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Abstract: In this work we propose a model for open Markov chains that can be interpreted as a
system of non-interacting particles evolving according to the rules of a Markov chain. The number
of particles in the system is not constant, because we allow the particles to arrive or leave the state
space according to prescribed protocols. We describe this system by looking at the population of
particles on every state by establishing the rules of time-evolution of the distribution of particles.
We show that it is possible to describe the distribution of particles over the state space through the
corresponding moment generating function. This description is given through the dynamics ruling
the behavior of such a moment generating function and we prove that the system is able to attain
the stationarity under some conditions. We also show that it is possible to describe the dynamics of
the two first cumulants of the distribution of particles, which in some way is a simpler technique to
obtain useful information of the open Markov chain for practical purposes. Finally we also study the
behavior of the time-dependent correlation functions of the number of particles present in the system.
We give some simple examples of open chains that either, can be fully described through the moment
generating function or partially described through the exact solution of the cumulant dynamics.

Keywords: open systems; Markov process; statistical physics

1. Introduction

Markov chains are discrete-time models for stochastic evolution, widely used to model
systems in physics [1,2], chemistry [2], biology [3,4] as well as social sciences [5–7]. Roughly
speaking, a Markov chain consists of a sequence of random variables {Xt ∈ S : t ∈ N0}
taking values from a (finite or countable) set S , called state space. The jump of the random
variable from one state to another in one time step occurs with a prescribed probability,
and the probabilities of all the possible jumps are collected in a matrix called Markov
matrix which is a stochastic matrix. A natural way to interpret a Markov chain comes from
physics; we can think of the random variable Xt as the position at time t of given particle,
and this particle moves on the discrete space S . Thus, the stationary probability vector π
(provided it exists) is interpreted from a point of view of ensembles: if we have a collection
of N non-interacting particles moving according to the rules of the Markov chain, then,
the stationary distribution of particles on S is Nπ if N is large enough. This point of view
clearly shows that a Markov chain is a closed system, since there is no inflow of particles to
S nor outflow of particles from S .

In this paper we shall be concerned with the case in which we allow the particles
to arrive or leave the state space according to a prescribed protocol. To be precise let us
consider a state j ∈ S . On one hand, at every time step we allow a certain number of
particles already present in the state j to leave this state to the “outside”. On the other
hand we also allow a certain number of particles (from the “outside”) to arrive at the
state j. Both, the number of incoming particles and the number of outgoing particles, are
modeled as random variables (or sequences of random variables) with a distribution given
a priori. Our main goal in this paper is to describe the population of particles on the state
space as well as its fluctuations. We are particularly interested in the behavior of both, the
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space correlations and time correlations for several possible scenarios for the incoming and
outgoing protocols.

At this point it is convenient to mention some works related to our model. In the
current literature one can found several models for open stochastic processes. Among
the earlier results on models of open Markov populations we can found those due to
Bartholomew [7] and Gani [8]. Since then, several authors have obtained results in different
classes of models for the evolution of open Markov populations. For instance, Guerreiro and
Mexia have studied a class of models called stochastic vortices model [9] as an alternative
approach to estimate the so-called long run distribution for a bonus malus system [10,11].
Guerreiro and colleges have also studied a class of open of population models subjected
to periodical re-classifications [12–14]. The case of open Markov chains with Poisson re-
cruitment has been dealt in [15], and remarkable extensions of these models to continuous
time has been studied in [16–23]. Open Markov chain schemes fed by a second order
stationary and non-stationary processes have also been studied in [24] where the authors
consider that the inflow of new population elements is modeled by a time series coming
from a second order stationary process, i.e., a stationary process with a deterministic bias.
Additionally, open Markov chains with not independent inflow processes has been con-
sidered in [25]. All these different models of stochastic open systems have been useful for
several important applications. These models have been used to study consumption credit
portfolios [26], open automobile portfolios [27,28], hospital planning [19], enrollments
and degrees awarded in universities [8], manpower models [20,21,29] as well as traffic
flow by means of random networks [30]. Open Markov processes have also been used to
understand in general several properties of bonus-malus systems [9–11,27]. Particularly
Floriani et al. [30] focus their study to the case where the Markov chain has some absorbing
states (in which the mass accumulates) and the mass is supplied by either, a constant source
or a periodic source. In contrast, in our model the number of incoming particles at every
time step is not constant but a sequence of random variables not necessarily independent
and identically distributed (i.i.d.). Moreover, instead of modeling the outflow by absorbing
states, we define a protocol of outgoing particles, which allows every particle to leave
the chain with a state-dependent probability. Another work which is worth mentioning
here is the one of Pollard and co-workers [22,31,32]. They consider a class of open Markov
process in which the state space is discrete and the time continuous. They assume that
the incoming and outgoing fluxes are regulated by means of a set of special states of S
(which they call “boundary”). One of the main differences of our approach with respect to
the one proposed by Pollard is that they suppose that the elements of the boundary has
a distribution prescribed a priori (which may be even time-dependent). In contrast, our
approach considers every state as a source or sink of particles. In this sense our model can
be thought of as a Markov chain in contact with a reservoir of particles. Thus, according
to a prescribed protocol the particles go from the reservoir to the chain and vice versa,
the particles go from the chain to the reservoir with a prescribed protocol. This way of
modeling the source of particle is, in some way, similar to the grand canonical ensemble
in thermodynamics, in which a system is in contact with a reservoir allowing particles to
be interchanged.

2. A Model for Open Markov Chains

The main idea behind our model for an “open” Markov chain is that we allow the
particles to arrive and leave the state space S . We have mentioned that the particle can
enter the state space according to a protocol which is modeled as a sequence of random
variables. Such a sequence of random variables determines the number of particles arriving
at certain state every time step. On the other hand, the particle can leave the state space
depending on which state they are. The most natural way to model this situation is by
defining, for every state, a given probability with which the particle leaves such a state
towards the reservoir. This probability must satisfy a compatibility condition, consisting in
the fact that a particle in a given state has only two options (i) jump to any other state in S



Entropy 2021, 23, 256 3 of 34

or (ii) jump to the reservoir. The sum of all these probabilities should be one, in order for the
“jump” to be well defined. Notice that due to the compatibility condition, we have that the
protocol of outgoing particles is completely determined by means of a non-negative matrix
Q with a spectral radius strictly less than one. This is because the “missing probability” in
Q (necessary for Q to be a stochastic matrix) is interpreted as “jump probabilities” towards
the outside.

Definition 1 (Open Markov chain). Let S be a finite set, whose cardinality is denoted by #S = S,
and let Q : S × S → [0, 1] ⊂ R be an irreducible and aperiodic matrix with spectral radius strictly
less than one. Let {Jt : t ∈ N} be a sequence of random vectors taking values in NS

0 . We say that(
S , Q, {Jt : t ∈ N}

)
is an open Markov chain with state space S , jump matrix Q and incoming

protocol {Jt : t ∈ N}. Now let {Nt : t ∈ R} be a sequence of random vectors taking values in NS
0 .

Such a sequence is defined as follows. Given the initial random vector N0 with a given distribution,
we define Nt recursively as

Nt+1 := Jt + Rt, (1)

where Rt is a random vector taking values in NS
0 , whose components are given by,

Rt
j :=

S

∑
i=1

Bt
i,j. (2)

The random variables Bt
i,j are defined such that the (S + 1)-dimensional vector At

i , with components

(At
i)j =

{
Bt

i,j if 1 ≤ j ≤ S
1−∑S

j=1 Bt
i,j if j = S + 1,

has multinomial distribution, i.e., At
i ∼ Multinomial(zi, Nt

i ). Additionally we assume that At
i and

As
i are independent if t 6= s and that At

i and At
j are independent if i 6= j . Here {zi : 1 ≤ i ≤ S} is

a set of probability vectors defined as

(zi)j =

{
qi,j if 1 ≤ j ≤ S
ei if j = S + 1,

where qi,j is the (i, j)th component of Q and ei is defined as,

ei := 1−
S

∑
j=1

qi,j.

We say that Nt is the distribution over the state space at time t with initial condition N0.

Notice that Equation (1) establishes the evolution of the number of particles. This
equation states that the number of particles at time t + 1 is the number of particles having
arrived as the state space (represented by Jt) plus the number of particles having remained
in the state space (which is represented by Rt). Observe that the random vector Rt can be
seen as a sum of independent random vectors Bt

i = (Bi,j)
S
j=1 representing the quantity of

particles departing from state i towards other states. Notice also that the random vector At
i

is the “enlarged” version of the vector Bt
i , because the vector At

i represents the quantity
of particles departing from state i to other states and to the outside. It is clear that, due
to conservation of particles during the process of redistribution, the vector At

i should
have multinomial distribution (its components actually sum up Nt

i as we can see from the
definition above). Hence we have that Nt+1 depends on Nt through the random variable
Rt which is the responsible of the redistribution of particles among the internal states.

From the above definition we can appreciate that the quantity of foremost interest is Nt,
the distribution of particles on the state space at time t. Our goal is then to provide a way
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for determining the probability function of Nt and to determine whether or not the process
{Nt : t ∈ N0} is able to reach a stationary distribution. We will see that {Nt : t ∈ N0}
is actually a Markov process and the main goal is to determine its properties. Before
establishing a result on this direction let us give some examples of open Markov chains.

Example 1. Let us consider the most simple case in which the system has only one state. In this
case the matrix Q consists of a single number q (a 1× 1 matrix), which should be non-negative
and strictly less than one, i.e., 0 ≤ q < 1. The most simple case for the incoming protocol consists
of a sequence of constant random variables all these taking the same value, which we call J0 ∈ N0.
This means that the number of particles arriving at every time-step is J0. Every particle arriving
at the unique available state has only two options jump to the outside or remain in its state. The
probability of remaining in the state is q and the probability of jumping to the outside is 1− q. This
simple example for open Markov chain can be illustrated as a graph with only one vertex and three
edges as shown in Figure 1. Notice that there are two special edges, one establishing the incoming
protocol (labeled by J0) and one defining the outgoing protocol (labeled by 1− q).

0

q

1−qJ

Figure 1. One-vertex open chain. The circle represents the unique state available for the particles.
The arrows in the graph stand for the “jump” rules allowed for the particles. Notice that the arrows
that do not connect two states represent the incoming and outgoing protocols.

Example 2. A less trivial example is provided by giving a matrix larger than 1× 1. Let us consider
for example the matrix given by

Q =

 0 1/2 1/4
1/4 1/4 0
1/4 1/2 1/4

 (3)

Notice that the above matrix is not stochastic, because some rows does not add to one, but less than
one. The latter means that not all the states allow the particles to leave to the outside. As we can see
the first row adds to 3/4, which means that every particle on the state 1 has a probability 1/4 to go
out to the reservoir. The second row adds to 1/2, this means that a given particle on the state 2 has
a probability 1/2 to go out to the outside. Finally, the third row adds to one, meaning that a particle
on the state 3 can only jump to the other states 1 or 2 or remains in its current state, but it cannot
leave the state space to go to the outside.

Now assume that the incoming protocol {Jt : t ∈ N} is a set of i.i.d. random vectors, i.e., the
protocol is time-independent. Then the number of incoming particles at every time-step can be
considered as independent realizations of a single random vector, which we denote by J. To be
more precise, we can chose in particular this random vector as Jt = (Jt

1, 0, Jt
3), with Jt

1 and Jt
3 two

independent random variables with Bernoulli distribution with parameters p1 and p3 respectively.
If, for instance, the parameters of every Bernoulli distribution were given by p1 = 0.1 and p3 = 0.6,
then this would mean that the average number of particles arriving at the vertex 1 is lower than the
average number of particles arriving at the vertex 3. Figure 2 shows the graphical representation of
this open Markov chain. Then, the number of particles Nt = (Nt

1, Nt
3, Nt

3) evolves according to
the rule

Nt+1 = Jt + Rt, (4)
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where Rt is the redistribution random vector given in Equation (2). The above vectorial equation
can be written coordinate-wise as follows,

Nt+1
1 = Jt

1 + Rt
1, (5)

Nt+1
2 = Rt

2, (6)

Nt+1
3 = Jt

3 + Rt
2. (7)

We should keep in mind that the random vectors Rt
i , for 1 ≤ i ≤ 3, are conditioned to the values of

Nt, i.e., the distribution depends on the specific realization of Nt, which is a manifestation of the
Markovian hypothesis.

1

1 2

3

1/4

1/4

1/4

1/4

1/2

1/4

1/2

J

J
3

Figure 2. An example of a three-states open Markov chain.

At this point it is interesting to compare the characteristics of the proposed model for
open Markov chains with the continuous-time Markov process introduced in Ref. [22]. At
first sight we would expect that the model described here might match with a discrete-time
version of the formalism proposed in [22]. However this is not the case in general, which
can be seen from the very definitions of both models. The main difference between both
approaches is that the model in Ref. [22] considers a state space V with special states
members of a boundary B. The role of the boundary is to provide the system with inflow
and outflow of particles. In the remaining of the states, elements of V\B, occurs the
dynamics of the system. In the approach proposed here, the state space S can, in principle,
be identified with the latter, i.e., S = V\B. However, we should recall that we admit
the that every state of S is open, i.e., particles from the outside might arrive at any state
of S and particles within the system might leave S from any state. This means that we
should also interpret the boundary B as the whole state space S , but this is impossible since
we identified S with V\B. This shows that both approaches does not math each other in
general, although it would be interesting if they might coincide in particular cases.

3. The Evolution of the Particle Distribution
3.1. Evolution of the Moment Generating Function

In this section we will establish the evolution equation for the process Nt, which, as we
have anticipated, is a Markov process. This fact can actually be appreciated in Equation (1),
where we have indicated that the number of particles at time t + 1 is uniquely determined
by the number of incoming particles and the redistribution of particles that were present at
time t. Clearly the last condition states the Markov property for the process {Nt : t ∈ N0}.
In order to obtain the stochastic matrix governing the behavior of Nt, let us define pt(n) as
the probability vector associated to Nt, i.e.,

pt(n) := P(Nt = n). (8)

We will refer to pt(n) as the distribution of particles over the state space or, to simplify,
distribution over the state space Let us consider the probability vector at time t + 1. Notice
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that, due the fact that Nt+1 depends only on Nt, which is a consequence of the relation (1),
as we have mentioned above, it is clear that

pt+1(n) = P(Nt+1 = n)

= ∑
k∈NS

0

P(Nt = k)P(Nt+1 = n|Nt = k). (9)

Observe that the last expression is a consequence of the Markov property of the process
which was assumed in Equation (1). Notice that Equation (9) establishes the evolution
equation for pt, which can be written as

pt+1(n) = ∑
k∈NS

0

pt(k)P(Nt+1 = n|Nt = k). (10)

Now let us call K(k, n) the conditional probability appearing in the above equation, i.e.,

K(k, n) := P(Nt+1 = n|Nt = k), (11)

and observe that this quantity can be rewritten as follows

K(k, n) = P(Jt + Rt = n). (12)

The dependence on k in the above expression is implicit in the random vector Rt, since
the redistribution of particles depends on the number of particles on every state at time t,
which is indeed given by k. Thus, the function K : NS

0 ×NS
0 → [0, 1] ⊂ R can be thought

as the stochastic matrix corresponding to the process {Nt : t ∈ N0}, since the evolution
equation for the probability vector pt(n) is given in terms of K as follows,

pt+1(n) = ∑
k∈NS

0

pt(k)K(k, n). (13)

In order to solve Equation (13) for pt(n) it is necessary to make some assumptions on
the nature of the random vectors Jt and Rt for all t. First of all, it is natural to assume that
Jt and Rt are independent. This assumption actually means that the number of particles
incoming to the state space does not have any influence on the redistribution of particles
already present in the chain. This implies that the joint probability for the random vectors
Jt and Rt can be factorized as the product of its corresponding probability vectors, i.e.,

P(Jt = j; Rt = r) = P(Jt = j)P(Rt = r).

The above equality allows us to express the kernel K(k, n) as,

K(k, n) := P(Jt + Rt = n)

= ∑
j+r=n

P(Jt = j)P(Rt = r). (14)

Next, we will solve for pt by using the well-known technique of the moment generat-
ing function (m.g.f.). To this end let us introduce some notation. Let Gt : RS ×RS → R be
the m.g.f. of Nt, which is defined as

Gt(α) := E
[
eNt

αT
]
= ∑

n∈NS
0

pt(n)enαT
. (15)

At this point it is important to describe our convention for vectors in RS. First of all we
should emphasize that we interpret the vectors n, α, Nt, etc., as row vectors (i.e., matrices
of size 1× S). Thus, the superscript T means, as usual, matrix transposition implying that
the vector αT is a column vector (a matrix of size S× 1). Thus, within this convention, the
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product nαT should be understood in the sense of the usual matrix product, which in this
case results in a single number.

Analogously, we also define the moment generating functions for Jt and Rt as follows,

Ft(α) := E
[
eJtαT

]
= ∑

j∈NS
0

P(Jt = j)ejαT
, (16)

H(α) := E
[
eRtαT

]
= ∑

r∈NS
0

P(Rt = r)erαT
. (17)

Notice that we omitted the superscript t in the m.g.f. for Rt, since two random vectors, say
for example Rt and Rs, are independent and have the same distribution, and consequently,
share the same moment generating function.

Next, our objective is to provide a recurrence relation for Gt using the evolution
Equation (13). Thus, let us consider the m.g.f. for Nt+1, and note that

Gt+1(α) = ∑
n∈NS

0

pt+1(n)enαT

= ∑
n∈NS

0

∑
k∈NS

0

pt(k)K(k, n)enαT

= ∑
n∈NS

0

∑
k∈NS

0

∑
j+r=n

pt(k)P(Jt = j)P(Rt = r)enαT
, (18)

where we have used the form of K given in Equation (14). We can appreciate that the
summation over n together with the summation over the restriction j + r = n results in a
double sum over the “indices” j and r without restrictions, i.e., we obtain two sums over
independent indices. This observation allows us to write

Gt+1(α) = ∑
k∈NS

0

∑
j∈NS

0

∑
r∈NS

0

pt(k)P(Jt = j)P(Rt = r)e(j+r)αT
. (19)

In the above Equation (19) we can observe that the summation over j and r results in the
m.g.f. for Jt and Rt respectively. This implies that

Gt+1(α) = ∑
k∈NS

0

pt(k)Ft(α)H(α). (20)

In Appendix A we show thatH(α) can be written as

H(α) = ekHT(α), (21)

where the function H : RS → RS is defined as follows. If Hi(α) = (H(α))i denotes the ith
component of H we have that

Hi(α) := log

(
ei +

S

∑
j=1

qi,je
αj

)
. (22)

Observe that Equation (21) shows explicitly the dependence on k of the m.g.f. for Rt. Then,
if we substitute the relation (21) into (20), we obtain,

Gt+1(α) = ∑
k∈NS

0

pt(k)Ft(α)ekHT(α). (23)
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We can easily see that the summation over k results in the m.g.f. for Nt. Thus,

Gt+1(α) = Ft(α) Gt(H(α)). (24)

Equation (24) is a recurrence relation governing the time-dependence of the m.g.f. for
Nt. This equation can be formally solved to obtain

Gt(α) = G0

(
H(t)(α)

) t−1

∏
r=0
Ft−r

(
H(r)(α)

)
, (25)

where G0 stand for the m.g.f for N0 (the initial distribution on the state space). We should
emphasize that the superscript notation H(r) stands for the rth iteration of the function H,
i.e., H(r) := H ◦H ◦ . . . H, r times.

Now, let us assume that the process {Jt : t ∈ N} is a sequence of identically distributed
random vectors (not necessarily independent). In this case, the m.g.f. for Jt is the same for
all t, consequently the formal solution for Gt can be expressed as,

Gt(α) = G0

(
H(t)(α)

) t−1

∏
r=0
F
(

H(r)(α)
)

. (26)

This result, together with the fact that H(r)(α) → 0 as r → ∞ in an open neighborhood
around α = 0 (see Appendix A for a proof), implies that, for the case in which the random
vectors Jt are identically distributed for all t, the process {Nt : t ∈ N0} admits an stationary
solution. This is because the m.g.f. Gt attains a limit when t → ∞. Such a limit can be
written as,

Gstat(α) =
∞

∏
r=0
F
(

H(r)(α)
)

. (27)

whenever the infinite product exist. If this is the case, the m.g.f. Gstat(α) is additionally a
solution for the evolution Equation (24). This means that Gstat(α) corresponds to a m.g.f. of
a distribution pstat(n) over the state space, which is invariant under the dynamics (13).

Example 3. Let us consider the open chain consisting of only one vertex given in Example 1. In
this case we will assume that the incoming protocol {Jt : t ∈ N} consists of a sequence of i.i.d.
random variables having a Bernoulli distribution with parameter p. Since all Jt have identical
distribution, then we have only one m.g.f. F characterizing them. This function is given by,

F (α) = 1− p + peα.

On the other hand, due to the fact that Q is a 1× 1 matrix, we have that H is a real-valued function
depending on one variable, α, given by,

H(α) = log(1− q + qeα).

where we denoted by q the unique element of Q. In this case, the rth iteration of H can be exactly
calculated. A straightforward calculation shows that,

H(r)(α) = log(1− qr + qreα).

Notice that H(r)(α)→ 0 as r → ∞, as we have anticipated above. Hence, in this case, the stationary
m.g.f. is given by
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Gstat(α) =
∞

∏
r=0
F
(

H(r)(α)
)
=

∞

∏
r=0

(1− p + p(1− qr + qreα))

=
∞

∏
r=0

(1− pqr + pqreα). (28)

The above result shows that the stationary distribution can be interpreted as the convolution of
an infinite sequence of Bernoulli distributions with parameters pqr. This particularly means that
the random variable Nt, when it has reached the stationarity can be written as a sum of Bernoulli
random variables Xr (with parameter pqr),

Nt =
∞

∑
r=0

Xr.

The above result allows us to compute, for example, the expected value E[Nt] and the variance,

E[Nt] =
∞

∑
r=0

E[Xr] =
∞

∑
r=0

pqr =
p

1− q
, (29)

Var(Nt) =
∞

∑
r=0

Var(Xr) =
∞

∑
r=0

pqr(1− pqr) =
p

1− q
+

p2

1− q2 . (30)

We should observe that the fact that the expected value E[Nt] = p/(1− q) is finite implies that
an equilibration is attained between the number of incoming particles and the number of outgoing
particles. It is clear that the mean number of arriving particles per unit time is p, while, the number
of leaving particles per unit time is (1− q)E[Nt]. Once Nt has reached the stationarity, we have
an equality between these quantities, giving the result stated above. Although we have obtained the
mean number of particles by using the argument of equilibration, the same line of reasoning cannot
be applied to the variance. We have thus provided a way to compute the fluctuations in the number
of particles that are present in the vertex.

Example 4. Next, we will deal with another example that is closely related to the problem of the
random walk on a ring, which well-known system in physics. A random walk on a ring consist of
a particle moving randomly on SL := Z/LZ for some L ∈ N. To open this system we allow the
particles leave the state space SL from a given site i ∈ SL. We will also allow the particles to arrive
at the state space from a certain site j ∈ SL. For simplicity we will consider the case i = j = 0 ∈ SL
for arbitrary L > 1. A schematic representation of the open chain with this state space is depicted
in Figure 3. We will assume that once a particle is on a given state i ∈ SL, it can jump to i + 1
with probability q or it can jump to i− 1 with probability 1− q for all i 6= 0. If the particle is at
the state 0 ∈ SL it can jump to the state 1 with probability a and it can jump to the state L− 1
with probability b. Clearly we have to assume that 0 < q < 1 and 0 < a + b < 1. Since we are
assuming that the particles can only enter to the state space through the state 0, we can see that take
the protocol of incoming particles can be written as

J = (J0, 0, 0, . . . , 0), (31)

where J1 is taken as a Bernoulli random variable with parameter p ∈ [0, 1].
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Figure 3. An example of a L-states open Markov chain.

Thus the system that we propose can be seen as a system of random walkers that arrive at the
ring and leave the ring from the state 0. Now our goal is to obtain the time-dependent generating
function of the distribution of particle over the sate space. As he have shown, the latter is given by

Gt(α) = G0

(
H(t)(α)

) t−1

∏
r=0
Ft−r

(
H(r)(α)

)
, (32)

Assuming that at t = 0 there are no particles on the ring, it is clear that G0(α) = 1. On the other
hand, since we assumed that the protocol of incoming particles is J = (J1, 0, 0, . . . , 0), it is clear
that the corresponding m.g.f F is given by

F (α) = (1− p) + peα0 , (33)

where α0 is the 0th component of α. Thus we have that the m.g.f. of the distribution of particles over
the state space can then be written as

Gt(α) =
t−1

∏
r=0

[
(1− p) + pe(H

(r)(α))0
]
=

t−1

∏
r=0

[
(1− p) + peH0(H(r−1)(α))

]
(34)

Using the definition of Hi(α) given in Equation (22),

Hi(α) := log

(
ei +

S

∑
j=1

qi,je
αj

)
. (35)

it is easy to verify that eHi(H(r−1)(α)) can be written as,

eHi(H(r−1)(α)) =
r−1

∑
k=0

(QkeT)i +
L−1

∑
j=0

(Qr)i,je
αj , (36)

for all 0 ≤ j ≤ L− 1. For the sake of simplicity let us adopt the following short-hand notation

p̃j(r) := (Qr)0,j. (37)

for 0 ≤ i ≤ L− 1. Then notice that due to the fact that H(0) = 0 we have the following identity

r−1

∑
k=0

(QkeT)i +
L−1

∑
j=0

(Qr)i,j = 1.
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The latter allows us to rewrite the first term of the right hand side of (36) (with i = 0) as,

r−1

∑
k=0

(QkeT)0 = 1−
L−1

∑
j=0

p̃j(r). (38)

Then, from Equations (36)–(38), we arrive at the following identity,

eH0(H(r−1)(α)) = 1−
L−1

∑
j=0

p̃j(r) +
L−1

∑
j=0

p̃j(r)e
αj . (39)

Therefore it is clear that the time-dependent m.g.f. of the distribution of particles over the state space
can be written as

Gt(α) =
t−1

∏
r=0

[
(1− p) + p

(
1−

L−1

∑
j=0

p̃j(r) +
L−1

∑
j=0

p̃j(r)e
αj

)]

=
t−1

∏
r=0

(
1−

L−1

∑
j=0

pj(r) +
L−1

∑
j=0

pj(r)e
αj

)
, (40)

where we denoted by pj(k) the product pp̃j(k), i.e.,

pj(k) := p (Qr)0,j. (41)

At this point it is important to stress that the quantity pj(r) is such that 0 ≤ pj(r) ≤ 1 for all
0 ≤ j ≤ L− 1 and all r ∈ N0. Next, we can observe from Equation (41) that

0 ≤
L−1

∑
j=0

pj(r) ≤ 1.

These properties of allows to interpret the function appearing in the product in Equation (40),

K(r)(α) := 1−
L−1

∑
j=0

pj(r) +
L−1

∑
j=0

pj(r)e
αj (42)

as the a m.g.f. of certain random vector that will be denoted by Xr. This random vector has the
following characteristics. First of all it is clear that Xr ∈ RL and that it can take at most L + 1
possible values. Specifically,

Xr = êj, with probability pj(r), and Xr = 0, with probability 1−
L−1

∑
j=0

pj(r). (43)

where êj := (0, 0, . . . , 0, 1, 0, . . . , 0, 0) is the unitary vector along the jth direction.
This interpretation of the function K(r)(α) allows, in turn, interpret the m.g.f. of the distri-

bution of particles over the state space as a convolution of the collection of independent random
vectors Xr,

Gt(α) =
t−1

∏
r=0
K(r)(α). (44)

The latter means that the time-dependent distribution of particles over the state space Nt can
formally be written as a sum of independent random vectors

Nt =
t−1

∑
r=0

Xr. (45)
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This last expression is useful for several purposes. For instance, the first cumulant can be straight-
forwardly computed from the last expression,

E
[
Nt] = t−1

∑
r=0

E[Xr] =
t−1

∑
r=0

L−1

∑
j=0

pj(r), (46)

or equivalently, in terms of the stochastic matrix and the parameter of the protocol of incoming
particles, we have that

E
[
Nt] = t−1

∑
r=0

L−1

∑
j=0

p (Qr)0,j. (47)

This shows that the properties of the time-dependent evolution of the distribution of particles can be
obtained by means of the technique of the moment generating function for this class of open systems.

3.2. Cumulant Dynamics

Up to now we have obtained two main results, a recurrence relation of the time-
dependent m.g.f. of Nt and a formal expression for the m.g.f. of Nt when the system has
attained the stationarity. Now we will focus in two quantities which are of special interest,
namely, the two first cumulants for Nt, and how do these quantities evolve in time. Let us
start by obtaining the first cumulant of Nt. Notice that the first cumulant (which coincides
with the first moment) can be obtained by taking the first derivative of the m.g.f. Gt(α). Let
us denote by µt the first moment of Nt, i.e.,

µt := E[Nt], (48)

which we will refer to as the mean distribution of particles over the state space at time t, or
simply, the mean distribution at time t. Now let us notice that,

(µt)i =
∂Gt(α)

∂αi

∣∣∣∣
α=0

, (49)

where (µt)i is the ith component of µt and αi is the ith component of α. Observe that the
ith component of the mean distribution at time t + 1 can be obtained from Equation (24),
giving

(µt+1)i =
∂Gt+1(α)

∂αi

∣∣∣∣
α=0

=
∂Ft(α)

∂αi
Gt(H(α))

∣∣∣∣
α=0

+Ft(α)
S

∑
k=1

∂Gt(H)

∂Hk

∂Hk
∂αi

∣∣∣∣
α=0

. (50)

Notice that H(α = 0) = 0 and any moment generating function evaluated at 0 is one.
Hence we have,

(µt+1)i = (εt)i +
S

∑
k=1

(µt)kqk,i, (51)

where εt stands for the expected value of Jt, which can be obtained by means of the first
derivative of Ft, i.e.,

∂Ft(α)

∂αi

∣∣∣∣
α=0

= (εt)i.

In Equation (51) we make use of the fact that

∂Hk
∂αi

∣∣∣∣
α=0

= (Q)k,i = qk,i,
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which is proved in Appendix A. Thus, it is clear that Equation (51) can be written as,

µt+1 = εt + µtQ. (52)

The above expression states the dynamics for the evolution of the mean distribution µt in
time. This evolution has two components, one involving the internal dynamics (which
is given by the term µtQ giving the internal redistribution of particles) and other one
involving the external dynamics (which is given by the time-dependent mean number of
incoming particles).

Now let us explore the behavior of the second cumulant of Nt. The second cumulant
corresponds to the variance matrix Var(Nt) which we will denote by Σt. Notice that this
matrix has entries given by

(Σt)i,j :=
(
Var(Nt)

)
i,j = E[Nt

i Nt
j ]− (µt)i(µt)j. (53)

Next we will use the dynamics of the m.g.f. of Nt to obtain a recurrence for the expected
value E[Nt

i Nt
j ]. It is clear that

E[Nt+1
i Nt+1

j ] =
∂2Gt+1(α)

∂αi∂αj

∣∣∣∣
α=0

. (54)

The above expression together with the evolution Equation (24) leads to

E[Nt+1
i Nt+1

j ] =
∂2

∂αi∂αj

(
Ft(α) Gt(H(α))

)∣∣∣∣
α=0

=
∂

∂αi

(
∂Ft(α)

∂αj
Gt(H(α)) +Ft(α)

S

∑
k=1

∂Gt(H)

∂Hk

∂Hk
∂αj

)∣∣∣∣
α=0

=

(
∂2Ft(α)

∂αi∂αj
Gt(H(α)) +

∂Ft(α)

∂αj

S

∑
k=1

∂Gt(H)

∂Hk

∂Hk
∂αi

+
∂Ft(α)

∂αi

S

∑
k=1

∂Gt(H)

∂Hk

∂Hk
∂αj

+Ft(α)
S

∑
k=1

S

∑
l=1

∂2Gt(H)

∂Hl∂Hk

∂Hk
∂αi

∂Hl
∂αj

+ Ft(α)
S

∑
k=1

∂Gt(H)

∂Hk

∂2Hk
∂αi∂αj

)∣∣∣∣
α=0

. (55)

At this point it is necessary to introduce some notations. First let us denote by ∆ the
variance matrix of the incoming flux, i.e.,

∆t := Var(Jt). (56)

The above quantity can be obtained through the second derivative of the m.g.f. Ft(α)
as follows,

(∆t)i,j = E[Jt
i Jt

j ]−E[Jt
i ]E[J

t
j ] =

∂2Ft(α)

∂αi∂αj
− (εt)i(εt)j. (57)

Thus, performing the evaluation of Equation (55) at α = 0 we obtain,

E[Nt+1
i Nt+1

j ] = (∆t)i,j + (εt)i(εt)j + (εt)j

S

∑
k=1

(µt)kqk,i + (εt)i

S

∑
k=1

(µt)kqk,j

+
S

∑
k=1

S

∑
l=1

E[Nt
k Nt

l ]qk,iql,j +
S

∑
k=1

(µt)k

(
qk,iδi,j − qk,iqk,j

)
, (58)
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where we used the fact that (see Appendix A),

∂2Hk(α)

∂αi∂αj

∣∣∣∣
α=0

= qk,iδi,j − qk,iqk,j. (59)

Let us simplify Equation (58) by noticing that the summations can be written as matrix
products,

E[Nt+1
i Nt+1

j ] = (∆t)i,j + (εt)i(εt)j + (εt)j(µtQ)i + (εt)i(µtQ)j + (Λt)i,j

+
S

∑
k=1

S

∑
l=1

E[Nt
k Nt

l ]qk,iql,j, (60)

where we defined the matrix Λt as

(Λt)i,j :=
S

∑
k=1

(µt)k

(
qk,iδi,j − qk,iqk,j

)
. (61)

Equation (60) allows us to obtain the variance matrix Var(Nt+1),

Var(Nt+1) = E[Nt+1
i Nt+1

j ]− (µt+1)i(µt+1)j

= (∆t)i,j + (Λt)i,j + (εt)i(εt)j + (εt)j(µtQ)i + (εt)i(µtQ)j +

+
S

∑
k=1

S

∑
l=1

(
E[Nt

k Nt
l ]− (µt)k(µt)l

)
qk,iql,j +

S

∑
k=1

S

∑
l=1

(µt)k(µt)lqk,iql,j − (µt+1)i(µt+1)j =

= (∆t)i,j + (Λt)i,j + (εt)i(εt)j + (εt)j(µtQ)i + (εt)i(µtQ)j

+
S

∑
k=1

S

∑
l=1

qk,i
(
Var(Nt)

)
k,lql,j + (µtQ)i(µtQ)j − (µt+1)i(µt+1)j. (62)

Rearranging terms in the above expression and denoting by Σt the matrix variance Var(Nt),
we obtain

(Σt+1)i,j = (∆t + Λt)i,j + (εt)i(εt)j + (εt)j(µtQ)i + (εt)i(µtQ)j + (µtQ)i(µtQ)j

+
S

∑
k=1

S

∑
l=1

qk,i(Σt)k,lql,j − (µt+1)i(µt+1)j

= (∆t + Λt)i,j + (εt + µtQ)i(εt + µtQ)j +
(

QTΣtQ
)

i,j
− (µt+1)i(µt+1)j.

(63)

Finally, observing that εt + µtQ = µt+1, it is clear that the variance matrix satisfy the
evolution equation,

Σt+1 = ∆t + Λt + QTΣtQ. (64)

Equations (52) and (64) govern the dynamics of the first and second cumulants and are
valid even when the incoming flux has a time-dependent distribution. In the case where
the protocol of incoming particles {Jt : t ∈ N} is a stationary process (for which the two
first cumulants are time-independent) we have that the system can reach the stationarity.
Particularly we have that the dynamics Equations (52) and (64) have stationary solutions
(proved in Appendix A) given by,

µ = ε(1−Q)−1 (65)

Σ =
∞

∑
k=0

(QT)k(∆ + Λ)Qk, (66)



Entropy 2021, 23, 256 15 of 34

where ε and ∆ are the mean vector and the variance matrix of the stationary process
{Jt : t ∈ N} and µ and Σ denote the mean distribution E[Nt] and the variance matrix
Var(Nt) when the process {Nt : t ∈ N0} has reached the stationarity. We also defined Λ as

(Λ)i,j =
S

∑
k=0

(µ)k

(
qk,iδi,j − qk,iqk,j

)
. (67)

Example 5. Let us consider a three states open chain with jump matrix given by

Q =

 0 q q
q 0 q
q q 0

 (68)

with p a parameter restricted to take values in the interval 0 < q < 1/2. Let us also assume that
the protocol of incoming particles {Jt = (Jt

1, Jt
2, Jt

3) : t ∈ N} is a stationary process whose joint
probability distribution at time t can be written as

P(Jt
1 = j1; Jt

2 = j2; Jt
3 = j3) =: f1,2(j1, j2) f3(j3).

Particularly, we chose f1,2 and f3 as

f1,2(j1, j2) =


p/2 if (j1, j2) = (1, 1)
p/2 if (j1, j2) = (0, 0)

(1− p)/2 if (j1, j2) = (1, 0)
(1− p)/2 if (j1, j2) = (0, 1)

0 if otherwise

(69)

f3(j3) =


1/2 if j3 = 0
1/2 if j3 = 1

0 if otherwise
(70)

Notice that each random variable Jt
i can only take the values 0 or 1. Moreover, the above choice for

the joint probability distribution for the random vector (Jt
1, Jt

2, Jt
3) implies that the random variables

Jt
1 and Jt

2 are dependent and that Jt
3 is independent. It is easy to see that all these random variable

have, separately, a Bernoulli distribution with parameter 1/2, i.e., at every time-step one particle
arrives at every node with probability 1/2 and no particles arrive at every node with probability
1/2. In Figure 4 we show a graphical representation of the open chain.

q

1

J
3

1 2

3

J
2

q
q

q

q

q

J

Figure 4. An example of a three-states open Markov chain.

A straightforward calculation shows that the first and second moments of Jt are given by

E[Jt] = ε = (1/2, 1/2, 1/2), (71)

Var(Jt) = ∆ =
1
4

 1 2p− 1 0
2p− 1 1 0

0 0 1

. (72)
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Now we calculate the mean stationary distribution of particles, µ, and the stationary variance
matrix, Σ. The calculation of µ is straightforward. We only need to obtain the inverse of the matrix
1−Q, which is given by

(1−Q)−1 =
1

1− 3q2 − 2q3

 1− q2 q + q2 q + q2

q + q2 1− q2 q + q2

q + q2 q + q2 1− q2

.

With the above result we can see that the mean stationary distribution µ is given by

µ = ε(1−Q)−1 =

(
1

2− 4q
,

1
2− 4q

,
1

2− 4q

)
.

The last result implies that the particles on the state space are uniformly distributed when the system
has reached the stationarity. Moreover, we can also appreciate that the number of particles on every
state diverges as the parameter p tends to 1/2. This divergence is actually a consequence of the
fact that the system does not allow that the particles leave the state space when p = 1/2. Thus, for
such a parameter value, the system is still receiving particles but it does not allow that the particles
escape to the outside, thus increasing indefinitely the number of particles inside the system.

Now let us compute the stationary variance matrix Σ. Recall that this quantity can be obtained
by means of the formula,

Σ =
∞

∑
k=0

(QT)k(∆ + Λ)Qk. (73)

First let us obtain the explicit form of Λ. According to Equation (67) we have that

(Λ)i,j =
S

∑
k=1

(µ)k

(
qk,iδi,j − qk,iqk,j

)
=

1
2− 4q

3

∑
k=1

(
qk,iδi,j − qk,iqk,j

)
=

q
1− 2q

δi,j −
1

2− 4q

S

∑
k=1

qk,iqk,j.

Thus, we have

Λ =
1

2− 4q

 2q(1− q) −q2 −q2

−q2 2q(1− q) −q2

−q2 −q2 2q(1− q)

.

Next we need to compute the nth power of the matrix Q. It is not hard to prove that

Qk =
qk

3

 2k + 2(−1)k 2k − (−1)k 2k − (−1)k

2k − (−1)k 2k + 2(−1)k 2k − (−1)k

2k − (−1)k 2k − (−1)k 2k + 2(−1)k

. (74)

This result shows that for this particular case

(QT)k = Qk,

because Q is itself a symmetric matrix.
It is also not hard to see that the term

Qk(Λ + ∆)
(

QT
)k

is a matrix whose components are all exponential (or linear combinations of exponentials) in the
variable k. This observation allows us to see that the infinite summation (73) can be exactly
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computed. Then, we can obtain a closed expression for Σ by using symbolic calculations performed
in the software Mathematica. Thus we obtain,

Σ =


−8q5+(8p−2)q4+4q3+3q2+4q+1

4(8q6−6q4−3q2+1)
2q4+q2+p(−8q4−4q2+2)−1

4(8q6−6q4−3q2+1)
− q2(q2−p+1)

2(8q6−6q4−3q2+1)
2q4+q2+p(−8q4−4q2+2)−1

4(8q6−6q4−3q2+1)
−8q5+(8p−2)q4+4q3+3q2+4q+1

4(8q6−6q4−3q2+1)
− q2(q2−p+1)

2(8q6−6q4−3q2+1)

− q2(q2−p+1)
2(8q6−6q4−3q2+1)

− q2(q2−p+1)
2(8q6−6q4−3q2+1)

−8q5+(6−8p)q4+4q3+(4p+1)q2+4q+1
4(8q6−6q4−3q2+1)


Now, let us define the space correlation functions. We will denote by κi,j the correlation

function between the random variables Nt
i and Nt

j as follows,

κi,j := Corr(Nt
i , Nt

j ) =
Σi,j√
Σi,iΣj,j

, (75)

for all i, j ∈ S . It is not hard to see that the correlation functions for this example are given by,

κ1,2 =
p
(
−8q4 − 4q2 + 2

)
+ 2q4 + q2 − 1√

((8p− 2)q4 − 8q5 + 4q3 + 3q2 + 4q + 1)2
, (76)

κ1,3 = −
2q2(−p + q2 + 1

)√
((6− 8p)q4 + (4p + 1)q2 − 8q5 + 4q3 + 4q + 1)

1√
((8p− 2)q4 − 8q5 + 4q3 + 3q2 + 4q + 1)

, (77)

κ2,3 =
−2q2(−p + q2 + 1

)√
((6− 8p)q4 + (4p + 1)q2 − 8q5 + 4q3 + 4q + 1)

1√
((8p− 2)q4 − 8q5 + 4q3 + 3q2 + 4q + 1)

. (78)

In order to test the results we obtained for this example we performed numerical simulations.
We have simulated the dynamics of the open chain for several parameter values during a time of
5× 105 steps. Then, from the time series obtained we estimated the correlation functions κ1,2, κ1,3
and κ2,3 and we compare them against the theoretical prediction given in Equations (76)–(78) (note
that for our example κ1,3 = κ2,3). In Figure 5a,b we show the correlation functions obtained by
numerical simulations and computed from Equations (76) and (78). We take the parameter value
q = 0.25 and plotted κ1,2 (solid line, filled circles) and κ2,3 (dashed line, filled squares) as a function
of p (Figure 5a). The same graph is done but using the parameter value q = 0.45 (Figure 5b). As
we can see, our the results obtained from numerical simulations are consistent with the formulas
that we obtained theoretically.

0 0.2 0.4 0.6 0.8 1
p

-0.3

-0.2

-0.1

0

c
o
rr

e
la

ti
o
n

κ
1,2 

(simulation)

κ
1,3 

(simulation)

κ
2,3 

(simulation)

κ
1,2 

(exact)

κ
1,3

= κ
2,3 

(exact)

0 0.2 0.4 0.6 0.8 1
p

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

c
o
rr

e
la

ti
o
n

κ
1,2 

(simulation)

κ
1,3 

(simulation)

κ
2,3 

(simulation)

κ
1,2 

 (exact)

κ
1,3

= κ
2,3 

(exact)q=0.25

(a)

q=0.45

(b)

Figure 5. The correlation functions κ1,2 and κ2,3. In panel (a) we plot the correlation functions for
the parameter value q = 0.25 fixed and varying the parameter p. The solid line corresponds to κ1,2

computed from Equation (76) and the filled circles corresponds to κ1,2 numerically obtained from
the simulations of the stochastic dynamics during 5× 105 time steps. The dashed line corresponds
to κ1,3 = κ2,3 computed from Equation (77) and the filled squares corresponds to κ1,3 numerically
obtained from the simulations. In panel (b) we do the same as in panel (a) but using the parameter
value q = 0.45.
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3.3. Distribution of Particles Leaving the State Space

Up to now we have given an expression for the m.g.f. for the number of particles in
the state space. Since the system is open, at every time step there is a number of particles
arriving to the system, which is determined by the random vector Jt. The total number of
particles per step arriving to the system is then

It =
s

∑
i=1

Jt
i .

When the system reaches the stationarity the mean number of particles within the system
attains a constant value, meaning that there is an equilibration between the number of
incoming and outgoing particles. This is a consequence of the fact that we assumed that
the jump matrix is irreducible and aperiodic.

To be precise, if we denote by Ot the total number of particles leaving the state space,
then, under stationarity we should have that

E[It] = E[Ot],

a fact that can be inferred by the “conservation” of the mean number of particles at station-
arity. Our goal here is to go beyond the above expression, we would like to characterize
how the random variable Ot evolves in time and how much it is influenced by the incoming
number of particles and the “jumping” rules of the Markov chain. To this end, let us define
some quantities which will allow to describe the random variable Ot explicitly.

Definition 2. Let
(
S , Q, {Jt : t ∈ N}

)
be an open Markov chain with state space S , jump matrix

Q (with components (Q)i,j = qi,j) and incoming protocol {Jt : t ∈ N}. Let ei be defined as the
escape probability from the state i, i.e., the probability with which a particle in the state i leaves the
system to the outside,

ei := 1−
S

∑
j=1

qi,j. (79)

Next, let Ut = (Ut
1, Ut

2, . . . , Ut
S) be a random vector whose components have binomial distribution

as follows,
Ut

i ∼ Binom(Nt
i , ei)

where Nt is time-dependent distribution over the state space. Then we say the Ut
i is the number of

particles leaving the state i to the outside at time t. The total number of particles Ot leaving the
system is then the random variable given by

Ot :=
S

∑
i=1

Ut
i . (80)

Finally, we define the vector e, with components ei = (e)i, which will be referred to as the
escape probability vector of the chain. Additionally let E be a diagonal matrix with components
(E)i,j = Ei,j defined as

Ei,j := eiδi,j, (81)

which will be referred to as the escape probability matrix of the chain.

Our main goal is now to characterize the random vector Ut giving the number of
particles leaving the chain. We should notice that the distribution of Ut depends on Nt

which is also a random vector. This implies that, given the value of Nt, we can specify the
conditional distribution for Ut, i.e.,

T(n; m) := P
(
Ut = m|Nt = n

)
, (82)
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which is given by

T(n; m) =
S

∏
i=1

ni!
(ni −mi)!mi!

emi
i (1− ei)

ni−mi . (83)

Once we know T(n; m), we can write an expression for the probability distribution for the
random vector Ut,

P
(
Ut = m

)
= ∑

n∈NS
0

P
(
Ut = m|Nt = n

)
P
(
Nt = n

)
. (84)

If we denote by rt(m) the probability distribution of the random vector Ut, i.e.,

rt(n) := P
(
Ut = m

)
then it is clear that Equation (84) can be rewritten as

rt(m) = ∑
n∈NS

0

pt(n)T(n; m). (85)

The next step consists in obtaining the moment generating function of Ut. This is
because, as we saw above, the expression for the m.g.f. of Nt can be written explicitly. Thus,
letRt : RS → R be the m.g.f. of Ut,

Rt(α) := E
[
eUtαT

]
= ∑

m∈NS
0

rt(m)emαT
. (86)

Thus we can see that, using Expression (85), Rt can be written as follows

Rt(α) = ∑
m∈NS

0

∑
n∈NS

0

pt(n)T(n; m)emαT
. (87)

Since T(n; m) is a product of binomial distributions, it is clear that the sum over m results
in the product of moment generating functions of binomial random variables,

∑
m∈NS

0

T(n; m)emαT
=

S

∏
i=1

(1− ei + eieαi )ni . (88)

Moreover, if we define the function C = (C1, C2, . . . , CS) : RS → RS as follows,

Ci(α) = Ci(αi) = log(1− ei + eieαi ), for 1 ≤ i ≤ S, (89)

it is clear that we can write

∑
m∈NS

0

T(n; m)emαT
= exp

(
nCT(α)

)
. (90)

The above expression, together with Equation (87), gives us

Rt(α) = Gt(C(α)). (91)

The last relation states that the moment generating function of Ut can be obtained by means
of the moment generating function of Nt, which is mediated by the transformation C.

Observe thatRt(α) allows us to obtain the first and the second moment of number of
leaving particles. Taking the first derivative (gradient) ofRt(α) and evaluating it in α = 0
we obtain,

E[Ut] = µtE = ((µt)1e1, (µt)2e2, . . . , (µt)SeS). (92)
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The above result allows us to calculate the mean number of leaving particles E[Ot],

E[Ot] =
S

∑
i=1

E[Ut
i ] =

S

∑
i=1

(µt)iei = µte
T . (93)

Now, when the system reaches stationarity we have to replace µt by µ,

(E[Ot])stat =
S

∑
i=1

(µ)iei.

Thus, from the definition of ei we obtain

(E[Ot])stat =
S

∑
i=1

(µ)i

(
1−

S

∑
j=1

qi,j

)
=

S

∑
i=1

(µ)i −
S

∑
j=1

S

∑
i=1

(µ)iqi,j

=
S

∑
i=1

(µ)i −
S

∑
j=1

(µQ)j =
S

∑
i=1

(µ− µQ)i, (94)

and recalling that µ satisfy the equation

µ− µQ = ε,

we can observe that

(E[Ot])stat =
S

∑
i=1

(ε)i =
S

∑
i=1

(E[Jt])i = (E[It])stat, (95)

which is the relation we have anticipated by invoking the particle number conservation
principle.

The variance matrix Var(Ut) can also be obtained by means of the second derivative
ofRt(α). A calculation achieved in Appendix A shows that

Var(Ut) = EΣtE + Dt, (96)

where D is a diagonal matrix with components

(Dt)i,j := (µt)iei(1− ei)δi,j,

where δi,j is the well-known Krönecker delta. The variance matrix Ut allows us in turn to
obtain a closed formula for the variance of the total number of leaving particles,

Var(Ot) =
S

∑
i=1

S

∑
j=1

(
Var(Ut)

)
i,j =

S

∑
i=1

S

∑
j=1

ei(Σt)i,jej +
S

∑
i=1

(µt)i(1− ei)ei

= eΣteT + µt(1− E)eT , (97)

where 1 stands for the S× S identity matrix. We observe that the variance matrix of the
number of outgoing particles is not the same as the variance matrix of the incoming
particles nor the variance matrix of the particles in the system. Thus we have that the
fluctuations and correlations are modulated by the internal dynamics of the system. This is
important because measuring the correlations and fluctuations of the outgoing flux gives
information on the internal dynamics of the system.
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Example 6. Let us consider again the one-vertex model given in Example 1. We have seen that the
m.g.f. of Nt is given by

Gstat(α) =
∞

∏
r=0

(1− pqr + pqreα). (98)

Notice that the probability escape “vector” consists of a single number, given by e0 = 1− q (recall
that the jump matrix is also a single number). Thus we have that the transformation C : R→ R
can be written as

C(α) = log(1− e0 + e0eα) = log(q + (1− q)eα).

Now we can obtain the m.g.f. of Ut, the number of particles leaving the system,

Rstat(α) = Gstat(C(α)) =
∞

∏
r=0

(
1− pqr + pqreC(α)

)
.

Notice that eC(α) can be written as eC(α) = q + (1− q)eα, thus we have,

Rstat(α) =
∞

∏
r=0

(1− pqr + pqr(q + (1− q)eα)).

=
∞

∏
r=0

(1− pqr(1− q) + pqr(1− q)eα).

The last expression establishes that the distribution of Ut (at stationarity) can be seen as an infinite
convolution of Bernoulli distributions, with parameters pqr(1− q) for r ∈ N0. Thus, the random
variable Ut can be written as an infinite sum of i.i.d. random variables Yr (with the above-mentioned
Bernoulli distribution),

Ut =
∞

∑
r=0

Yr.

whenever Ut has reached stationarity. Particularly the mean number of leaving particles as well as
its variance can be exactly determined,

E[Ut] =
∞

∑
r=0

E[Yr] =
∞

∑
r=0

pqr(1− q) = p. (99)

Var(Ut) =
∞

∑
r=0

Var(Yr) =
∞

∑
r=0

pqr(1− q)(1− pqr(1− q))

= p− p2(1− q)2

1− q2 . (100)

We should emphasize that the above expressions can be obtained through the formulas for E[Ot]
and Var(Ot), given in Equations (93) and (97). Since S = 1 (because we have only one state) we
have that

E[Ot] = E[Nt]e0 =
p

1− q
e0 = p,

Var(Ot) = Var(Nt)e2
0 +E[Nt]e0(1− e0).

=

(
p

1− q
+

p2

1− q2

)
(1− q)2 +

(
p

1− q

)
q(1− q)

= p +
p2(1− q)2

1− q2 . (101)

where we used the expressions for E[Nt] and Var(Nt) given in Equations (29) and (30).
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4. The Influence of Incoming Particles on Time-Correlations
Time Correlations for the Open Markov Chain

Up to now we have seen that it is possible to find an explicit expression for the time-
dependent distribution on the state space. This evolution is fully characterized by the two
first cumulants, the mean distribution over the state space µt and the variance matrix Σt. It
is important to emphasize that we made no assumptions on the time correlations of the
sequence of random vectors {Jt : t ∈ N}. This is because to obtain the distribution over
the state space, Nt, for a given time t, it was enough to know the number of incoming
particles at time t. On the other hand, if we would like to compute the two-times correlation
function for certain observable we necessarily have to known the number of incoming
particles a two different times. This information unavoidably will be related to the two-
times covariance matrix of the process {Jt : t ∈ N}, i.e., the covariance matrix between the
random vector Jt and Jt+s for s, t ∈ N. Our goal in this section is to obtain an expression
for the covariance Ci,j(t, t + s) between the ith coordinate of Nt and the jth coordinate of
Nt+s, i.e.,

Ci,j(t, t + s) := E[Nt
i Nt+s

j ]− (µt)i(µ
t+s)j, (102)

where µi is the ith coordinate of the mean stationary distribution.
In order to compute the expected value E[Nt

i Nt+s
j ] it is necessary to have an expression

for the stationary joint distribution Pt,t+s(n, m). This quantity is defined as,

Pt,t+s(n, m) := P
(
Nt = n; Nt+s = m

)
, (103)

Our goal here is to establish a method to obtain the joint distribution Pt(n, m). Actually,
we will first determine an expression for a more general quantity. Let P(n0, n1, ns) denote
the joint probability function of the random vectors Nt, Nt+1, . . . , Nt+s (Notice that, to be
strict, the probability function P depends on t, t + 1, . . . , t + s, and we should denote this
dependence explicitly by using subscripts, i.e., P = Pt,t+1,...,t+1. However, we will not use
such a notation by the sake of simplicity in further calculations. The same convention
will be adopted for other “multiple-times” joint probability functions or its corresponding
moment generating functions.),

P(n0, n1, . . . , ns) := P
(

Nt = n0; Nt+1 = n1; . . . ; Nt+s = ns

)
. (104)

First of all, let us introduce some notation that will be useful to perform further
calculations. Let f (j0, j1, . . . , js−1) be the joint probability function of the random vectors
Jt, Jt+1, . . . , Jt+s−1, i.e.,

f (j0, j1, . . . , js−1) := P
(

Jt = j0; Jt+1 = j1; . . . , Jt+s−1 = js−1

)
. (105)

Let us also denote by h(r; k) the probability function of the random vector Rt, which, as
we saw in Section 3, depends on the value taken by the random vector Nt (a value which
we denote by k in the probability function h).

With the above-introduced notation it is possible to write the joint probability function,
given in Equation (104), in terms of the probability functions f and h,

P(n0, n1, . . . , ns) = P
(

Nt = n0; Nt+1 = n1; . . . ; Nt+s = ns

)
= P

(
Nt+1 = n1; Nt+2 = n2; . . . ; Nt+s = ns

∣∣Nt = n0

)
P(Nt = n0)

= P
(

Jt + Rt = n1; . . . ; Jt+s−1 + Rt+s−1 = ns
∣∣Nt = n0

)
pt(n0).

Notice that the random vector Rt+j depends on nj for 1 ≤ j ≤ s− 1, values which are
given a priori. Thus, the random vectors Rt, Rt+1, . . . , Rt+s−1 are all independent (because
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the values taken by the random vectors Nt+j for 0 ≤ j ≤ s are all fixed), which allows us
to write

P(n0, n1, . . . , ns) = ∑
j0+r0=n1

∑
j1+r1=n2

· · · ∑
js−1+rs−1=ns

P
(

Jt = j0; Jt+1 = j1; . . . ; Jt+s−1 = js−1

)
× P

(
Rt = r0

)
P
(

Rt+1 = r1

)
. . .P

(
Rt+s−1 = rs−1

)
pt(n0).

In terms of the probability functions defined above we have,

P(n0, n1, . . . , ns) = ∑
j0+r0=n1

∑
j1+r1=n2

· · · ∑
js−1+rs−1=ns

f (j0, j1, . . . , js−1)h(r0; n0)h(r1; n1) . . . h(rs−1; ns−1)pt(n0).

The above expression states that the joint distribution P(n0, n1, . . . , ns) can be written
in terms of the stationary distribution pstat and the probability functions of the random
vector Rt and the joint distribution of the random vectors Jt, Jt+1, . . . , Jt+s−1, distributions
that are given a priori. Once knowing the joint distribution P(n0, n1, . . . , ns), we can
compute the two-times joint distribution Pt,t+s(n, m),

Pt,t+s(n, m) = ∑
n1∈N0

∑
n2∈N0

· · · ∑
ns−1∈N0

P(n, n1, . . . , ns−1, m). (106)

The above expression can be used to obtain the moment generating function of (Nt, Nt+s)
and then the corresponding two-times covariance matrix Ci,j(t, t + s) =

(
Cov(Nt, Nt+s)

)
i,j.

Those calculations are performed in Appendix A, here we only write down the result,

Cov(Nt, Nt+s) = ΣtQs. (107)

We should emphasize that Equation (107) is valid even if the system has not necessarily
reached stationarity. If we assume that the system has attained the stationarity (which
means that Σt no longer depend on time), we obtain

Cov(Nt, Nt+s) = ΣQs. (108)

Due to stationarity, it is clear that the covariance matrix depends only on s, the difference
between the times t and t + s.

Example 7. Let us consider the system introduced in Example 5. We should notice that we were
able to obtain an exact expression for the stationary variance matrix Σ. Thus, computing the
covariance matrix involves only the product of two matrices. The resulting expression for the
covariance matrix is too long to write down here. Thus, instead of giving explicitly the expression for
the covariance matrix, we will show the theoretically computed time-dependent correlation functions
defined as

C̃i,j(s) :=

(
Cov(Nt, Nt+s)

)
i,j√

Σi,iΣj,j

(109)

In Figure 6 we show the behavior of the correlation functions C̃1,1(s) and C̃1,2(s) for the
three-states open Markov chain studied in Example 5. For the parameter values we display the
theoretically computed correlation function using Equations (108) and (109). The figure also shows
the correlation functions obtained by means of numerical simulations of the system. The total
time-steps performed to obtain the data from simulations was 5× 105. We appreciate that the
theoretical results agree with the simulations showing the consistency of our results.
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Figure 6. Time-dependent correlation functions for the three-states open chain defined in Example 5.
We show the correlation functions C̃1,1(s) and C̃1,2(s) for the parameter values p = 0.40 (which
controls the correlation degree between the incoming fluxes) and q = 0.45 (which rules the internal
dynamics). The theoretically computed correlation function C̃1,1(s) is represented by the solid line
and the numerically obtained from simulations are represented by the open circles. Analogously,
the theoretically computed correlation function C̃1,2(s) is represented by the dashed line and the
numerically obtained from simulations are represented by the open squares. The inset shows the
same graph for small values of s.

5. Summary of Main Results

In this section we summarize the main results reported here. First of all, the proposed
model for open Markov chain is described through the distribution of particles over the
state space,

pt(n) := P(Nt = n), (110)

which is ruled by the evolution equation

pt+1(n) = ∑
k∈NS

0

pt(k)K(k, n), (111)

where K(k, n) = P(Jt + Rt = n). We proved that the above evolution equation can be
formally solved using the moment generating function formalism. The time-dependent
m.g.f. Gt(α) = E[eNtαT

] of pt(n) can be written explicitly as

Gt(α) = G0

(
H(t)(α)

) t−1

∏
r=0
Ft−r

(
H(r)(α)

)
, (112)

where G0 stand for the m.g.f for N0 (the initial distribution over the state space) and H(r)

stands for the rth iterate of H, i.e., H(r) := H ◦H ◦ . . . H, r times, assuming stationarity. We
also showed that, under some mild conditions, the system attains stationarity as t goes to
infinity. In such a case the stationary m.g.f. Gstat is given by,

Gstat(α) =
∞

∏
r=0
F
(

H(r)(α)
)

. (113)

We showed through a couple of examples that the above expression was useful to describe
the stationary state as an infinite convolution of certain random variables. This approach
allow, for instance, to compute the first cumulants. However we also developed a couple
of formulas for the dynamics of the two first cumulants in terms of the variables of the
internal dynamics and the protocols of outgoing particles. These dynamic equations are

µt+1 = εt + µtQ, (114)

Σt+1 = ∆t + Λt + QTΣtQ, (115)
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where εt and ∆ are the mean vector and the variance matrix of the process {Jt : t ∈ N}, i.e.,
εt := E[Jt] and ∆t := Var(Jt). Besides, µt and Σt correspond to the mean and the variance
matrix of the number of particles in the state space respectively. The stationary version of
Equations (114) and (115) can be written as

µ = ε + µQ, (116)

Σ = ∆ + Λ + QTΣQ, (117)

whose formal solution is

µ = ε(1−Q)−1, (118)

Σ =
∞

∑
k=0

(QT)k(∆ + Λ)Qk. (119)

Clearly, to guarantee the existence of the stationary state it is necessary to assume that
the process {Jt : t ∈ N} be stationary, which implies that εt and ∆t no longer depends
on time. Following this formalism of moment generating functions we were also able to
compute the dynamics of the m.g.f. Rt(α) of the outgoing number of particles Ot. Indeed
we showed that

Rt(α) = Gt(C(α)). (120)

The above formula allowed us to prove that in the stationarity the number of outgoing
particles equals the number of incoming particles, which can be interpreted as a kind of
conservation law of the number of particles. Moreover, we were also able to obtain the
behavior of the fluctuations of Ot, i.e., we obtained the variance matrix of Ot,

Var(Ot) = eΣteT + µt(1− E)eT . (121)

Finally we also proved that the two-times covariance matrix Ci,j(s) defined as

Ci,j(t, t + s) := E[Nt
i Nt+s

j ]− (µt)i(µ
t+s)j, (122)

evolves according to

Cov(Nt, Nt+s) = ΣtQs. (123)

We should emphasize that Equation (123) is valid even if the system has not necessarily
reached stationarity. If we assume that the system has attained the stationarity we obtain,

Cov(Nt, Nt+s) = ΣQs. (124)

6. Conclusions

We have introduced a simple model for open Markov chains by interpreting the
state space of a usual Markov chain as physical “sites” where non-interacting particles
can be placed and moving throughout it according to “jumping rules” given by a kind
of stochastic matrix. The conditions for the chain to be open are given as a protocol of
incoming particles, defined by a discrete-time stochastic process, and by a protocol of
outgoing particles, which is implicitly defined by the condition that the “stochastic matrix”
(called here a jump matrix) has a spectral radius strictly less than one. These conditions
establish the rules by means of which the particles arrive and leave the state space to the
outside. We have shown that this model can be treated by means of the moment generating
function technique, allowing us to obtain, in a closed form, the moment generating function
of the distribution of particles over the state space. We have also shown that the system
can be partially described by the dynamics of the two first cumulants of the distribution
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of particles over the state space. Actually, we have given closed formulas for the two first
cumulants when the system is able to reach the stationarity. We have also studied how the
correlations in the incoming protocol of particles are processed by the open chain. We have
obtained closed formulas allowing to compute the two-times covariance matrix for the
random vector defined as the number of particles on the states. Our main result is that the
stationary two-times covariance matrix does not depend on the correlations of the particles
arriving at the state space. This means that the stationary correlation functions essentially
behaves as a closed Markov chain, i.e., that the correlations vanishes exponentially in
time. The non-stationary correlations might probably content some information on the
correlations of the incoming particles, but it would be necessary a more exhaustive study
in this direction for a better understanding of such a process.
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Appendix A

In this appendix we perform some calculations. Let us start by proving that the
functionH(α) defined as

H(α) := E
[
eRtαT

]
= ∑

r∈NS
0

P(Rt = r)erαT
. (A1)

can be written as

H(α) = ekHT(α), (A2)

as it was stated in Equation (21). First recall that the jth component of the random vector
Rt is defined as,

Rt
j =

S

∑
i=1

Bt
i,j, (A3)

where {Bt
i,j : t ∈ N0, 1 ≤ i ≤ S, 1 ≤ j ≤ S} are components of independent random

vectors with multinomial distribution. Specifically, the (S + 1)-dimensional vector At
i ,

with components

(At
i)j =

{
Bt

i,j if 1 ≤ j ≤ S
1−∑S

j=1 Bt
i,j if j = S + 1,

has multinomial distribution, i.e., At
i ∼ Multinomial(zi, ki). Additionally we have that

At
i and As

i are independent if t 6= s and that At
i and At

j are independent if i 6= j. Here
{zi : 1 ≤ i ≤ S} is a set of probability vectors defined as

(zi)j =

{
qi,j if 1 ≤ j ≤ S
ei if j = S + 1,

where qi,j is the (i, j)th component of Q and ei is defined as,

ei := 1−
S

∑
j=1

qi,j.
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Let us consider the random vector X defined as the sum of the independent random
vectors {Ai : 1 ≤ i ≤ S},

X :=
S

∑
i=1

At
i ,

whose m.g.f.,W : RS+1 → R, can be written as

W(ω) := E
[
exp

(
XωT

)]
= E

[
exp

(
S

∑
i=1

At
i ω

T

)]

=
S

∏
i=1

E
[
exp

(
At

i ω
T
)]

, (A4)

where, in last step, we used the fact that {Ai : 1 ≤ i ≤ S} are independent. Now, it is easy
to see that exp

(
At

i ω
T) is the m.g.f. of the random vector At

i which is given by

exp
(

At
i ω

T
)
=

(
eieωS+1 +

S

∑
j=1

qi,je
ωj

)ki

.

In consequence, the last result allows us to write,

W(ω) =
S

∏
i=1

(
eieωS+1 +

S

∑
j=1

qi,je
ωj

)ki

.

Next we should observe that the m.g.f. H(α) can be written in terms of W(ω) as
follows. First notice that

H(α) := E
[
exp

(
RtαT

)]
= E

[
exp

(
S

∑
j=1

Rt
jαj

)]

= E
[

exp

(
S

∑
i=1

S

∑
j=1

Bt
i,jαj

)]
= E

[
S

∏
i=1

exp

(
S

∑
j=1

Bt
i,jαj

)]
.

Next, if we define the S + 1-dimensional vector α̃ := (α1, α2, . . . , αS, 0) it is clear that

H(α) = E
[

S

∏
i=1

exp
(

At
i α̃

T
)]

=
S

∏
i=1

E
[
exp

(
At

i α̃
T
)]

. (A5)

Then, if we compare the last result with Equation (A4) we have that

H(α) =W(α̃),

or equivalently
H(α1, α2, . . . , αS) =W(α1, α2, . . . , αS, 0), (A6)

which immediately implies that (see Equation (A5)),

H(α) =
S

∏
i=1

(
ei +

S

∑
j=1

qi,je
αj

)ki

.

The above expression can be rewritten, by convenience, as

H(α) =
S

∏
i=1

exp(ki Hi(α)) = exp

(
S

∑
i=1

ki Hi

)
, (A7)
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where Hi(α) is defined as

Hi(α) := log

(
ei +

S

∑
j=1

qi,je
αj

)
.

Thus, from Equation (A7), it is clear that the m.g.f.H(α) can be written as

H(α) = ekHT(α), (A8)

where the (row) vector function H(α) is defined as

H(α) = (H1(α), H2(α), . . . , HS(α)).

Next, we shall prove that the successive iterations of H(α) tend to 0 ∈ RS. This can be
shown by using the Contracting Principle in discrete dynamical systems and a lemma on
nonlinear maps in higher dimensions [33]. The only we need to do is to prove that H(α)
defines a contracting map in an open neighborhood around α = 0 ∈ R, which is the unique
fixed point of the map H.

First notice that H is a continuously differentiable nonlinear map whose first derivative
(gradient) is given by

(DH)i,j =
∂Hi
∂αj

=
∂

∂αj

[
log

(
ei +

S

∑
l=1

qi,le
αl

)]
=

∑S
l=1

∂αl
∂αj

qi,leαl

ei + ∑S
l=1 qi,leαl

=
qi,jeαj

ei + ∑S
l=1 qi,leαl

. (A9)

If we evaluate DH(α) at α = 0 we have that

∂Hi
∂αj

∣∣∣∣
α=0

= (Q)i,j = qi,j,

or, equivalently

DH(0) = Q.

Since the spectral radius of Q = DH(0) is strictly less than 1, then according to Lemma 3.3.6
in Ref. [33], we have that there is a closed neighborhood U of α = 0 such that H(U) ⊂ U
where H is a eventually contracting map. Invoking the contracting principle for eventually
contracting maps (cf. for example Corollary 2.6.13 in Ref. [33]) we have that, under iterates
of H, all points α ∈ U converge to 0. This proves that there is a neighborhood U around
α = 0 such that Ht(α)→ 0 as t→ ∞ for all α ∈ U.

Another relationship that it is important to prove here is

∂2Hk(α)

∂αi∂αj

∣∣∣∣
α=0

= qk,iδi,j − qk,iqk,j. (A10)

which was used to obtain the dynamics of the second cumulant of Nt given in Equation (64).
We have already computed the first derivative of Hi with respect to αj in Equation (A9).
Using this information we can compute the second derivative, obtaining

∂2Hk(α)

∂αi∂αj
=

∂

∂αi

(
qk,je

αj

ek + ∑S
l=1 qk,leαl

)
=

∂αj
∂αi

qk,je
αj
(

ek + ∑S
l=1 qk,leαl

)
−
(

qk,je
αj
)(

∑S
l=1

∂αl
∂αi

qk,leαl
)

(
ek + ∑S

l=1 qk,leαl

)2 .

Now, using the fact that

∂αj

∂αi
= δi,j,
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we obtain

∂2Hk(α)

∂αi∂αj
=

δi,jqk,je
αj
(

ek + ∑S
l=1 qk,leαl

)
−
(

qk,je
αj
)
(qk,ieαi )(

ek + ∑S
l=1 qk,leαl

)2 ,

(A11)

and evaluating Equation (A11) at α = 0 it is clear that

∂2Hk(α)

∂αi∂αj

∣∣∣∣
α=0

= qk,iδi,j − qk,iqk,j, (A12)

which is the relationship anticipated in Equation (59).
Next, we shall prove that the stationary solution to the cumulant dynamics equations

are given by

µ = ε(1−Q)−1, (A13)

Σ =
∞

∑
k=0

(QT)k(∆ + Λ)Qk, (A14)

as it was stated in Equations (65) and (66).
Let us start by recalling the equations for the dynamics of two first cumulants, given

by Expressions (52) and (64),

µt+1 = εt + µtQ, (A15)

Σt+1 = ∆t + Λt + QTΣtQ, (A16)

where Λt is defined in Equation (61) as,

(Λt)i,j :=
S

∑
k=1

(µt)k

(
qk,iδi,j − qk,iqk,j

)
. (A17)

The above means that Λt is actually a function of µt, i.e., Λt = Λ(µt), implying that the
equations for the cumulant dynamic are not independent. Before going on the proof of the
existence of the stationary cumulants let us first impose the assumption, on Equations (A15)
and (A16), that the incoming protocol is a stationary process. Assuming stationarity of
the process {Jt : t ∈ N} implies that the mean value of Jt, as well as its variance, are
independent on time. Thus, we can substitute εt and ∆t by ε and ∆, respectively. Therefore,
the dynamic equations for the cumulants can be rewritten as

µt+1 = ε + µtQ, (A18)

Σt+1 = ∆ + Λ(µt) + QTΣtQ. (A19)

It is easy to see that the above recurrence equations can be solved to obtain,

µt+1 = µ0Qt +
t−1

∑
r=0

εQr, (A20)

Σt+1 =
(

QT
)t

Σ0Qt +
t−1

∑
r=0

(
QT
)r(

∆ + Λ(µt−r)
)
Qr. (A21)

Finally, we should observe that the matrix Qt (and its transpose) “vanishes” as t→ ∞. This
is because the spectral radius of Q is strictly less than one, implying that successive powers
of Q converge to the operator zero. This fact implies that the terms µ0Qt and

(
QT)t

Σ0Qt
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tend to zero as t approaches infinity. Then, taking the limit of t → ∞, we can see that
Equations (A20) and (A21) result in,

µ := lim
t→∞

µt+1 =
∞

∑
r=0

εQr, (A22)

Σ := lim
t→∞

Σt+1 =
∞

∑
r=0

(
QT
)r
(∆ + Λ(µ))Qr. (A23)

A straightforward calculations shows that µ and Σ are invariant under the dynamics given
by Equations (A18) and (A19). We can see that the above expressions for µ and Σ are the
ones anticipated in Equations (65) and (66).

Now let us compute the variance matrix of the random vector Ut. First we should
recall that the m.g.f. of Ut is given by

Rt(α) = Gt(C(α)), (A24)

where C : RS → RS is a transformation defined as

(C(α))i = Ci(αi) := log(1− ei + eieαi ), for 1 ≤ i ≤ S. (A25)

It is clear that the m.g.f. allows us to obtain the variance matrix as follows,

(
Var(Ut)

)
i,j =

∂2Rt

∂αi∂αj

∣∣∣∣
α=0
−E[Ui]E[Uj]. (A26)

Using Expression (A24) and the fact that E[Ui] = (µtE)i (see Equation (92)) we obtain for
the variance matrix

(
Var(Ut)

)
i,j =

∂2Gt(C(α))

∂αi∂αj

∣∣∣∣
α=0
− (µtE)i(µtE)j =

∂

∂αi

(
∂G
∂Cj

∂Cj

∂αj

)∣∣∣∣
α=0
− (µtE)i(µtE)j

=

(
∂2G

∂Ci∂Cj

∂Ci
∂αi

∂Cj

∂αj
+

∂G
∂Cj

∂2Cj

∂α2
j

δi,j

)∣∣∣∣
α=0
− (µtE)i(µtE)j.

At this point it is important recalling that

∂G
∂αi

∣∣∣∣
α=0

= (µt)i,
∂2G

∂αi∂αj

∣∣∣∣
α=0

= E[Nt
i Nt

j ].

Additionally, some elementary calculations allow us to observe that the derivatives of C
result in

∂Ci
∂αi

∣∣∣∣
α=0

= ei,
∂2Ci

∂α2
i

∣∣∣∣
α=0

= ei(1− ei). (A27)

The above results, together with the fact that C(0) = 0, imply that the variance matrix can
be written as(

Var(Ut)
)

i,j = E[Nt
i Nt

j ]eiej + (µt)jej(1− ej)δi,j − (µtE)i(µtE)j.

= ei(Σt)i,jej + (µt)i(µt)ieiej + (µt)jej(1− ej)δi,j − (µtE)i(µtE)j,

where we used the fact that E[Nt
i Nt

j ]eiej = (Σt)i,jej + (µt)i(µt)i. Now recalling that that
(E)i,j = eiδi,j it is clear that(

Var(Ut)
)

i,j = (EΣtE)i,j + (µt)jej(1− ej)δi,j, (A28)
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which is the expression anticipated in Equation (96).
Next, our goal consists in obtaining the two-times covariance matrix Cov(Nt, Nt+s).

To this end we need to obtain an expression for the m.g.f. of the joint distribution Pt,t+s(n, m).
We have seen that the latter can be expressed in terms of the multiple-times joint distribu-
tion as follows

Pt,t+s(n, m) = ∑
n1∈N0

∑
n2∈N0

· · · ∑
ns−1∈N0

P(n, n1, . . . , ns−1, m). (A29)

Thus, the moment generating function Lt,t+s of the random vectors (Nt, Nt+s) can be
written as

Lt,t+s(α, β) := ∑
n0∈N0

∑
ns∈N0

Pt,t+s(n0, ns)en0αT
ens βT

= ∑
n0∈N0

∑
n1∈N0

· · · ∑
ns∈N0

P(n0, n1, . . . , ns−1, ns)en0αT
ens βT

.

Using Expression (106) for the joint distribution P(n0, n1, . . . , ns−1, ns) we obtain,

Lt,t+s(α, β) := ∑
n0∈N0

∑
n1∈N0

· · · ∑
ns∈N0

∑
j0+r0=n1

∑
j1+r1=n2

· · · ∑
js−1+rs−1=ns

f (j0, j1, . . . , js−1)

× h(r0; n0)h(r1; n1) . . . h(rs−1; ns−1)pt(n0)en0αT
ens βT

.

Observe that, as in previous calculations, the summation over nj+1 together with the
restricted summation over jj + rj = nj+1 results in a double summations over two inde-
pendent (unrestricted) indices jj and rj for 0 ≤ j < s. This fact leads us to

Lt,t+s(α, β) := ∑
n0∈N0

∑
j0∈N0

∑
j1∈N0

· · · ∑
js−1∈N0

∑
r0∈N0

∑
r1∈N0

· · · ∑
rs−1∈N0

pt(n0) f (j0, j1, . . . , js−1)

× h(r0; n0)h(r1; j0 + r0) . . . h(rs−1; js−2 + rs−2)en0αT
ejs−1βT

ers−1βT
. (A30)

We should notice that in the above expression, the summation over rs−1 can be achieved
because from the summand we can factorize a term that depends on rs−1. Such a term is
indeed h(rs−1; js−2 + rs−2)ers−1βT

. We should recall that h(r; n) is the probability function
of a sum of random vectors with binomial distribution. We have shown above that the
corresponding m.g.f. is given by

H(β) := ∑
r∈N0

h(r; n)erβT
= enHT(β).

The above implies that the summation over rs−1 in Equation (A30) results in

∑
rs−1∈N0

h(rs−1; js−2 + rs−2)ers−1βT
= e(js−2+rs−2)HT(β).

We then obtain,

Lt,t+s(α, β) := ∑
n0∈N0

∑
j0∈N0

∑
j1∈N0

· · · ∑
js−1∈N0

∑
r0∈N0

∑
r1∈N0

· · · ∑
rs−1∈N0

pt(n0) f (j0, j1, . . . , js−1)

× h(r0; n0)h(r1; j0 + r0) . . . h(rs−2; js−3 + rs−3) exp
(

n0αT
)

× exp
(

js−1βT + js−2HT(β)
)

exp
(

rs−2HT(β)
)

. (A31)
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Next, in the above expression we can perform the summation over rs−2 in a similar way
as we did it for rs−1. Actually, all the terms containing rs−2 are h(rs−2; js−3 + rs−3) and
ers−2HT(β). Using the same reasoning used above we see that

∑
rs−2∈N0

h(rs−2; js−3 + rs−3)ers−2HT(β) = exp
(
(js−3 + rs−2)

(
H(2)(β)

)T
)

.

We then obtain,

Lt,t+s(α, β) = ∑
n0∈N0

∑
j0∈N0

∑
j1∈N0

· · · ∑
js−1∈N0

∑
r0∈N0

∑
r1∈N0

· · · ∑
rs−1∈N0

pt(n0) f (j0, j1, . . . , js−1)

× h(r0; n0)h(r1; j0 + r0) . . . h(rs−3; js−4 + rs−4) exp
(

n0αT
)

× exp
(

js−1βT + js−2HT(β) + js−3

(
H(2)(β)

)T
)

exp
(

rs−3

(
H(2)(β)

)T
)

.

(A32)

Proceeding inductively it is clear that the above expression results in

Lt,t+s(α, β) = ∑
n0∈N0

∑
j0∈N0

∑
j1∈N0

· · · ∑
js−1∈N0

pt(n0) f (j0, j1, . . . , js−1)

× exp
(

n0αT
)

exp

(
s

∑
k=1

js−k

(
H(k−1)(β)

)T
)

exp
(

n0

(
H(s)(β)

)T
)

,

(A33)

which after rearranging the summands appropriately we get

Lt,t+s(α, β) = ∑
j0∈N0

∑
j1∈N0

· · · ∑
js−1∈N0

f (j0, j1, . . . , js−1) exp

(
s

∑
k=1

js−k

(
H(k−1)(β)

)T
)

× ∑
n0∈N0

pt(n0) exp
(

n0

(
α + H(s)(β)

)T
)

(A34)

The summation over j0, j1, . . . , js−1 results in the moment generating function of the random
vectors Jt, Jt+1, . . . , Jt+s, a function that will be denoted byM(α0, α1, . . . , αs−1). Notice also
that the summation over n0 results in the m.g.f. of Nt, which, as in preceding sections, has
been denoted by Gt. Using these conventions it is easy to see that, the m.g.f. of (Nt, Nt+s)
is given by

Lt,t+s(α, β) = Gt

(
α + H(s)(β)

)
M
(

H(s−1)(β), H(s−2)(β), . . . , β
)

. (A35)

Once we have computed the m.g.f. it is possible to obtain the covariance matrix Cov(Nt, Nt+s)
by taking the second derivative of the above expression. We then obtain

Ci,j(t, t + s) =
(
Cov(Nt, Nt+s)

)
i,j =

∂2Lt,t+s(α, β)

∂αi∂β j

∣∣∣∣∣
α=0,β=0

− (µt)i
(
µt+s

)
j (A36)
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Performing some calculations we have

Ci,j(t, t + s) =
∂

∂αi

[
S

∑
k=1

∂Gt(γ)

∂γk

∂
(

H(s)(β)
)

k
∂β j

M
(

H(s−1)(β), H(s−2)(β), . . . , β
)

+ Gt

(
α + H(s)(β)

) s

∑
m=1

S

∑
k=1

∂M
(
γ0, γ1, . . . , γs−1

)
∂(γm)k

∂H(m−1)
k (β)

∂βi

]∣∣∣∣∣
α=0,β=0

− (µt)i
(
µt+s

)
j

=
S

∑
k=1

∂2Gt(γ)

∂γi∂γk

∂
(

H(s)(β)
)

k
∂β j

M
(

H(s−1)(β), H(s−2)(β), . . . , β
)∣∣∣∣∣

α=0,β=0

+

(
∂Gt(α)

∂αi

) s

∑
m=1

S

∑
k=1

∂M
(
γ0, γ1, . . . , γs−1

)
∂(γm)k

∂H(s−1−m)
k (β)

∂βi

∣∣∣∣∣
α=0,β=0

− (µt)i
(
µt+s

)
j.

Recalling thatM(0, 0, . . . , 0) = 1, Gt(0) = 1,
(
∂Gt(α)/∂αj|α=0

)
= (µt)j and observ-

ing that

∂H(m−1)
k (β)

∂β j

∣∣∣∣
β=0

=
(

Qm−1
)

k,j
, (A37)

∂2Gt(γ)

∂γi∂γk

∣∣∣∣∣
γ=0

= (Σt)i,k + (µt)i(µt)k, (A38)

∂M
(
γ0, γ1, . . . , γs−1

)
∂(γm)k

∣∣∣∣
β=0

= (εt+m)k, (A39)

it is relatively easy to see that

Ci,j(t, t + s) =
S

∑
k=1

(Σt)i,k(Q
s)k,j +

S

∑
k=1

(µt)i(µt)k(Q
s)k,j

+ (µt)i

s−1

∑
m=0

S

∑
k=1

(εt+m)k

(
Qs−1−m

)
k,j
− (µt)i

(
µt+s

)
j

= (ΣtQs)i,j + (µt)i(µtQ
s)j +

s

∑
m=1

(µt)i

(
εt+mQm−1

)
j
− (µt)i

(
µt+s

)
j.

(A40)

Now, using the dynamics for µt given by the equation

µt+1 = µtQ + εt,

it is easy to see that we can write µt+s as

µt+s = µtQ
s +

s−1

∑
k=0

εt+kQs−1−k. (A41)

Using the above identity it is clear that Equation (A40) results in

Cov(Nt, Nt+s) = ΣtQs, (A42)

which is the relationship anticipated in Equation (107).
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