system is shown in Figure 1, which shows the extremely complex
dynamics. Undoubtedly, fractional-order chaos is one of the preferred sources of
entropy for encryption. However, due to the negligence of algorithm design, CIEA-
FOHS has serious security defects and is attacked.
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• Suggestion 2. Security analysis should be implemented from the perspective of cryp-
tography, not limited to numerical statistical verification. As Ref. [45] points out,
many encryption algorithms have excellent statistical analysis results, but they are
still insecure. In fact, good statistical analysis results are only a necessary and not
a sufficient condition for security. Some security flaws are difficult to reflect with
numerical statistical results, but they can be clearly revealed by theoretical security
analysis. For example, the existence of an equivalent key makes CIEA-FOHS vulner-
able to cryptographic attacks. Given the implementation of detailed cryptographic
security analysis, these flaws can be avoided, thereby improving security.

6. Conclusions

In this paper, a detailed security analysis of a color image encryption algorithm
named CIEA-FOHS using a fractional-order chaos was performed. From the perspective of
cryptanalysis, this paper found that CIEA-FOHS can be broken by a chosen-plaintext attack
method, owing to its some inherent security defects. Theoretical analysis and experimental
simulations show that the attack method is both effective and efficient for attacking CIEA-
FOHS. Although the fractional-order chaotic system has complex dynamics, the algorithm
defects may cause insecurity. The reported results would help the designers of chaotic
cryptography pay more attention to the gap between complex chaotic system and secure
cryptosystem.
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