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Abstract: Nowadays, deep learning methods with high structural complexity and flexibility in-
evitably lean on the computational capability of the hardware. A platform with high-performance
GPUs and large amounts of memory could support neural networks having large numbers of layers
and kernels. However, naively pursuing high-cost hardware would probably drag the technical
development of deep learning methods. In the article, we thus establish a new preprocessing method
to reduce the computational complexity of the neural networks. Inspired by the band theory of solids
in physics, we map the image space into a noninteraction physical system isomorphically and then
treat image voxels as particle-like clusters. Then, we reconstruct the Fermi–Dirac distribution to be a
correction function for the normalization of the voxel intensity and as a filter of insignificant cluster
components. The filtered clusters at the circumstance can delineate the morphological heterogeneity
of the image voxels. We used the BraTS 2019 datasets and the dimensional fusion U-net for the
algorithmic validation, and the proposed Fermi–Dirac correction function exhibited comparable
performance to other employed preprocessing methods. By comparing to the conventional z-score
normalization function and the Gamma correction function, the proposed algorithm can save at least
38% of computational time cost under a low-cost hardware architecture. Even though the correction
function of global histogram equalization has the lowest computational time among the employed
correction functions, the proposed Fermi–Dirac correction function exhibits better capabilities of
image augmentation and segmentation.

Keywords: computational complexity; dimensional fusion U-net; Fermi–Dirac distribution; im-
age segmentation

1. Introduction

Deep learning methods at present are playing an indispensable role in the field
of computer vision. The relevant fruitful achievements also facilitate and change the
fashion of synergy between clinical diagnosis and computerized assistance. The scope
of application covers the demands of computer-guided pathological inspection [1–4],
brain neural circuit mapping and tracking [1,5–9], specific tissue detection in image-based
datasets [5,10–13], and other clinical applications. Among these applications, neural
network (NN)-based recognition methods that are capable of detecting life-threatening
abnormalities from image-based datasets especially attract the attention of both scientific
and engineering participants [2,11,14–17] and gradually replace conventional approaches.
Within these techniques, the emergence of fully convolutional neural networks (FCN) has
successfully acquired more attention, and the FCN-based methods have further elevated
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the performance of convolutional neural networks (CNNs) in the field of modern medical
image recognition and segmentation [15,18–20]. In applications of clinical practice, on the
other hand, the medical image datasets are often sparse, so the technical development
in these fields is leading by the NN models that are suitable for dealing with small-size
datasets. Thus, starting from FCN, over V-net [15], U-net [21–23], and the auxiliary of
feature extraction blocks [24–26], then to the attention U-net [27,28] and dimension fusion U-
net (D-Unet) [29], the relevant methods gradually become the developing core in medical
image analysis. Meanwhile, due to the extremely high mortality [1,13], the modality
investigations of malignant brain tumors have also affected the mainstream techniques of
the brain tumor image segmentation [1,30] and the procedures of image-guided surgery.

However, for pursuing the performance of model prediction, continuing to increase
model depths and kernel numbers would become the burden of hardware architecture
in the points of view of power control and the maintenance of computational complexity.
For instance, the consumption of GPU memory and the computational complexity are all
proportional to the size and number of convolutional kernels. Large numbers of parameters
in training procedures also challenge the memory sizes of GPUs, the design of algorithmic
schemes, and power requirements [14]. Additionally, the labor intervention and time cost
in the stage of data labeling also obstruct the progression of technical development. Thus,
the development of deep learning methods would step into the inevitable situations of high-
cost hardware and high computational complexity configuration [14,16]. The combination
of contour-based models and statistical-learning-based methods offer alleviant approaches
by utilizing prior information [3,31–34] to reduce the high-cost scheme caused by the deep
learning schemes. For instance, the statistical models of the random walks are used for
tracking and segmenting thin and elongated image components by assigning seed points on
the ends of these components [35]. Region-based contour models combined with statistical
classification processes have been utilized to solve the problems of intensity inhomogeneity
that occurred within image blocks [36–38] by arranging curve functions on the blocks of
interest. Nevertheless, the manual intervention of the combinatorial approaches also causes
different problems in artificially predefining labels of seeded image components [14,39–41].
Physical-based methods also offer another track to deal with these undergoing problems.
The data density functional theory (DDFT) successfully extracts the intensity features
from brain tumor image datasets by estimating the morphological heterogeneity in energy
spaces [42,43] so that it may remove the undesired manual intervention. However, the
architecture that can bridge the deep learning procedures and DDFT has not appeared yet.

Therefore, inspired by the merits of the physical framework of DDFT and also consider-
ing the advantages of deep learning methods, we introduced the Fermi–Dirac distribution
to be a correction function in the following procedures. By employing the theoretical
scheme of DDFT, we mapped the three-dimensional image space into a noninteracting
physical system and treated each image voxel as a physical particle. Under this condition,
the Fermi–Dirac distribution was used to analyze the particle behavior and classify these
particle clusters according to their intrinsic energies. Thus, the particle clusters formed a
specific morphological structure according to their energy property in the physical system.
The estimates were then mapped back to the image space, and the image voxels were
decomposed by considering their morphological heterogeneity. In the article, we compared
the performance of the Fermi–Dirac correction function in Unet-based architectures. The
experimental results validated the superiority of the proposed Fermi–Dirac correction
function under the purpose of computational complexity reduction.

2. Datasets and Methods
2.1. Datasets

For fair comparisons, we employed the open datasets from the multimodal brain tu-
mor segmentation challenge (BraTS) 2019 [44,45] to test the proposed algorithmic schemes.
The type of datasets includes T1, T1-CE (T1-weighted contrast-enhanced), T2-weighted,
and T2-FLAIR (Fluid-Attenuated Inversion Recovery). The datasets were skull-stripped,
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interpolated to the same resolution, and labeled by experienced neuro-radiologists. There
are four labeled types for the tumor anatomic structures, which comprise the enhancing
tumor (ET), the peritumoral edema, the necrotic and nonenhancing tumor core (TC), and
the background. There are 300 testing sets and 35 validation sets, and 155 pieces of images
in each individual set. The dimensions of each image size are 240 pixels both for height
and width, and all of the images are in axial views.

2.2. Theoretical Scheme of Fermi–Dirac Correction Function

According to the theoretical framework of DDFT, an arbitrary high-dimensional
image space can be isomorphically mapped into a pseudo-physical space with the same
dimensionality once the data length is fixed [42]. Then, image voxel components are
correspondingly mapped as particle-like clusters. Thus, there exists a bijective relation
between the voxel intensity distribution and the Fermi hypersurface function. In other
words, the voxel intensity can be mapped as a corresponding energy value within the
pseudo-physical space. The voxel intensity distribution becomes a function of the Fermi
hypersurface function under this theoretical framework, and vice versa. As the Fermi
hypersurface function has an adequately theoretical definition in the pseudo-physical
space [42], we could safely introduce appropriate physical properties to deal with the
encountering situations. For instance, the Hamiltonian curves and the Lagrangian density
functional could be exploited to measure the most-possible-cluster numbers and cluster
boundaries, respectively [42,46]. Thus, we can delineate the morphological structure
of images by applying these properties of energy under the framework of DDFT. For
image segmentation, we introduced a specific particle distribution in terms of energy
properties, named Fermi–Dirac distribution, to analyze and pre-decompose the image
clusters according to their morphological structures.

Under the DDFT framework, the pseudo-physical space is spanned onto a nonin-
teracting (or weakly interacting) system so that we can establish required conditions by
considering each cluster to be a subsystem and each particle (mapped from a voxel in
the image space) to be in a single-particle state. Additionally, as the locations and the
corresponding intensity distribution of voxels within an image space are all fixed, there is
no interaction between voxels, and this space can be treated as a stationary and “frozen”
system. In other words, the clusters will not exchange particles and energy with their
surroundings in the noninteracting system; thus, we can exploit an additional condition
of zero temperature into this system. Thus, the probability of observing the number of
particles n in the single-particle state can be estimated by introducing the perspective of
thermodynamic properties:

Pn =
e−(nε−nεF)/εb

Z
, (1)

where the parameters ε, εF, and εb are the energy of the single-particle state, the Fermi
energy at zero temperature, and the correction energy for dimensional balance, respectively.
The symbol Z represents a partition function for the subsystem of interest:

Z = ∑
n

[
e−(ε−εF)/εb

]n
. (2)

The grand potential GV can be then defined by designating the particles to be pseudo-
fermions or pseudo-bosons, respectively:

GV =


εb ln

1
∑

n=0
Z = εb ln

{
1 + e−(ε−εF)/εb

}
, for pseudo− fermions

εb ln
∞
∑

n=0
Z = −εb ln

{
1− e−(ε−εF)/εb

}
, for pseudo− bosons

. (3)
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Then, the corresponding particle distribution functions for each particle type can be ex-
pressed formally:

n̂ =
∂GV
∂εF

=

{ 1
e(ε−εF)/εb+1

, for pseudo− fermions
1

e(ε−εF)/εb−1
, for pseudo− bosons

. (4)

The expressions of these distributions are the well-known Fermi–Dirac (FD) distribution
and Bose–Einstein (BE) distribution, respectively. Equation (4) lists their representations in
our proposed pseudo-physical system. It should be emphasized that the n takes 0 and 1 for
pseudo-fermions and 0, 1, 2, . . . , ∞ for pseudo-bosons. Theoretically, the maximum of n in
different particle types (fermions or bosons) represents the maximum capacity of particles
a single-particle state can contain.

We found an interesting phenomenon by simultaneously comparing the theoretical
form of the FD distribution to that of the sigmoid function and the z-score normalization.
The coarse form of the FD distribution is exactly the sigmoid function, so the pseudo-
particle distribution will be squeezed into the range of [0, 1] as expected. On the other hand,
as the form of the mathematical kernel of the FD distribution, (ε− εF)/εb, is also similar to
the z-score normalization, we found a route to determine well the parameter definitions
of pseudo-energy by comparing their parameters. Due to the voxel intensity in the image
space and the energy in the pseudo-physical space being bijective, we correspondingly
assigned these parameters, ε, εF, and εb, to be the intensity value distribution of each image,
the global mean intensity of each testing set, and the minus global standard deviation of
intensity of each testing set, respectively. Thus, the FD distribution exhibits its own mathe-
matical merits for data processing by fusing the characteristics of the sigmoid function and
the z-score normalization. Mathematically, we can clarify the difference between the FD
and the BE distributions by examining their behavior under extreme conditions. When the
value of ε− εF in the kernel approaches zero, it also means that the intensity approaches its
mean value in the subsystem, the value of the FD distribution will reach 0.5, whereas that
of the BE distribution will approach infinity. Thus, the BE distribution intrinsically reveals
its own anti-behavior compared to the sigmoid function. When the kernel is much larger
than 1, both FD and BE distributions will have the same mathematical form n̂ ≈ e−(ε−εF)/εb .
This form is also a well-known Maxwell–Boltzmann (MB) distribution. Figure 1 illustrates
each mathematical behavior of the mentioned distributions with different values of minus
global standard deviation εb.

As the bosons are allowed to have the same energy value, it would lead to a conse-
quence that all of the voxels are classified in the same cluster and become indistinguishable.
On the other hand, the intrinsic mathematical form of the BE distribution also causes itself
to be an infinite value while the voxel intensity approaches its mean value; thus, these
inconvenient properties make the BE distribution hardly a correction function for data
normalization and data filtering in the data processing. A similar situation would happen
to the MB distribution. Additionally, it is also impracticable to estimate the mean intensity
of each subsystem technically due to the undesired computational complexity; thus, we
utilized the global mean intensity of the whole system to conquer this issue. Therefore,
by considering both the theoretical and the technical merits, the FD distribution is more
suitable as a correction function in the data preprocessing procedures.
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Figure 1. The model estimations of proposed distributions. In the model estimations, the global mean value is εF = 125
and the value ε ∈ [1, 255]. (a) Difference comparison of the three proposed distributions, and the minus global standard
deviation is εb = −1. (b) Behavior of the Fermi–Dirac (FD) distribution with different εb values. (c,d) The same situations
but with Bose–Einstein (BE) and Maxwell–Boltzmann (MB) distribution, respectively.

2.3. Experimental Framework

To test the performance of the proposed FD correction function, we employed the
conventional preprocessing methods, a z-score normalization function, a Gamma correction
function, and a three-dimensional (3D) global histogram equalization function [47], for
the performance comparison and used a null-preprocess as a baseline. As mentioned
above, the mathematical structure of the FD correction function was established by a
coarse skeleton and a kernel embedded in the skeleton. Theoretically, the skeleton is a
sigmoid function, and the kernel function has the same form as the z-score normalization
function. Thus, we adopted the z-score normalization function as one of the preprocessing
ways for a fair comparison of performance and then investigated the differences between
these functions. On the other hand, we also adopted the Gamma correction function
due to its performance being adjustable by assigning an appropriate parameter. Thus,
we can also compare the performance of conventional supervised correction functions
to the proposed FD correction function. The way to determine the optimized Gamma
parameter directly relies on a large number of experiments. We extracted the Gamma
parameters in a set of {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5, 2}. According to the performance
of image segmentation, we adopted the value of 0.6 as the Gamma parameter due to
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it offering the best performance in the image segmentation. Finally, we compared the
capability between the global histogram equalization function and our functions on the
topic of image augmentation.

Thus, five preprocessing scenarios were employed for the performance compari-
son under a specific neural network model. To achieve this purpose, we utilized the
D-Unet-based structure for the brain tumor image segmentation. Figure 2 illustrates the
relevant framework. D-Unet is established based on the conventional U-net structure,
and thus, its structure is suitable for dealing with small-size datasets. Furthermore, a
delicate function component named the dimension-transform-block [29] is employed in
the encoding procedure of D-Unet, then all of the two- and three-dimensional extracted
features would be fused through these blocks. As illustrated in Figure 2, two dimension-
transform-blocks (indicated as the red columns) were used in the proposed D-Unet scheme.
Meanwhile, to reduce the undesired computational cost, only the fused features and the
two-dimensional features are fed into the decoding procedure. Thus, the D-Unet struc-
ture can simultaneously preserve the significant high-dimensional features and offer an
acceptable computational cost. Under the framework of the employed D-Unet structure,
the dimensions of image sizes were scaled down to 160 pixels both for height and width,
and the input types of each image included four channels, T1, T1-CE, T2-weighted, and
T2-FLAIR. The adopted numbers of filters are indicated above each layer, and only one
channel, the whole tumor (WT), would be output for the performance comparison. The
output activation layer was a sigmoid function. The number of epochs and batch size were
set to 30 and 32, respectively, for all preprocessing scenarios. The optimizer and the loss
function were Adam and the three-dimensional soft dice loss function [48,49], respectively.
The analytic form of the soft dice loss function is [15,48–50]:

DL = 1− 2 ∑N
i pigi + ε

∑N
i p2

i + ∑N
i g2

i + ε
. (5)

The number N is the total data length and the symbol ε = 10−5 was adopted to avoid DL
diverging. The parameters pi ∈ {0, 1} and gi ∈ {0, 1} are respectively the binary predicted
segmentation and ground truth labeling. Ref. [50] offers the source codes of the soft dice
loss. The initial value of the learning rate of all scenarios is set to 0.00015. The relevant
model parameters and functions are collected and listed in Table 1.

Table 1. Model parameters and relevant functions.

Parameter/Function Value/Method

Number of epochs 30
Batch size 32

Learning rate
(Initial value) 0.00015

Loss function 3D soft dice loss function
Optimizer Adam
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Figure 2. The framework of the D-Unet-based structure for the brain tumor image segmentation. The original image sizes
are 240 pixels, and we rescaled the input sizes to 160 pixels to match the requirements of the adopted neural network models.
The third-dimensional value of 160 × 160 × 4 used in the 2D Unet represents four-type images, include T1, T1-weighted
contrast-enhanced (T1-CE), T2-weighted, and T2-fluid-attenuated inversion recovery (FLAIR), and so does that used in the
3D feature extraction procedure. The fourth dimension value of 160 × 160 × 4 × 1 in the 3D feature extraction procedure
represents the number of trials. The dimension-transform-blocks were used to fuse the two- and three-dimensional features
in the encoding procedure, and only fused- and two-dimensional features were used for the information decoding. Thus,
these procedures can offer a trade-off between high-dimensional information and computational complexity.

3. Results

All of the experiments were executed with the hardware specification of i9-9980XE
CPU @ 3 GHz, 18 cores, and one GPU of NVIDIA GeForce RTX 2080 Ti. Figure 3 illustrates
the visualized comparison between the employed preprocessing methods and the proposed
FD correction function. To theoretically inspect the capability of the FD correction function,
two values of εb were used to construct the kernel. The corresponding values for FD1
and FD2 correction functions were εb = −1 and εb = minus the global standard deviation
of intensity of each testing set, respectively. In the words, the FD2 correction function is
a standard FD correction function. To clarify the main difference between FD1 and FD2
correction functions, their analytical forms are:

FD1 =
1

e−(ε−εF) + 1
and FD2 =

1
e−(ε−εF)/|εb | + 1

. (6)

By comparing to the results of other preprocessing methods, all of the proposed FD-type
correction functions can remove the insignificant components of the brain tissue images,
especially for the cases of T2 and T2-FLAIR images. Meanwhile, the FD2 correction function
can further enhance the filtered image components, and so did the 3D global histogram
equalization function. The z-score normalization and the Gamma correction functions
exhibit similar preprocessing results.



Entropy 2021, 23, 223 8 of 14

Figure 3. The figure shows the visualized results from the employed preprocessing methods and the proposed FD-type
correction functions. Two values of εb were individually employed to estimate the kernel, and the corresponding results are
illustrated in the second and third columns. The proposed FD-type correction functions exhibit the capability not only for
image intensity normalization but also for image component filtering. The following columns list the preprocessed results
using the other employed methods.

The performance comparison of all preprocessing scenarios is listed in Table 2. The
dice score of WT without any preprocessing is the lowest one as expected, and thus, we
used its corresponding computational time as the baseline. All dice scores of the employed
preprocessing methods are similar, and the FD-type correction functions present slightly
high scores. Even though the dice score of the z-score normalization function reaches
a good level, its computational time is much higher than that of baseline. It might be
that the execution efficiency of this method was not optimized. On the other hand, the
Gamma correction function also exhibits good performance in both the dice score and the
corresponding computational time. However, it costed a large number of experiments
and labor intervention to choose the optimized gamma parameter. In our experiments,
the final optimized parameter of the Gamma correction function was 0.6. Although the
dice score of the 3D global histogram equalization function is the lowest one compared to
all employed methods, its computational time reveals the superior performance. Table 3
represents a confusion-matrix table to show the comparison of accuracy, sensitivity (recall),
and precision between the proposed FD-type correction functions and the conventional
correction methods. The definition of each indicator is as follows [51,52]:

Accuracy =
TP + TN

TP + TN + FP + FN
, (7)
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Recall(Sensitivity) =
TP

TP + FN
, (8)

Precision =
TP

TP + FP
. (9)

The factors TP, TN, FP, and FN are the true positive, true negative, false positive, and false
negative, respectively. The total summation of these four factors is around 812,535 with
a small residual error. Then, the total number of tumors is defined as TP + FN and has a
value of about 21,191.

Table 2. Performance comparison between the conventional preprocessing methods and the proposed
FD-type correction functions. This table only lists the dice scores of the whole tumor (WT). Numbers
in bold show the best records.

Preprocessing Method Dice Score (WT only) Computational Time (min)

Null 0.7183 91
z-score Normalization 0.9296 142

3D Global Histogram Equalization 0.9148 84
Gamma Correction 1 0.9319 93

FD1 correction 0.9431 88
FD2 correction 0.9347 90

1 The gamma parameter = 0.6.

Table 3. The confusion-matrix table. It shows the comparison of accuracy, sensitivity (recall), and precision between the
proposed FD-type correction functions and the conventional correction methods. Numbers in bold show the best records.

Preprocessing
Method

Validation Stage (WT Only)

TP TN FP FN Accuracy Recall Precision

Null 15,306 789,342 2003 5886 0.9901 0.71 0.85
z-score

Normalization 19,512 789,570 1776 1680 0.9957 0.90 0.90

3D Global Histogram
Equalization 19,293 789,400 1947 1899 0.9952 0.89 0.89

Gamma Correction 1 18,603 790,100 1248 2562 0.9953 0.86 0.92
FD1 correction 19,180 790,010 1339 2012 0.9959 0.89 0.91
FD2 correction 19,471 789,500 1841 1721 0.9956 0.90 0.89

1 The gamma parameter = 0.6.

Thus, we further compared the performance between the 3D global histogram equal-
ization function and the proposed FD-type correction functions, wherein the tumor labels
were categorized into WT, TC, and ET in detail. The output channels of the D-Unet became
three branches. Tables 4 and 5 respectively list the performance comparison and the cor-
responding confusion-matrix table. We preserved all of the model parameters for a fair
comparison but replaced the output layer with a softmax activation function for multi-label
detections. We also presented the corresponding dice scores of each label for the training
stage and the validation stage. As expected, the dice scores of the validation stage are
much lower than those of the training stage. All computational times in this experiment are
comparable, but the required time costs were all raised due to the multi-label detections. In
this experiment, all of the dice scores of the FD-type correction functions are higher than
that of the 3D global histogram equalization function. We might deduce these reasons by
utilizing their visualized results, as illustrated in Figure 4.
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Table 4. Further performance comparison between the 3D global histogram equalization function
and the proposed FD-type correction functions. The dice scores of the tumor components categorized
as WT, tumor core (TC), and enhancing tumor (ET) are individually presented for the comparison.
Numbers in bold show the best records.

Preprocessing
Method

Dice Score Computational
Time (min)Training Stage Validation Stage

3D Global
Histogram

Equalization

WT: 0.9220 0.8002
138TC: 0.9419 0.7688

ET: 0.9142 0.6365

FD1 correction
WT: 0.9491 0.8337

140TC: 0.9757 0.7976
ET: 0.9559 0.6802

FD2 correction
WT: 0.9336 0.8433

141TC: 0.9773 0.8041
ET: 0.9606 0.6848

Table 5. The confusion-matrix table. Numbers in bold show the best records.

Preprocessing
Method

Validation Stage

TP TN FP FN Accuracy Recall Precision

3D Global
Histogram

Equalization

WT: 18,910 789,880 1465 2281 0.9953 0.89 0.89
TC: 7818 801,309 1490 1918 0.9958 0.80 0.84
ET: 3141 807,914 700 780 0.9981 0.80 0.82

FD1 correction
WT: 18,949 789,874 1470 2242 0.9954 0.89 0.93
TC: 7627 801,691 1107 2110 0.9960 0.78 0.87
ET: 3007 808,156 459 914 0.9983 0.77 0.87

FD2 correction
WT: 19,240 789,955 1340 1952 0.9959 0.91 0.93
TC: 7966 801,841 958 1772 0.9966 0.82 0.89
ET: 3153 808,200 415 768 0.9998 0.80 0.88

Figure 4. Cont.
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Figure 4. The visualized comparison between the 3D global histogram equalization function and the proposed FD-type
correction functions. (a) The preprocessing results dealing with these functions, and (b) the predicted results of the tumor
image segmentation categorized into ET, TC, and WT, and their corresponding ground truths.

All types of image sets were processed with the 3D global histogram equalization
function and the proposed FD-type correction functions, and the preprocessed images
are illustrated in Figure 4a. The image inclinations resulted from the augmentation of
affine transformations. Then, the corresponding results of brain tumor image segmentation
are illustrated in Figure 4b. As the tumor recognition of ET type is typically hard, the
corresponding dice scores are quite low, as listed in Table 3, for all employed preprocessing
methods. The visualized results of the ET type illustrated in Figure 4b reflect this fact. We
can recognize that the image structures of ET type are meticulous compared to TC and WT,
and thus, that it would cause difficulty in the ET tumor image recognition. It should also
be emphasized that the segmented results of TC and WT types are similar in all employed
methods in the experiments. Then, the FD2 correction function shows better performance
in recognizing the ET tumor edges than the other two methods. Therefore, the results
validate that the FD2 correction function, i.e., the FD correction function with a kernel
of z-score normalization function, exhibits superior performance in both computational
time reduction and brain tumor image segmentation by comparing other conventional
preprocessing methods.

4. Discussion and Conclusions

We theoretically reconstructed the Fermi–Dirac distribution function to be a correction
function for brain tumor image segmentation. The skeleton form and the kernel of the
proposed Fermi–Dirac correction function are respectively a sigmoid function and a z-score
normalization function. Thus, the Fermi–Dirac correction function inherits the merits
of these functions. It is suitable for dealing with intensity normalization and filtering
insignificant image components simultaneously. We also explained the mathematical
inconvenience of the Bose–Einstein and Maxwell–Boltzmann distribution functions in
imaging processing.

We then compared the performance of the proposed correction function with other
conventional preprocessing methods, such as the standard z-score normalization, the
Gamma correction, and the three-dimensional global histogram equalization. We also
changed the normalization factor of the kernel to inspect the mathematical properties of
the proposed Fermi–Dirac correction functions. The experimental consequences validated
that the proposed correction function can have better computational cost than those of
conventional and supervised methods. Then, the proposed correction function would
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inhibit the insignificant image components and enhance the filtered image segments. As the
experimental results also showed that the three-dimensional global histogram equalization
can offer a similar computational capability as the proposed correction method, we further
fed those methods into a complete comparison. The experimental results validate the
superiority of the proposed Fermi–Dirac correction function.

In further performance comparison, the proposed Fermi–Dirac correction function
exhibits its superior computational and recognizing capability for the brain tumor image
segmentation with the multimodal types of ET, TC, and WT. Therefore, the proposed
Fermi–Dirac correction function can not only reduce the computational complexity but
also reinforce the image component recognition and segmentation.
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