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Abstract: In this paper, we explore the advantages of a fractional calculus based watermarking
system for detecting Gaussian watermarks. To reach this goal, we selected a typical watermarking
scheme and replaced the detection equation set by another set of equations derived from fractional
calculus principles; then, we carried out a statistical assessment of the performance of both schemes
by analyzing the Receiver Operating Characteristic (ROC) curve and the False Positive Percentage
(FPP) when they are used to detect Gaussian watermarks. The results show that the ROC of a
fractional equation based scheme has 48.3% more Area Under the Curve (AUC) and a False Positives
Percentage median of 0.2% whilst the selected typical watermarking scheme has 3%. In addition, the
experimental results suggest that the target applications of fractional schemes for detecting Gaussian
watermarks are as a semi-fragile image watermarking systems robust to Gaussian noise.

Keywords: fractional calculus; Gaussian watermarks; statistical assessment; false positive rate;
semi-fragile watermarking system

1. Introduction

Digital watermarking has gained popularity in the past few decades as a copyright
enforcement tool. It is an active research field that includes applications such as data
authentication and data indexing among other practical applications [1–3]. The scenario of
copyright enforcement is as follows: the copyright holder wants to exploit some digital
media, so he embeds a watermark under the premise that, in case of an unauthorized
person exploiting the media, the copyright holder would be able to demonstrate in court
that his watermark was embedded in the media and hence he owns all rights to the media.

A watermarking system embeds a signal, called the watermark, into another signal
known as the cover; a cover might be digital media such as an image, audio, video, or other
digital media. Most of the proposed watermarking systems generate a pseudo-random
signal (the watermark) using a user’s key and then embeds this watermark into the cover;
conversely, the watermarking system is able to detect the watermark or even retrieve it from
the watermarked cover. If watermark samples are in the set {−1,1}, then the watermark is
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called binary; sometimes, designers let the watermark be a pseudo-random sequence with
Gaussian distribution, this kind or watermark is called a Gaussian Watermark.

A watermarking system can have two types of errors during its attempt to detect a
watermark:

Error type I: The system failed to find a watermark; this is called a False Negative (FN).
Error type II: The system found a given watermark even when either no watermark or

another watermark was embedded; this is called False Positive (FP).

A FP is considered flawed that must be avoided because this might lead to a legal
dispute on the copyrights of the digital media. For this reason, systems that exhibit a high
FPP are impractical and thus excluded from literature. Usually, a watermarking system has
a negligible FPP for detecting binary watermarks; conversely, some systems might have a
high FPP when detecting Gaussian watermarks.

To clarify this issue, consider the following example: Figure 1 (left) shows an image wa-
termarked with a Gaussian watermark. Only one watermark was embedded; however, the
system detects several watermarks as if they were actually embedded as shown in Figure 1
(right). Assuming that a court acknowledges as the copyright owner any individual who
claims the rights to some digital media granted, he can prove that the watermarking system
detects his watermark within the media. Under these conditions, an attacker would have to
search for a watermark that produces a positive detection and could then claim ownership
of the media, causing a legal dispute.

Figure 1. Faulty detection of a Gaussian watermark due to False Positives. (left) Watermarked image.
g = 5, PSNR = 34.14 dB. (right) The systems verify the presence of several watermarks; the cases
that fall in the red zone are False Positives.

To help to mitigate this issue, we proposed in a previous paper to replace the detection
equations of watermarking systems to reduce the FPP. Although results were interesting
and seem promising, our tests were not conclusive due to the low number of images in the
database used in the experiments; thus, the purpose of this paper is to fill the remaining
gaps in our previous proposal by analyzing the cases we left unexplored using a bigger
image database. In this paper, we put our early proposal on a firmer basis, we:

• Assessed statistically meaningful results by extending the data set up to 10,000 images.
• Carried out a statistical analysis to compare the FPP of the original watermarking

scheme versus the corresponding version with detection equations derived from
fractional calculus.

• Evaluated the quality of both schemes as a watermark detector by comparing their
ROC curves.
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• Examined the successful detection rate after performing a number of signal process-
ing operations on the watermarked images to define robustness of the system and
recommend target applications of fractional detector equations.

• Complemented our previous study about binary watermarks with this study about
Gaussian watermarks.

With these results as a basis, we expect designers of watermarking systems to take
advantage of Gaussian watermarks when appropriate to meet their design goals. At the
moment, it is difficult to detect watermarks using simple equations, so we look forward to
providing an alternative to reuse previously proposed schemes by using fractional calculus
based equations.

The usage scenarios for such schemes include:

• The system designer wants to enhance the discriminative power of a system already
proposed.

• The watermark is some information that closely holds the Gaussian distribution.
• The complexity of the watermarking system has to be low.

Another scenario will be discussed later.
The rest of the paper is organized as follows: in Section 2, we review the background

of the analyzed watermarking scheme. A discussion about related works is presented in
Section 3. Section 4 presents a Fractional Scheme for watermarking. In Section 5, we discuss
the materials and methods of analysis used to carry out the experiments; next, in Section 6,
we present the experimental results; then, in Section 7, we discuss the experimental results
and present the conclusions, and finally the references are in the last section.

2. The Watermarking Model

Before continuing with the background fundamentals, let us define the terminology
used in the remainder of this paper. One often refers to different watermarks, so we will
call the set of different watermarks W; wk is the k-th watermark of the set W and wk[i]
denotes the i-th sample of the k-th watermark. The set of images that serve as covers is X;
similarly, xk denotes the k-th image and xk[i] is the i-th sample of the k-th. yk[i] is the i-th
sample of the k-th watermarked image. Note that, although we are focusing on images,
we will use one index for the sake of simplicity, so consider i = (r, c) a coordinate pair of
the image.

A simple model approach to watermarking is to make analogies to the field of the
theory of communications. In this context, we assume that the watermark is transmitted
through a communications channel as pictured in Figure 2. The model has the following
variables: the cover which is a signal used as host for the watermark; a user’s key as
input for a pseudo-random number generator, and the embedding gain which is related
to the watermark’s energy. In an ideal scenario, the cover does not distort the watermark;
however, in practice, this can not be achieved, so the effects of the cover on a watermark are
modeled as the distortion caused by the channel. Attacks to the watermark are modeled as
noise. An attack is a signal processing operation performed on the watermarked with the
goal of making the watermark undetectable by the watermarking system.

Watermark
Generator

User’s Key

Watermark
Embedding

Cover

Channel

Noise

Watermark
Assesment

l

wl yl y∗l

xl

Figure 2. General model of watermarking as a communication process.
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2.1. Watermark Embedding

There are two basic rules for embedding watermarks: the additive rule and the
multiplicative rule. We will focus on the additive embedding rule since it is widely used in
most related works.

The watermarking system embeds the watermark wl into the cover xl producing the
watermarked signal yl as shown in Figure 3. This scheme uses the additive rule defined as:

yl = xl + gwl , (1)

where yl is the watermarked signal and g is the embedding gain.

Watermark
Generator

User’s Key

+

Embedding
Gain

+

Cover Image

Watermarked
Image

l

wl [i] gwl [i] yl [i]

g xl [i]

Figure 3. Watermark embedding scheme.

2.2. Watermark Detection

A typical watermark system assesses the presence of the watermark by computing
two statistics: a decision variable which is a measurement of the presence of the watermark
within the watermarked image, and a threshold that helps to decide if the watermark is
present or absent. If the decision variable is greater than or equal to the threshold, then the
watermark was detected; otherwise, the watermark is absent as shown in Figure 4.

Watermark
Generator

User’s Key

Compute
Detection

Variable (d)

Watermarked
Image

d ≥ Th

Compute
Thresh-

old (Th)

Watermark
Present

No Wa-
termark
Present

y∗l

wl

Th

d Yes

Nol

Figure 4. Block diagram of the watermark detection process.

Most watermarking systems have detected watermarks using the cross-correlation
formula since the early works on watermarking; an example is the highly influential
paper by Cox et al. [3]. The watermarking system uses the received and possible noisy
watermarked media (y∗l ) for detecting the watermark; first, it computes a decision variable
dI(wl) as follows:

dI(wl) =
1
N

N

∑
i=1

wl [i]y∗l [i]; (2)

Next, the system compares dI(wl) to a threshold (ThI(wl)) and, if dI(wl) ≥ ThI(wl), then
the detection is positive; the threshold is computed using the following equation [4]:
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ThI(wl) = 3.3

√
2

σ2

N
(3)

where σ2 is the variance of y∗l .
Many state-of-the-art algorithms use (1)–(3) for inserting and detecting the watermark

as discussed later in this paper. We will call (2) and (3), the integer equation set—hence, the
subscript I of the detection variable set. A watermarking scheme based on Equations (1)–(3)
is shown in Figure 5.

The decision of the system for the integer equation set is computed as:

DI(wl) =

{
1 dI(wl) ≥ ThI(wl)

0 Otherwise
, (4)

Watermark
Generator

User’s Key

1
N

N

∑
k=1

wl [k]y∗m [k]

Noisy
Watermarked

Image

d(wl) ≥
Th(wl)

3.3
√

2 σ2
N

Watermark
Present

No Wa-
termark
Present

y∗l

wl

Th

d Yes

No
l

Figure 5. Integer watermark detecting scheme.

Many works use (1) and (2) to embed and detect watermarks respectively as discussed
in next section.

3. Works Related to Watermarking Based on Fractional Calculus

On the other hand, Fractional Calculus (FC) has gained attention in recent years;
for example, Refs. [5–8] are good references that cover the basics on FC ranging from
introductory to advanced FC theory. Many scientists used it for modeling several physical
phenomena with applications to engineering; for example, in [9–11], the authors present
applications of FC to the analysis of control systems. In [12–14], the authors present
applications to Digital Filters design. In [15,16], the authors discuss an approach to linear
systems analysis for both continuous and discrete cases. Researchers already started to
develop FC applications to watermarking; related works exhibit a tendency to adapt (1)
and (2) for working with fractional calculus based approaches.

Some authors use a fractional derivative for watermarking since there is a relationship
between the order of the derivative and the resulting function; this relationship is difficult to
establish. For example, the authors of [17] use the Grünwald–Letnikov fractional operator
for computing a pseudo-random sine function, allowing two fractional orders α and β to
act as keys. The authors claim that this scheme is robust toward occlusion attack; however,
this is the only test they reported. The work [18] is similar to [17]. The main difference
between those works is that authors of [18] use the fractional Cauchy formula for the sine
function. Authors report that the system is robust; nevertheless, their results are supported
by the test in just one image lacking evidence for confirming the system’s reliability.

Other authors use the Fractional Fourier Transform (FrFT) for watermarking since
there is a strong dependency between the orders and the resulting coefficient set of the FrFT,
a dependency that seems random. The algorithm proposed in [19] uses the FrFT coefficients
as the embedding domain. The authors report good results; however, they present just a
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case of study. A similar approach is presented in [20]. This approach also uses the fractional
orders as the secret keys. The watermark is detected using standard cross-correlation.
The authors claim that the system is robust toward JPEG compression, noise addition,
and image manipulation operations such as median filtering, Gaussian smoothing, and
sharpening filtering. Another work that uses the FrFT is [21]; its authors affirm that their
proposal is robust to geometrical transform, filtering, and histogram stretching; however,
they carried out too few experiments. In [22], the authors present an approach based on
the FrFT with a random modification to the phase. The resulting system is more similar
to a digital signature based system than to a typical watermarking system. This system is
robust against cropping, salt and pepper noise addition, uniform noise addition, Gaussian
noise addition, noise addition in both the amplitude and the phase, JPEG compression,
and histogram equalization operations. Another idea presented in [23] is to generate a
watermark in the FrFT domain and embed it into an image also in the FrFT domain using
the additive rule. The authors used the cross-correlation for detecting the watermark. This
scheme is robust toward occlusion attack, which is the only attack reported by the authors.

The Random Fractional Fourier Transform (RFrFT) is a variation of the FrFT; it has the
same properties of FrFT but has the advantage that the spectrum is random and exhibits a
high embedding capacity and robustness for watermarking applications. An RFrFT applica-
tion to watermarking is presented in [24]. This system computes the RFrFT with a given
random phase; then, it divides the transformed image into blocks and computes their fractal
dimension; next, it selects a set of those blocks and uses the highest amplitude in each block
for watermark embedding using Amplitude Shift Keying (ASK). The watermark extraction
is accomplished by reversing previous steps. The system computes the Mean Square Error
to measure the robustness using both the extracted and the real watermark. They tested
their system by performing three attacks: noise addition, cropping, and JPEG compression.

Another fractional calculus based transform, the Discrete Fractional Random Trans-
form (DFRNT), was used in [25]. This work is similar to [24]; first, the system computes the
DFRNT; then, it divides the signal into blocks and selects a set of blocks randomly; next, it
selects the highest amplitudes for watermark embedding using Phase Shift Keying (PSK).
The authors report that their proposal is robust against Gaussian noise addition, cropping,
and low pass filtering; however, they present too few tests.

One more fractional based transform is the Fractional Dual-Tree Complex Wavelet
Transform (FrDT-WT); the FrDT-WT is used to find the wavelet transform in the Fourier
domain resulting in a mathematical description of the multiresolution properties. The work
presented in [26] and exploits that the randomness of the FrDT-WT coefficients depends
on the fractional order, also using a biometric pattern to further enhance the security. The
main idea is to build two biometric images; then, use the SURF algorithm to compute the
robust matching point vectors; next, use these vectors to compute the keys for building
a chaotic map. The watermark extraction uses both the original and the watermarked
images. The authors report that their system is robust. The attacks covered in the test
include average filtering, median filtering, Gaussian noise addition, salt and pepper noise
addition, JPEG compression, SPIHT compression, row-column deletion, resizing, cropping,
rotation, histogram equalization, contrast adjustment, and sharpen attacks; however, there
were only six images used for the test; furthermore, the reported results correspond to their
best case.

Another work is [27] that is almost the same as the system presented in [26]. The main
difference between these works is that Ref. [27] uses the Redundant Fractional Wavelet
Transform (RFrWT) due to a problem with the discrete FrDT-WT related to the use of
decimators.

The authors of [28] present an interesting idea; unlike most watermarking schemes,
their system does not embed a watermark into a host image, but they use Visual Cryptog-
raphy (VC) and a Visual Secret Sharing Scheme. The system constructs two shares that
convey a secret message in the following way: the encoder divides the host image into
blocks; then, it selects a set of blocks and computes the FrFT using orders α and β; next, it
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computes the Singular Value Decomposition (SVD) of the transformed blocks and uses the
first value of the resulting SVD for computing the master share according to the standard
rules of secret sharing schemes. The authors report that their scheme resists various signal
processing operations such as JPEG compression, average filtering, median filtering, blur-
ring filtering, sharpening filtering, Gaussian noise addition, contrast adjustment, gamma
correction, histogram equalization, resizing, rotation, and geometrical distortion.

All of these works have in common the use of (1) and (2) to embed and detect water-
marks; from this perspective, we can say that the overall difference among them is the use
of some transform coefficient set for watermarking. In other words, they use already pro-
posed equations, and the novelty of these works rely on the use of a different embedding
domain. This leads to incrementing the complexity of the watermarking system and other
problems related to the multiple definitions of fractional operators proposed until now.

On the other hand, the authors of [29] analyzed the watermarking systems proposed
in [17] through [28] and observed that they use (1) and (2), so they proposed a new
improved equation set to substitute (2) and (3). They showed that this modification
increases the system’s robustness, so the watermarking system designer might prefer to
use fractional equations as a reliable solution for copyright enforcement; however, they
limited their study to the case where the watermark is binary, and they added that they
would skip the case of Gaussian watermarks since the system based on (2) and (3) was not
reliable in this case, so a fair comparison to their proposed equation set was not possible in
the context of the experiments carried out to test their proposed scheme.

The authors of [30] explored the case of Gaussian watermarks, and their results suggest
that the scheme proposed in [29] reduces the False Positive Percentage; however, they
limited the benchmark corpus to 20 images from the standard image set.

The case of the fractional scheme proposed in [30] for the Gaussian watermarks case
needs a deeper study; for this reason, we accomplished this study where we explore
the behavior of the fractional scheme for detecting Gaussian watermarks; we looked for
confirming that the fractional scheme proposed in [29] reduces the false positive percentage
of the detector when Gaussian watermarks were embedded, and, by reaching this goal,
we confirmed that the fractional scheme is reliable for watermarking applications when
Gaussian watermarks are used; thus, the novelty of this paper is to generalize the results
presented in [29,30]. The main advantage of the proposed scheme is that it avoids the
problems related to the use of fractional transforms found in previous works, keeping the
complexity almost the same, however, for detecting Gaussian watermarks.

4. Fractional Calculus Approach to Watermark Detection

The detection variable derived from FC principles proposed in [29] is:

dF(wl) = − Im

3
4

1
N

√√√√( N

∑
i=1

y∗l [i]wl [i]

)2

− 2
3

σ2N[2NH − 1]− ε

, (5)

where Im[·] is the imaginary part operator, and the threshold is:

ThF(wl) = kpσ2

√
H
ε

, (6)

where:

ε =
3
4

1
N

√
2
3

σ2N[2NH − 1], (7)

with H = ln(
√

2πσ2e); σ2 is the variance of y∗l . We call (5) and (6) the Fractional equation
set. A fractional scheme based on (5) and (6) is shown in Figure 6.

The decision of the system for the fractional equation set is:
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DF(wl) =

{
1 dF(wl) ≥ ThF(wl)

0 otherwise
. (8)

Watermark
Generator

User’s Key

− Im

 3
4

1
N

√√√√( N

∑
i=1

y∗l [i]wl [i]

)2

− 2
3

σ2 N[2NH − 1]− ε
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Watermarked

Image

d(wl) ≥
Th(wl)

kpσ2

√
H
ε

Watermark
Present

No Wa-
termark
Present

y∗l

wl

ThF(wl)

d(wl) Yes

No
l

Figure 6. Fractional watermark detecting scheme.

If we use (5) and (6) for detecting Gaussian watermarks, we get the result shown in
Figure 7, which clearly has improved detection characteristics since it has no false positives.
We are looking for confirming that the scheme in Figure 6 is more reliable than the scheme
in Figure 5. This follows the strategy stated early in this paper about reusing the algorithm
in Figure 5 by replacing detection equations with fractional calculus based equations
resulting in a possibly improved algorithm and then verifying the effectiveness of this
strategy. For this reason, there is a lack of comparison to related works as a means of control
to the experiments. In other words, a fair experiment in the purpose’s context of this paper
is to compare the original algorithm versus the same algorithm with fractional equations
and assess its improvement. Thus, the only control needed is the original algorithm and, as
a result, the outcomes of the experiments are reliable.

Figure 7. Detection of the watermark. (left) using (2) and (3); (right) using (5) and (6), and note the
lack of False Positives. The cases that fall in the red zone are False Positives.

5. Materials and Methods

To carry out experiments, we used 10,000 images of the BOWS database as the set X;
each image of this set is grayscale with size 512× 512 pixels and their luminance values
are in the range [0, 255].

We used the embedding scheme shown in Figure 3 for watermarking each image
in the set X. In addition, the embedding gain was fixed for all cases to the value g = 5;
this setting leads to a Peak Signal-to-Noise Ratio (PSNR) mean of 34.21 dB for the entire
set giving a fair balance between robustness and imperceptibility of the watermark. The
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embedded watermark wl was selected at random from the watermark set W for each image;
each watermark in the set was equally probable.

The goal of the tests was to assess the capacity of watermarking schemes shown in
Figures 5 and 6 to reduce the false positives by computing the FPP and the ROC curve.

For the first test, we computed the FP of each image. To achieve this, each image in
the set X was watermarked; then, the system tried to detect all watermarks in W within a
single image; next, all FP were identified and counted using (4) and (8). The false positives
computing process is summarized in Procedure 1, and it is described in Figure 8 (left). False
positives gave us an insight about the reliability of both the integer and the fractional schemes.

For the sake of simplicity, and without loss of generality, we indicated D(wl) instead
of DI(wl) or DF(wl) in all procedures since the same steps were followed for both schemes.

We selected the Receiver Operating Characteristic (ROC) since it is regarded as an
objective measure to evaluate performance of a decision technique. Thus, as a second
test, we computed the ROC as follows: each image in the set X was watermarked using
watermark wl ; then, we computed dI(wl), dF(wl), DI(wl), DF(wl). Those values and the
corresponding ground truth values of DI(wl), DF(wl) were recorded. The data were used
to derive a Generalized Lineal Model for estimating the ROC for both the integer and the
fractional schemes. Data collecting steps were summarized in Procedure 2 and further
explained in Figure 8 (right). The ROC curves were used to evaluate the integer and the
fractional to clarify which of them is more reliable.

With a last test, we examined the robustness of the fractional scheme. To achieve
this goal, each image in the set X was watermarked to get the set of watermarked images
Y, and then an attack was carried out on the watermarked images; next, we added up
the cases where the embedded watermark was detected to compute the percentage of
detected watermark cases. The process of computing the detection rate is summarized in
Procedure 3. The percentage of detected watermarks after the watermarked image was
attacked suggested the target applications of the fractional scheme based on its robustness.

Procedure 1 Procedure to record measures for False positives.

Require: Image set X, Watermark set W.

1: Open log file for writing.

2: for Each image xk ∈ X do

3: Select randomly a watermark wl from the watermark set W.

4: Partition set W into two subsets We and Wn that hold We ∩Wn = ∅ and We ∪Wn =

W, We = {wl}.

5: Embed the watermark wl into Image xk

6: for Each watermark wm in Wn do

7: for Each watermarking scheme do

8: Compute R(wm)

9: if R(wm)==1 then

10: FP = FP + 1

11: end if

12: end for

13: end for

14: Record FP a of a current image in log file.

15: end for

16: return Log file.
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Procedure 2 Procedure to record measures for getting the ROC curve.

Require: Image set X, Watermark set W.

1: Open log file for writing.

2: for Each image xk ∈ X do

3: Select a random watermark wl from the watermark set W.

4: Embed the watermark wl into Image xk.

5: Compute d(wl) and D(wl).

6: Record d(wl), D(wl), and ground truth values in log file.

7: Get the set of indexes of true negatives, these indexes form a set T.

8: Draw at random an index m from set T.

9: Record d(wm), R(wm), and ground truth values.

10: Get the set of indexes false positives, these indexes form a set P.

11: for Each index k in P do

12: Record the values of d(wm), R(wm), and ground truth values in log file (Record all

the False Positives).

13: end for

14: end for

15: Close log file.

16: return Log file.

Procedure 3 Procedure to record Detection Rate.
Require: Image set X, Watermark set W.

1: Open log file for writing.

2: for Each image xk ∈ X do

3: Select randomly a watermark wl from the watermark set W.

4: Embed the watermark wl into Image xk

5: Perform an attack on the watermarked image.

6: Compute D(wl) using the attacked image.

7: if D(wl)==1 then

8: D = D + 1

9: end if

10: end for

11: Compute detection rate (Dr =
D

10,000 )

12: Record Dr in log file.

13: return Log file.
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Figure 8. Collecting data. (left), all the system’s responses that cross the threshold when no water-
mark was embedded are collected since these are False Positives. These data fall in the red zone.
(right) We collected the true positive (data in the green zone), a single true negative (data in the blue
zone), and all false positives for each image in the set Y (data in the red zone).

6. Experimental Results

As a first test, we computed the false positive percentages for both the integer and the
fractional schemes and build a boxplot. Figure 9 (left) shows that the false positives for the
integer scheme span from 0.1% to 16.15%; in contrast, the fractional scheme has very low
percentages of false positives and the range of values concentrates around 0.2%.

Figure 9. Statistical assessment of discrimination characteristics. (left) value ranges of false positives
for both the Integer and Fractional watermarking schemes. No outliers are drawn for the sake of
clearness; (right) comparison of the ROC curves of the integer and fractional schemes.

In our second test, we evaluated the quality of both schemes; we used the data we
collected to draw the ROC curve shown in Figure 9 (right). As a result of this test, we
found that the ROC of the integer scheme has an Area Under the Curve (AUC) of 50.9%,
whereas the fractional scheme obtained an AUC of 99.2% for the same test.

The last test consisted of examining the successful detection rate after attacks; this was
accomplished by attacking each watermarked image in the set Y. The attacks performed
were: average filtering, median filtering, Gaussian noise addition, speckle noise addition,
salt and pepper noise addition, JPEG compression, cropping, removing random rows and
columns, substituting random rows and columns, and scaling. The corresponding figures
are in Appendix A for the sake of readability of this section.
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A bar plot of the percentage of detected watermarks after the image set Y filtered
using an average filter is shown in Figure A1. The attack was repeated for window sizes
of 3× 3, 5× 5, and 7× 7. The resulting bar plot shows that the percentage of successful
watermark detection after the attack is about 6% and became lower as the window size
increases.

We performed a similar attack; this time, a median filter was used to filter the set
Y. Results shown in Figure A2 reveal a similarity to the results reached for the average
filtering attack; this time, detection percentages are lower than 10%.

The next test is comprised of adding Gaussian noise to each watermarked image in
the set Y and then we tried to detect the watermark. We constructed a bar plot showing
the percentages of detected watermark for various noise variances. Figure A3 shows that
the scheme is robust to Gaussian noise. This figure might look suspicious because it looks
atypical; thus, to discard that the Gaussian noise triggers false positives and this causes a
high detection rate, we inspected some cases and present an example in Figure 10.

Figure 10. Detection of the watermark. (left) noisy watermarked imaged; noise variance was 0.05.
(right) the corresponding evaluation of (5).

The following test consists of adding salt and pepper noise and then detecting the
watermark. Results depicted in Figure A4 show that the fractional scheme is robust up to
noise densities of 20%, the detection rate drops for noise densities higher than 20%.

We carried out the next test by adding speckle noise before trying to detect the
watermark. Results in Figure A5 show that the fractional scheme is robust up to noise
variances of 0.2. After this limit, the detection rate drops.

A very common scenario is to compress images using the JPEG standard, so the
next test comprised watermarking the image and compressing the image with the JPEG
standard, and then detecting the watermark. Figure A6 shows that the fractional scheme is
robust to JPEG compression up to a quality factor of 90% and then the detection percentage
starts to decline.

Another common signal processing operation is the cropping attack. Figure A7 shows
results when the watermarked image is cropped. This figure shows that the fractional
scheme is robust up to 20% of cropped pixels.

The next test selects t rows and t columns at random, and then removes these rows
and columns from the watermarked image; the resulting image is smaller than the original
watermarked image, so the image is then scaled to match the size of the original water-
marked image. The watermark was then detected, and the results are shown in Figure A8.
Results show that the fractional scheme is not robust since it exhibits a detection rate
around 8% for removing 10 rows and columns.
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Another test, similar to the previous one, selects t rows and t columns at random, and
then substitutes the selected rows and columns with the adjacent row or column of the
same image. The watermark was detected, and results are shown in Figure A9. Results
show that the fractional scheme is robust up to substituting 100 rows and columns.

Finally, we carried out a scaling attack; the watermarked image was scaled to make it
smaller and then the image was restored back to its original size. The results are shown
in Figure A10; this figure shows that the fractional scheme is robust up to 90%. In other
words, we shrank the image to 90% of its original size and then restored to the original size
before we tried to detect the watermark.

7. Conclusions

In this study, we compared the FPP of the original watermarking scheme versus the
corresponding version with detection equations derived from fractional calculus; evaluated
the quality of both schemes as a watermark detector by comparing their ROC curves, and
examined the successful detection rate after attacking the watermarked images to define
robustness of the system. We performed several tests that allowed us to conclude the
following facts:

The False Positives percentage is much lower for the fractional scheme than the
corresponding percentages of the integer scheme. According to Figure 9 (left), the FPP
spans from 0.2% to 16.2% for the integer scheme whilst the FPP concentrates around 0.2%
for the fractional scheme. This means it is more likely to get a 0.2% FPP when using a
fractional scheme and also the FP rate will be lower for this fractional scheme than the
corresponding results for an integer scheme.

Results show that the fractional scheme is a reliable method for detecting Gaus-
sian watermarks according to Figure 9 (right); the fractional scheme has a significant
advantage compared to the integer scheme since the AUC is higher for the fractional case
(AUC = 99.20% versus AUC = 50.90%); this means that the fractional scheme has higher
discriminative power compared to the integer scheme.

In addition, the experimental results in Figures A1–A10 show that this system is fragile
to all attacks presented in Section 6, except for the case of the Gaussian noise addition
attack, this is because the noise is added in the same manner as the watermarks are; thus,
the systems treats Gaussian noise as a watermark. The target applications of such a scheme
include cases where the watermarks should not survive attacks; an example of practical
application of a fractional scheme is for authenticating information.

Since the target application might be authenticating information, it will be convenient
to propose another value of kp; this value should be higher than that used in this study
since this will help to reduce the detection rate after attacks. Additional usage scenarios
include: The system designer wants to enhance the discriminative power of a system
already proposed, the watermark is some information that closely holds the Gaussian
distribution, and the complexity of the watermarking system has to be low.

The results provide designers of watermarking systems with an alternative to take
advantage of Gaussian watermarks when appropriate to meet their design goals. Thus,
the proposed strategy is an alternative to reuse previously proposed schemes by using
fractional calculus based equations.

The results obtained in this study complement the study in [29] since the case of Gaus-
sian watermarks was left unexplored, so this paper provides the designer of watermark
systems with a more logical insight of the potential and practical applications of a fractional
watermark detector.

The characteristics to discriminate between patterns with Gaussian statistical distribu-
tion suggest that the fractional equations might be used in pattern recognition applications
where samples have a Gaussian distribution.
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Appendix A

This appendix has complementary experimental data that the reader might need to
check out closer.

Figure A1. Percentage of successful watermark detection after an average filter attack for various
window sizes.

Figure A2. Percentage of successful watermark detection after a median filter attack for various
window sizes.
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Figure A3. Percentage of successful watermark detection when Gaussian noise is added to the
watermarked image. The mean of the noise was zero and the horizontal axis corresponds to the
variance of the noise.

Figure A4. Percentage of successful watermark detection when salt and pepper noise is added to the
watermarked image. Horizontal axis show the noise density.

Figure A5. Percentage of successful watermark detection when speckle noise is added to the water-
marked image. Horizontal axis show the noise variance.
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Figure A6. Percentage of successful watermark detection after the watermarked image was com-
pressed using the JPEG standard. The horizontal axis corresponds to the JPEG compression qual-
ity factor.

Figure A7. Percentage of successful watermark detection after cropping. This figure spans various
cropping percentages.

Figure A8. Percentage of successful watermark detection after a number of rows and columns were
removed from the watermarked image. The horizontal axis shows the number of rows and columns
removed.
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Figure A9. Percentage of successful watermark detection after a number of rows and columns of the
watermarked image were substituted with another row or column.The horizontal axis shows the
number of rows and columns replaced.

Figure A10. Percentage of successful watermark detection when the watermarked image is scaled.
The horizontal axis shows the scaling factor.
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