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Abstract: Obtaining key and rich visual information under sophisticated road conditions is one
of the key requirements for advanced driving assistance. In this paper, a newfangled end-to-end
model is proposed for advanced driving assistance based on the fusion of infrared and visible images,
termed as FusionADA. In our model, we are committed to extracting and fusing the optimal texture
details and salient thermal targets from the source images. To achieve this goal, our model constitutes
an adversarial framework between the generator and the discriminator. Specifically, the generator
aims to generate a fused image with basic intensity information together with the optimal texture
details from source images, while the discriminator aims to force the fused image to restore the
salient thermal targets from the source infrared image. In addition, our FusionADA is a fully end-to-
end model, solving the issues of manually designing complicated activity level measurements and
fusion rules existing in traditional methods. Qualitative and quantitative experiments on publicly
available datasets RoadScene and TNO demonstrate the superiority of our FusionADA over the
state-of-the-art approaches.

Keywords: advanced driving assistance; infrared and visible image fusion; smart city; generative
adversarial network

1. Introduction

Smart cities have become new hot spots for global city development, including smart
transportation, smart security, smart communities, and so on. Among them, advanced
driving assistance is an indispensable and effective tool playing a pivotal role in smart
transportation. The core of a smart city is a high degree of information fusion, so as
advanced driving assistance. In the advanced driving assistance scene, there are a large
number of information sensing devices to monitor, connect and interact with objects and
pedestrians in the environment online [1]. Among the sensors, infrared and visible sensors
are generally the most widely used types of sensors whose wavelengths are 300–530 nm
and 8–14µm, respectively.

The peculiarity of combining infrared and visible sensors depends on the fact that
visible image captures reflected light to represent abundant texture details, while infrared
image captures thermal radiation, which can emphasize thermal infrared targets though
in poor lighting conditions or under the severe occlusion [2–4]. Based on the strong
complementarity between infrared and visible sensors, the fused results can show abundant
texture details with salient thermal targets. Therefore, infrared and visible image fusion is
undoubtedly a significant and effective application in advanced driving assistance, which
is much more beneficial for automatic detection of the system or driver’s visual perception.

In the infrared and visible images fusion, many methods have been proposed in the
past few years, and they can be divided into six categories according to corresponding
schemes, including pyramid methods [5,6], neural network-based methods [7], wavelet
transformation based methods [8], sparse representation methods [9,10], salient feature
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methods [11,12], and other methods [13]. There are three main parts in these fusion
methods, i.e., (i) domain transform, (ii) activity level measurement, and (iii) fusion rule
design. The biggest criticism lies in that designing complex activity level measurements
and fusion rules manually are usually needed in most existing methods, which leads to
additional time consumption and complexity.

The development of the smart city is inseparable from the empowerment of artificial
intelligence (AI). Among them, the powerful feature extraction capabilities of deep learning
have caught more and more eyes [14,15]. Some detailed exposition about these fusion
methods will be discussed later in Section 2.2. These deep learning-based methods have
found a new breakthrough for image fusion and also achieved excellent effects. However,
this kind of method does not completely break away from the shackles of traditional
methods, because the framework based on deep learning is typically only applied to some
small parts, e.g., the extraction of features, while the whole fusion process is still based on
traditional frameworks.

In addition, both traditional and deep learning-based methods suffer from a common
predicament, i.e., information attenuation. Specifically, the extracted (or to be fused)
information, including texture details and salient thermal targets, are attenuated to varying
degrees due to the weight selection accompanying the fusion process.

To address the above issues and improve the performance of advanced driving assis-
tance, in this paper, we propose a new fusion method that is fully based on deep learning,
called FusionADA. For convenience, we abbreviate source visible and infrared images, and
fused image as VI, IR and IF, respectively. First of all, in our fusion model, deep learning
runs through the whole model, and manually designing complex activity level measure-
ments and fusion rules are not required, thus our FusionADA is a fully end-to-end model.
Furthermore, our FusionADA can overcome the predicament of information attenuation,
which is reflected in texture details and salient thermal targets, respectively. On the one
hand, since the texture details can be characterized by gradient variation, based on the
major intensity information, we employ the max-gradient loss to guide the fused image to
learn the optimal texture details from source images. On the other hand, with a labeled
mask reflecting the domains of salient thermal targets, we establish a specific adversarial
framework of two kinds of neural networks, i.e., the generator and the discriminator, based
on conditional generative adversarial networks (GAN). Rather than a whole image, the
real data only refers to the salient thermal targets from the source infrared image limited by
the labeled mask (M), i.e., IR⊗M, while the fake date refers to the corresponding regions
of the fused image, i.e., IF ⊗M, which forces the fused image to restore the salient thermal
targets from the source infrared image. In conclusion, our FusionADA can be trained to
generate the fused image with the optimal texture details and salient thermal targets in a
fully end-to-end way without information attenuation.

The main contributions of this paper can be summarized into two aspects as follows.
(i) In order to improve the performance of the advanced driving assistance, we propose
a new fully end-to-end infrared and visible images fusion method, which is achieved
without any manual designs of complex activity level measurements and fusion rules.
(ii) To overcome the predicament of information attenuation, we employ the max-gradient
loss and adversarial learning to learn the optimal texture details and restore the salient
thermal targets, respectively.

The rest of this paper is arranged as follows: In Section 2, we present some related
works with a conspectus of explanations of the advanced driving assistance and existing
deep learning-based fusion methods. The detailed introduction of our FusionADA with
the motivation is presented in Section 3. Section 4 shows the fusion performance of our
FusionADA on public infrared and visible image fusion datasets RoadScene and TNO,
compared with other state-of-the-art methods in terms of both qualitative visual effect and
quantitative metrics. Besides, we carry out the ablation experiment of adversarial learning
in this section, followed by some conclusions in Section 5.
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2. Related Work

In this section, we provide brief explanations of the advanced driving assistance in
smart transportation and deep learning-based fusion methods.

2.1. Advanced Driving Assistance

Advanced driving assistance refers to a kind of integrated system that integrates a
camera detection module, a communication module and a control module, which is of
great benefit for vehicle driving tasks. Specifically, there are different operating principles
and levels of assistance to the drivers. The advanced driving assistance can be divided into
different classes according to the monitored environment, and the used sensors [16]. These
systems will not act completely autonomously, they will only provide relevant information
to drivers and assist them when taking key actions. The proposed infrared and visible
images fusion method relies on exteroceptive sensors, and the information of fused results
is shown on a screen as the visual assistance to the drivers, which can be also incorporated
in automatic recognition by smart transportation.

2.2. Infrared and Visible Image Fusion Based on Deep Learning

In the last several years, the breakthroughs in deep learning have driven the vigorous
development of artificial intelligence, which also provides new ideas for infrared and visible
image fusion. Fusion methods based on deep learning can be roughly divided into two
categories: convolutional neural networks (CNN)-based model and GAN-based model [17].
In the methods based on CNN, Liu et al. [18] firstly established a deep convolutional neural
network to achieve the generations of both activity level measurement and fusion rule,
which are also applied for fusing infrared and visible images. Innovatively, Li et al. [19]
used the architecture of dense block to get more useful features from source images in the
encoding process, followed by a decoder to reconstruct the fused image. Besides, a novel
convolution sparse representation was introduced by Liu et al. [20] for image fusion, where
a hierarchy of layers was built by deconvolutional networks. As for the methods based on
GAN, Ma et al. [21,22] proposed the FusionGAN to fuse infrared and visible images by
adversarial learning, which is also the first time that the GANs are adopted for addressing
the image fusion task. Xu et al. [23] achieved fusion via a conditional generative adversarial
network with dual discriminators (DDcGAN), in which a generator accompanied by two
discriminators is employed to enhance the functional information in IR and texture details
in VI.

3. Proposed Method

In this section, combining the characteristics of infrared and visible images and the
fusion target, we give a detailed introduction to the proposed method, including our fusion
formulation, the network architectures of generator and discriminator, and the definitions
and formulations of loss functions.

3.1. Fusion Formulation

The training procedure of our proposed FusionADA is illustrated in Figure 1. The
infrared images can distinguish the targets from their background based on the dissimilarity
in thermal radiation, but they lack rich texture details. In contrast, the visible images are
able to show relatively richer texture details with high spatial resolution, but they fail to
highlight the salient targets. Besides, for a certain area corresponding to the two source
images, the infrared or visible image may own better texture details. Given an infrared
image IR and a visible image VI, the ultimate goal of our FusionADA is to learn a fuse-
generator G conditioned on them constrained by a content loss. With the labeled mask
M reflecting the domain of salient thermal targets, the fused image IF multiplied by the
labeled mask M, i.e., IF ⊗ M is encouraged to be realistic enough and close enough to
real data, i.e., IR ⊗M, to fool the discriminator D. Meanwhile, the discriminator aims to
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distinguish the fake data (IF ⊗M) from the real data (IR ⊗M). Accordingly, the objective
function of adversarial learning can be formulated as follows:

min
G

max
D

E[log D(IR ⊗M)] +E[log(1− D(IF ⊗M))]. (1)

Conv+LReLU Conv+BN+ReLU Concatenation MultiplyConv+ReLU

Discriminator

Image Scalar

Adversarial

“real” “fake”

IF

IR

VIS

Fuse-Generator

Tanh
FC

M M

Figure 1. The training procedure of FusionADA.

After the continuous optimization of the generator and the adversarial learning of the
generator and the discriminator, the fused image will finally possess the optimal texture
details and salient thermal targets in a fully end-to-end way.

3.2. Network Architecture

Fuse-Generator G: As shown in Figure 1, the Fuse-Generator can be regarded as
an En-decoder structure. In the encoder, for each image, we use a branch to extract
information from it. Adopting the idea of DenseNet [19], each layer is directly connected
with other layers in a feed-forward manner. Since the information extracted from each
source image is not the same, the internal parameters of each branch are also different.
There are four convolutional layers in each branch, and each convolutional layer consists
of the operations of padding and convolution, and the corresponding activation function,
i.e., leaky rectified linear unit (LReLU). In order to avoid the blurring of the image edges
caused by “SAME”, the padding mode of all convolution layers is set as “VALID”. The
additional padding operation placed before convolution is employed to keep the size of
feature maps unchanged and match the size of source images. The kernel sizes of the first
two convolutional layers are set to 5, while the kernel sizes of the latter two convolutional
layers are set to 3. The strides of all convolutional layers are set to 1. Since the number of
output feature maps of each convolutional layer is 16, the number of the final concatenated
output feature maps is 128.

The decoder is used for channel reduction and fusion of the extracted information.
The kernel sizes in all convolutional layers are uniformly set to 1 with the strides setting
to 1, and thus the sizes of feature maps will not change. Therefore, there are no padding
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operations. The activation function of the last convolutional layer is set as Tanh. Moreover,
the specific settings for the number of output channels in all layers are summarized in
Table 1.

Table 1. Input/output channels of all convolutional layers.

Number of Input Channels Number of Output Channels

Encoder

Convolutional layer 1 of branch 1/2 1 16
Convolutional layer 2 of branch 1/2 16 16
Convolutional layer 3 of branch 1/2 32 16
Convolutional layer 4 of branch 1/2 48 16

concatenation 128

Decoder
Convolutional layer 1 128 64
Convolutional layer 2 64 32
Convolutional layer 3 32 1

Discriminator D: The discriminator is added to form an adversarial relationship with
the generator. The input of the discriminator is the real data, i.e., IR ⊗M, or the fake data,
IF ⊗M, and the output is the scalar estimating the probability of the discriminator’s input
image from real data rather than fake data. There are only three convolutional layers in the
discriminator, which is much simpler compared to the Fuse-Generator. The strides of all
convolutional layers are set to 2. After the fully connected layer, the scaler is obtained by
the activation function Tanh.

3.3. Loss Functions

The loss functions in our work are composed of the loss of Fuse-Generator LG and the
loss of discriminator LD.

3.3.1. Fuse-Generator Loss LG

The Fuse-Generator loss includes content loss Lcon
G and adversarial loss Ladv

G , which are
used to extract and reconstruct the basic intensity information accompanying the optimal
texture details and restore the thermal infrared salient targets. With the weight λ controlling
the trade-off between two terms, the Fuse-Generator is defined as follows:

LG = λLcon
G + Ladv

G . (2)

Among them, the content loss Lcon
G has two parts: basic-content loss LSSIM for ex-

tracting and reconstructing the basic intensity information, the max-gradient loss Lgra for
obtaining the optimal texture details, which is formulated as follows:

Lcon
G = LSSIM + ηLgra, (3)

where the η is used to tradeoff the balance of intensity information and gradient variation.
Specifically, the LSSIM is formalized as follows:

LSSIM = ω(1− SSIMVI,IF ) + 1− SSIMIR,IF , (4)

where the ω is employed to tradeoff the balance of intensity information and gradient
variation. The SSIMX,F is the metric to measure the similarity between two images, includ-
ing three different factors of brightness, contrast and structure, which is mathematically
defined as follows:

SSIMX,F =∑
x, f

2µxµ f +C1

µ2
x+µ2

f +C1
·

2σxσf +C2

σ2
x+σ2

f +C2
·

σx f +C3

σxσf +C3
, (5)
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where X and F in our work refer to the source image and fused image, respectively. The
x and f mean the image patches of source image X and fused image F, µ and σ are the
average values and the standard deviation. C1, C2 and C3 are the parameters to make the
metric stable.

Only the basic-content loss LSSIM will cause the issue of information attenuation in
texture details. Therefore, we further employ the max-gradient loss Lgra to obtain the
optimal texture details. Lgra is mathematically formalized as follows:

Lgra =
1

HW
(∇I f − gmax)

2, (6)

where H and W are the height and width of the source images. ∇(·) refers to the step
of calculating the gradient map. The idea of the loss Lgra is to make the gradient map of
the fused image (∇I f ) and the optimal gradient map of the source images gmax tend to be
infinitely similar. The gmax is mathematically defined as follows:

gmax = round(
∇I1 +∇I2

|∇I1 +∇I2 + eps| ) ∗max(|∇I1|, |∇I2|), (7)

where round(·) and max(·) mean the operations of rounding and taking the maximum
value. The eps is a very small value to prevent the denominator from being 0.

The adversarial loss Ladv
G is to further restore the thermal infrared salient targets from

the source IR image in the fused image, which is defined as:

Ladv
G = E[log(1− D(IF ⊗M))], (8)

where M is the labeled mask reflecting the domains of salient thermal targets. When
minimizing Ladv

G , IF ⊗M is encouraged to be realistic enough and close enough to real data,
i.e., IR ⊗M to fool the discriminator D.

3.3.2. Loss of Discriminator LD

The discriminator loss LD is the term that forms an adversarial relationship with the
Fuse-Generator adversarial loss Ladv

G . The LD is formulated as follows:

LD = E[− log(D(IR⊗M))] +E[− log(1− D(IF ⊗M))]. (9)

4. Experimental Results and Analysis

In this section, in order to show the superiority of our proposed FusionADA, we
firstly compare it with 7 state-of-the-art fusion methods on the publicly available dataset
RoadScene (https://github.com/hanna-xu/RoadScene (accessed on 1 December 2021))
qualitatively. Furthermore, we employ 8 metrics to evaluate their fusion results through
qualitative comparisons. In addition, the ablation experiment of the adversarial learning
is conducted. Finally, we show the fusion results of our FusionADA on another publicly
available dataset TNO (https://figshare.com/articles/TNO_Image_Fusion_Dataset/1008
029 (accessed on 1 December 2021)) dataset.

4.1. Experimental Settings

Dataset and Training Details. The training dataset is 45 aligned infrared and visible
image pairs with different scenes selected from RoadScene. In order to improve the training
performance, the tailoring and decomposition are applied as the expansion strategies before
training to obtain a larger dataset. Specifically, the training dataset is uniformly cropped
to 4736 patch pairs of size 128× 128. There are 30 image pairs for testing. In the test
phase, only the trained generator is used to generate the fusion image, and the input source
images only need to be of the same resolution size.

Since this work is based on the adversarial learning of the generative adversarial
network, we design a training strategy to keep the stability of the generative adversarial

https://github.com/hanna-xu/RoadScene
https://figshare.com/articles/TNO_Image_Fusion_Dataset/1008029
https://figshare.com/articles/TNO_Image_Fusion_Dataset/1008029
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network in order to balance the adversarial relationship between the generator and the
discriminator. The overall idea lies in that finding the loss value when the generator and
the discriminator are in balance, and optimizing the generator or the discriminator to
achieve their respective loss values through variable optimization times. The detailed
training details of FusionADA are summarized in Algorithm 1. The λ, η, and ω are set to 3,
100 and 1.23 in Equations (2)–(4), respectively.

Algorithm 1: Training details of FusionADA
Parameter definitions
NG, ND: The numbers of steps for training G, D.
Lmax, Lmin and LGmax are applied to determine a range when training.
Lmax and Lmin mean the adversarial losses of G and D.
LGmax : the total loss of G.
We set Lmax = 1.387, Lmin = 1.386, and LGmax = 0.1 in the first batch empirically

in our work.
1 Initialize θG for G; θD for D.
2 For each training iteration:
3 Train Discriminator D:

• Sample n VI patches {V1, · · · , Vn} and n corresponding IR patches {I1, · · · , In};
• Acquire generated data {F1, · · · , Fn}
• Update Discriminator parameters θD by GradientDescentOptimizer to

minimize LD in Equation (9); (step I)
• While LD > Lmax and ND < 10, repeat step I. ND ← ND + 1;

Train Generator G:

• Sample n VI patches {V1, · · · , Vn} and n corresponding IR patches {I1, · · · , In};
• Acquire generated data {F1, · · · , Fn}
• Update parameters θG by RMSPropOptimizer for minimizing LG in

Equation (2); (step II)
• While LD < Lmin and NG < 10, repeat step II. NG ← NG + 1;
• While LG > LGmax and NG < 10, repeat step II. NG ← NG + 1;

4.2. Comparison Algorithms and Evaluation Metrics

In order to verify the effectiveness of our FusionADA, we show some intuitive results
from our work with 7 other state-of-the-art infrared and visible fusion methods, containing
gradient transfer fusion (GTF) [24], fourth-order partial differential equations (FPDE) [25],
hybrid multi-scale decomposition (HMSD) [26], DenseFuse [19], proportional maintenance
of gradient and intensity (PMGI) [27], unified unsupervised image fusion (U2Fusion) [28],
and generative adversarial network with multi-classification constraints (GANMcC) [29].
Among them, GTF, FPDE and HMSD are fusion methods based on the traditional frame-
work, while DenseFuse, PMGI, U2Fusion and GANMcC are deep learning-based fusion
methods. Besides the intuitive evaluation, to do a more accurate evaluation of the fused
results, we employ eight metrics to evaluate the fusion performance of these eight fu-
sion methods, including standard deviation (SD) [30], spatial frequency (SF) [30], entropy
(EN) [31], mean gradient (MG) and edge intensity (EI) [32] that measure the fused image it-
self, feature mutual information (FMI), the sum of the correlations of differences (SCD) [33],
and visual information fidelity (VIF) [33] that measure the correlation between the fused
image and source images. Specifically, SD, SF, EN, MG and EI are used to evaluate the
contrast, frequency, amount of information, details, gradient amplitude of the edge point
in the fused image, respectively. FMI is used to evaluate the amount of feature information
that is transferred from source images to the fused image. SCD and VIF are used to measure
the sum of the correlations of differences and information fidelity, respectively.
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4.3. Qualitative Comparisons

There are four representative and intuitive fusion results of eight methods on infrared
and visible images from the RoadScene dataset in Figures 2–5. Compared to the existing
seven other comparative fusion methods, our fused results show three obvious advantages.
First, The salient thermal targets can be characterized clearly in our fused images, such as
the pedestrians in Figures 2, 3 and 5, and the driver and passenger who got off the bus
halfway in Figure 4 (all shown in the green boxes). The targets in the fused results of other
methods all look dimmer compared to our results. Due to the salient thermal targets in
our fused images, the drivers and machines can identify targets more easily and accurately,
which facilitates the subsequent operations. Second, the scenes in our fused results show
richer texture details, such as the schoolbag in Figure 2, the signs in Figures 3 and 4 and the
pavement marking in Figure 5 (all shown in the enlarged red boxes). Some scenes in the
results of other methods seem fuzzier. The rich texture details are more conducive to scene
understanding for the drivers and machines. Last but not the least, our results look cleaner
than others without redundant fog or noise compared with the results of other methods.

VIS

IR

GTF FPDE DenseFuse

PMGI U2Fusion FusionADA

VIS GTF FPDE DenseFuse

IR PMGI U2Fusion FusionADA

HMSD

GANMcC

HMSD

GANMcC

Figure 2. Qualitative comparison of FusionADA with corresponding seven state-of-the-art methods
on the “building” image pair from the RoadScene dataset. From left to right, from top to bottom:
source VIS image, the fused results of gradient transfer fusion (GTF), fourth-order partial differential
equations (FPDE), hybrid multi-scale decomposition (HMSD) and DenseFuse. source IR image,
the fused results of PMGI, U2Fusion, GANMcC and our FusionADA.

VIS

IR

GTF FPDE DenseFuse

PMGI U2Fusion FusionADA

VIS GTF FPDE DenseFuse

IR PMGI U2Fusion FusionADA

HMSD

GANMcC

HMSD

GANMcC

Figure 3. Qualitative comparison of FusionADA with corresponding seven state-of-the-art methods
on the “crossroad 1” image pair from the RoadScene dataset.
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VIS

IR

GTF FPDE DenseFuse

PMGI U2Fusion FusionADA

VIS

IR

GTF FPDE DenseFuse

PMGI U2Fusion FusionADA

HMSD

GANMcC

HMSD

GANMcC

Figure 4. Qualitative comparison of FusionADA with corresponding seven state-of-the-art methods
on the “crossroad 2” image pair from the RoadScene dataset.

VIS

IR

GTF FPDE DenseFuse

PMGI U2Fusion FusionADA

VIS

IR

GTF FPDE DenseFuse

PMGI U2Fusion FusionADA

HMSD

GANMcC

HMSD

GANMcC

Figure 5. Qualitative comparison of FusionADA with corresponding seven state-of-the-art methods
on the “road” image pair from the RoadScene dataset.

4.4. Quantitative Comparisons

To have a more comprehensive and objective evaluation of the experimental results.
We selected 30 test pairs of infrared and visible images randomly to further perform
quantitative comparisons of our FusionADA with the competitors on eight fusion metrics.
Each test image pair is aligned with the same resolution. The results of their values are
summarized in Table 2. It is worth noting that our FusionADA can almost reach the optimal
or suboptimal mean values on the eight metrics. For the metrics MG, EI, FMI and SCD,
our FusionADA can also achieve comparable results with the suboptimal average values,
only following behind a certain method by a narrow margin. It can be concluded that our
results contain stronger contrast, richer texture details, more information and are closer to
source images with less distortion.

In addition, we also provide the mean and standard deviation of runtime for eight
methods in Table 3. Although our FusionADA does not achieve optimal efficiency, it still
plays a comparable role.

Table 2. Quantitative comparison of our FusionADA for infrared and visible image fusion with 5 other comparative
methods. The average and standard deviation values of eight metrics for different methods are provided; red: optimal
average values, blue: suboptimal average values.

SD SF EN MG EI FMI SCD VIF

GTF 0.1823± 0.0712 0.0295± 0.0117 7.3142± 0.5122 0.0118± 0.0088 0.1083± 0.0321 0.8863± 0.0452 0.9835± 0.0425 0.5313± 0.1532
FPDE 0.1337± 0.0712 0.0393± 0.0821 6.9404± 0.5213 0.0200± 0.0400 0.1668± 0.3251 0.8659± 0.0635 1.0919± 0.6356 0.4991± 0.2985

HMSD 0.1741± 0.1029 0.0497± 0.0212 7.3015± 2.3251 0.0210± 0.1254 0.2423± 0.1254 0.8701± 0.2563 1.4882± 0.5632 0.8572± 0.2153
DenseFuse 0.1733± 0.1325 0.0398± 0.0215 7.2950± 0.3261 0.0192± 0.0071 0.1625± 0.0512 0.8749± 0.0421 1.6316± 0.2123 0.7597± 0.7235

PMGI 0.1519± 0.0852 0.0399± 0.0212 7.1091± 0.4213 0.0188± 0.0057 0.1655± 0.0564 0.8718± 0.0432 1.2878± 0.8421 0.7424± 0.5231
U2Fusion 0.1625± 0.0721 0.0493± 0.0164 7.2328± 0.5231 0.0237± 0.0085 0.2116± 0.1021 0.8716± 0.0421 1.4837± 0.4351 0.9337± 0.9013
GANMcC 0.1702± 0.0632 0.0341± 0.0123 7.2345± 1.2362 0.0163± 0.0632 0.1506± 0.0965 0.8605± 0.3526 1.5819± 0.3215 0.6832± 0.1321

FusionADA 0.1863± 0.0753 0.0509± 0.0301 7.3456± 0.2365 0.0221± 0.0102 0.1851± 0.1212 0.8801± 0.0462 1.5825± 0.3251 0.9619± 0.6324



Entropy 2021, 23, 239 10 of 12

Table 3. The average and standard deviation of running time for eight methods. (unit: second).

GTF FPDE HMSD DenseFuse PMGI U2Fusion GANMcC FusionADA

Running Time 2.72± 1.20 0.95± 0.38 0.59± 0.15 0.29± 0.04 0.14± 0.03 0.98± 0.45 0.295± 0.32 0.10± 0.01

4.5. Ablation Experiment of Adversarial Learning

The adversarial learning with a labeled mask is further employed in our FusionADA
to restore the salient thermal targets from the source infrared image. To show the effect
of adversarial learning, the following comparative experiments are conducted: (a) the
adversarial learning is not applied; (b) the adversarial learning is applied. The experimental
settings in other parts of the ablation experiments are the same. As can be seen from
Figure 6, the fused results with adversarial learning own more salient thermal targets,
which is more beneficial to the drivers and machines to identify the targets. Therefore,
we can conclude that adversarial learning plays an important part in the fusion process.

VIS IR Results of (a) Results of (b)

Figure 6. Results on whether the adversarial learning exists. From left to right: source VIS image,
source IR image, the fused results without adversarial learning, the fused results of our FusionADA
(with adversarial learning).

4.6. Generalization Performance

Our FusionADA also performs well on other datasets. To show the performance of
our FusionADA on other datasets, we choose the TNO dataset to carry out the experiments
without retraining the fusion methods. In particular, we choose two state-of-the-art meth-
ods HMSD and GANMcC that perform well on RoadScene to be the comparative methods
with our FusionADA. The intuitive fusion results are presented in Figure 7. By contrast,
with less noise, the salient thermal targets can be characterized more clearly and the richer
texture details are contained in our results, which can be concluded that our FusionADA
has good generalization performance and obtains excellent fusion results on other datasets.

VIS IR HMSD U2Fusion FusionADA

Figure 7. Fusion results on the TNO dataset.
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5. Conclusion

In this paper, we propose a novel end-to-end fusion model for advanced driving
assistance to obtain key and rich visual information under sophisticated road conditions,
called FusionADA. Specifically, we achieve our FusionADA by fusing the infrared and
visible images from infrared and visible sensors. For drivers and machines, based on the
scenes, the salient thermal targets and rich texture details are indispensable for identifying
targets easily and accurately. Therefore, in our model, we guide the generator to generate
the optimal texture details from source images. Meanwhile, we constitute an adversarial
framework with a labeled mask to further restore the salient thermal targets from the
source infrared image. In addition, our FusionADA is achieved in a fully end-to-end way,
which avoids manually designing complicated activity level measurements and fusion
rules. The adequate experimental results reveal that our FusionADA not only presents
better visual performance compared with other state-of-the-art methods, but also preserves
the maximum or approximate maximum amount of features from source images.
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