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Abstract: The main influencing factors of the clustering effect of the k-means algorithm are the
selection of the initial clustering center and the distance measurement between the sample points.
The traditional k-mean algorithm uses Euclidean distance to measure the distance between sample
points, thus it suffers from low differentiation of attributes between sample points and is prone
to local optimal solutions. For this feature, this paper proposes an improved k-means algorithm
based on evidence distance. Firstly, the attribute values of sample points are modelled as the basic
probability assignment (BPA) of sample points. Then, the traditional Euclidean distance is replaced
by the evidence distance for measuring the distance between sample points, and finally k-means
clustering is carried out using UCI data. Experimental comparisons are made with the traditional
k-means algorithm, the k-means algorithm based on the aggregation distance parameter, and the
Gaussian mixture model. The experimental results show that the improved k-means algorithm based
on evidence distance proposed in this paper has a better clustering effect and the convergence of the
algorithm is also better.

Keywords: k-means clustering; evidence distance; cluster analysis; evidence theory

1. Introduction

With the rapid development of technologies such as cloud computing and the internet
of things [1,2], the number of connected devices is increasing and the data generated
during human–computer interaction and system operation is growing exponentially [3–5].
In response to fast-growing data, data mining technology is constantly updated and
iterated [6–8]. Clustering is a method of data mining [9]. A data set is divided into multiple
clusters through a certain process [10,11]. Data similarity within clusters is high, while
data similarity between clusters is low [12–14]. Depending on the clustering method and
characteristics, clustering algorithms can be classified as: divisional, hierarchical, density
algorithms, graph theoretic clustering, grid algorithms, model algorithms, etc. [15,16].

The k-means algorithm has been widely used due to its simple algorithm idea, easy
implementation, and high efficiency when processing large-scale data [17,18]. However,
the traditional k-means algorithm has major limitations [19,20]. For example, when using
Euclidean distance calculations, the degree of discrimination between clusters is low
and the output results in unstable values [21,22]. In view of the shortcomings of the
traditional k-means algorithm, the k-means algorithm can be improved from different
perspectives, such as random sampling, distance optimization, and density estimation
methods [23]. Better results can be obtained by improving the method of measuring
distances between sample points. Researchers at home and abroad have done a lot of
research on distance optimization. Tang et al. [24] proposed the d-k-means algorithm, which
weighs the influence of density and distance on clustering based on traditional algorithms,

Entropy 2021, 23, 1550. https://doi.org/10.3390/e23111550 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-2568-9628
https://doi.org/10.3390/e23111550
https://doi.org/10.3390/e23111550
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23111550
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23111550?type=check_update&version=2


Entropy 2021, 23, 1550 2 of 15

and weights the data. On the basis of weights, the principle of minimum and maximum
is introduced to automatically determine the initial cluster centers and the number of
centers. Wang et al. [25] proposed an improved k-means algorithm based on distance and
sample weights, using dimensionally weighted Euclidean distance to calculate the distance
between samples. Wang et al. [26] proposed a new algorithm to help k-means jump out of a
local optimum on the basis of several ideas from evolutionary computation, through the use
of random and evolutionary processes. Zhao et al. [27] proposed a new variant of k-means.
The clustering process is driven by an explicit objective function, which makes the k-means
process simpler and converges to a better local optimal solution. Qi et al. [28] proposed an
optimized k-means clustering method, named k*-means, and three optimization principles,
which can reduce the risk of randomly selecting seeds and reduce the adjustable space.
Chen et al. [29] proposed an efficient hybrid clustering algorithm called QALO-K, which
combines k-means with an optimized quantum-inspired antlion to make the k-means
algorithm converge towards the global optimum. Zhang et al. [30] proposed the DC-k-
means algorithm, which added the idea of canopy. At the same time, it combines the
sample density in the process of finding the initial clusters, which has a good effect when
dealing with low-density areas; however, it is possible that the outliers are classified into
one class in the clustering process, which affects the clustering effect.

Dempster–Shafer (DS) theory, also known as evidence theory, was first proposed by
Dempster in 1967 and was refined and developed by his student Shafer in 1976. Because
evidence theory can meet uncertainty and uncertain information flexibly and effectively
without relying on a priori knowledge, it is widely used in many fields, such as: correlation
analysis, clustering, classification, etc. Fred et al. discussed the problem of clustering data
based on evidence. The n d-dimensional data are decomposed into a large number of
compact clusters, and then the k-means algorithm is used to cluster them separately, and
several clustering results are obtained, which constitute the association matrix. Finally, the
final clustering results are obtained using the MST algorithm on the basis of the association
matrix. This method can effectively identify arbitrary clusters in multidimensional data [31].
Li et al. proposed a clustering integration algorithm based on evidence theory, which
focuses on the fusion process in the clustering integration algorithm. After obtaining the
probability of belonging to each label using the label distribution status of the neighborhood
information of the object under test, the probability values are used to form the basic
partition. After that, fusion is performed using the Dempster–Shafer fusion rules to obtain
the final clustering results. This algorithm avoids blind trust in the obtained labels [32]. Yu
et al. proposed a three-way density-peak clustering algorithm based on evidence theory,
which uses a density-peak clustering algorithm to obtain clustering centers and noise
points, and then uses a mid-distance comparison scheme to merge neighboring points.
Finally, the remaining points are assigned using the evidence distance fusion rule. The
method effectively solves the problem of error propagation of clustering labels [33].

The main feature of k-means algorithm clustering is the high degree of similarity of
data in the same class and the low degree of similarity of data in different classes. The
evidence distance in evidence theory can be used to describe the degree of similarity
between two bodies of evidence. In order to explore whether a new distance measure
can be obtained by using evidence distance instead of Euclidean distance, an improved
k-means algorithm based on evidence distance is proposed in this paper. In this paper, we
use the attribute values of each sample point to form the evidence body of each sample
point, and then select the class in which the cluster center with the smallest distance is
added based on the evidence distance from each evidence body to the initial cluster center.
Finally, it is divided into k classes to obtain the final clustering results. Through validation
on the UCI data set and toy data set, and experimental comparison with the traditional k-
means algorithm, and the k-means algorithm based on the aggregation distance parameter
and the Gaussian mixture model, the improved k-means algorithm in this paper has better
clustering effect and convergence.
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The rest of the thesis is organized as follows. The second section provides a review
of relevant theory. The third section introduces the algorithmic ideas and motivation of
this paper and proposes a k-means algorithm based on evidence distance improvement.
The fourth section describes the experimental setting and the chosen algorithm evaluation
metrics. The fifth section is devoted to conducting relevant experiments on the UCI dataset
and the toy dataset and comparing the experimental results with some existing algorithms.
Finally, the sixth section provides the conclusion.

2. Related Theories
2.1. Traditional K-Means Algorithm

The core idea of the k-means algorithm is: After inputting the k value, randomly select
k sample points in the sample point set as the initial clustering center. Then, the distances
of the remaining sample points to the initial cluster centers are calculated and the sample
points are grouped into the closest clusters. In the generated new clusters, new cluster
centroids are reselected and the sample points are clustered and classified again until the
clustering classification results no longer change [34]. In the actual application process,
after multiple iterations, due to various factors, the termination conditions may not be met.
Therefore, a maximum number of iterations will be set in the actual application process,
and the calculation will be terminated when the maximum number of iterations is reached.
The pseudo-code of the traditional k-means algorithm is summarized as Algorithm 1.

Algorithm 1 The traditional k-means algorithm.

Input: data set, k value
Output: divided into k clusters

1. select k points from the sample Euclidean from sample point xi to each cluster center
2. repeat
3. for j=1, 2, . . . . . . , m
4. calculate the Euclidean distance from sample point xi to each cluster center
5. determine the cluster class mark of xi according to the closest distance
6. divide the sample points into corresponding clusters
7. end for
8. calculate new cluster centers
9. until the cluster allocation result remains unchanged

The traditional k-means algorithm distance measures include: Euclidean metric, city
block distance, Pearson correlation, absolute value correlation, absolute non-central corre-
lation, Spearman rank correlation, and Kendall’s tau. The traditional k-means algorithm
mainly uses the Euclidean distance [35].

The Euclidean metric [36,37] (also known as the Euclidean distance) is a commonly
adopted definition of distance and refers to the true distance between two points in m-
dimensional space, or the natural length of a vector (i.e., the distance from that point to the
origin). The Euclidean distance in two and three dimensions is the actual distance between
two points [38].

The distance measurement formula in two-dimensional space:

d =

√
(x2 − x1)

2 + (y2 − y1)
2 (1)

where d is the Euclidean distance between the point (x2, y2) and (x1, y1).
The distance measurement formula in three-dimensional space:

d =

√
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2 (2)
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2.2. D-S Evidence Theory

Evidence theory was first proposed by Dempster [39] and further developed by his
student Shafer [40], an imprecise reasoning theory, also known as Dempster–Shafer ev-
idence theory. As an uncertain reasoning method, the main characteristics of evidence
theory are: it satisfies lower conditions than naive Bayesian probability theory and it has
the ability to express ‘uncertainty’ and ‘not knowing’ directly. At the heart of D–S evidence
theory is the Dempster combination rule, which integrates the underlying reliability distri-
butions of multiple information sources and obtains a new reliability distribution as an
output [41–44].

Definition 1. Assuming that a non-empty set Θ is composed of m mutually exclusive events, Θ is
the identification frame, Θ = {θ1, θ2, . . . . . . θn}. The power set of Θ is represented by 2Θ, 2Θ = {∅,
{θ1}, {θ1, θ2}, . . . . . . {θ1, θ2, . . . . . . θn}} [39,40].

Definition 2. For any A∈ 2Θ, m is the mass function. For any subset A in m, let m(Ai)∈ (0, 1),
satisfy the following conditions [39,40]:

∑
A⊆Θ

m(Ai) = 1, m(Φ) = 0 (3)

Among them, m(Ai) represents the basic probability of A.

Definition 3. Body of Evidence (BOE) is a collection of all focal members and its corresponding
mass functions, expressed as follows [39,40]:

(B, m) =
{
[A, m(A)]

∣∣∣Aε2θ and m(A) >0
}

(4)

where B is a subset of the power set 2θ .

Definition 4. A’s belief function (Bel) represents A’s total trust, and A’s likelihood function (Pl)
represents the confidence level of not denying A. Belief function (Bel) and likelihood function
(Pl) represent the upper limit function and lower limit function of A, respectively, defined as
follows [39,40]:

Bel(A) = ∑
B⊆A

m(B) ∀A ⊆ Θ (5)

Pl(A) = 1− Bel
(

A
)
= ∑

B∩A 6=∅
m(B) ∀A ⊆ Θ (6)

where Bel(A) ≤ Pl(A).

Definition 5. Assuming that under the basic identification framework, the basic probability
distribution functions of the two bodies of evidence (BOE) are m1 and m2, respectively, the formula
for combining according to the Dempster rule is as follows [39]:

m(C) = mi(A)⊕mi(B) =

{
0 A ∩ B = ∅

∑A∩B=C,B⊆Θ mi(A)×mi(B)
1−K A ∩ B 6= ∅

(7)

where mi(A), mi(B) represents two bodies of evidence and m(C) represents the consensus of
two bodies of evidence; K represents the conflicting factor between the two evidence bodies and is
defined as follows:

K = ∑
A∩B=∅,∀A,B⊆Θ

mi(A)×mi(B) (8)
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Definition 6. Evidence distance [45–47] is usually used to describe the degree of difference between
two evidence bodies, and its calculation formula is as follows:

dBOE(m1, m2) =
(→

m1 −
→
m2

)T
D
(→

m1 −
→
m2

)
(9)

The actual calculation formula used is as follows:

dBOE(m1, m2) =

√
1
2

(→
m1 −

→
m2

)T
D
(→

m1 −
→
m2

)
(10)

Among them dBOE: the distance between the two evidence bodies; m1 represents body of
evidence 1 and m2 represents body of evidence 2;

→
m1,

→
m2: the vector constituted by the basic

distribution probabilities of the two evidence bodies. D is a 2N × 2N matrix, the row index
corresponds to m1, and the column index corresponds to m2, indicating the similarity between the
two evidence bodies. Each element of the matrix can be represented as:

dij = |m1 ∩m2| ÷ |m1 ∪m2| (11)

3. Algorithm Design
3.1. Algorithm Idea Description

The algorithmic idea is that since the selection of k values is not optimized in this method,
trial and error is used to find the optimum number of clustering centers, i.e., k values. k sample
points are randomly selected as the initial clustering centers. The attributes of the sample
points can be regarded as experts for judging the sample points that belong to a certain class,
so the values of the attributes of the sample points are used to form the evidence body of each
sample point. After that, the distance from the evidence body to the initial clustering center is
calculated using the evidence distance formula. After the initial division of sample points, the
clustering centers are then re-selected using the arithmetic mean algorithm. Finally, iterative
calculations are performed until the clustering centers do not change.

3.2. Algorithm Flow

Step 1: For a given data set, randomly select k data sample points as the initial
cluster center.

Step 2: Use the attribute value of each sample point to form the evidence body of each
sample point.

Step 3: Use Formula (9) to calculate the evidence distance from each sample point to
each initial cluster center, select the center with the smallest distance, and add the cluster
center to the class.

Step 4: Select k cluster centers again.
Step 5: Determine whether the clustering center has changed, if it has changed,

continue the iteration, if it remains the same, output the corresponding clustering result.
The algorithm flow chart is shown in Figure 1.
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Figure 1. The algorithm flowchart of the improved k-means algorithm.

The pseudo code for the evidence distance-based k-means algorithm proposed in this
paper is summarized in Algorithm 2.
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Algorithm 2 the k-means algorithm based on evidence distance.

Input: data set, k value
Output: clustering results

1 initialize k cluster centers
2 use the attribute value of the sample point to construct the BOE of the sample point
3 While true
4 num = 0;
5 for i = 0 to k
6 Ci = ∅
7 end for
8 for j = 1 to m
9 for i = 1 to k

10 calculate evidence distance, d =

√
1
2

(→
mi −

→
mj

)T
D
(→

mi −
→
mj

)
11 end for
12 min = d
13 for i = 2 to k
14 if dij < min
15 min = dij

16 temp = i
17 end if
18 end for
19 Lambda = temp
20 C(Lambda) = C(Lambda) + {xj}
21 end for
22 for i = 1 to k
23 Ui’ = Update the mean vector based on the previous cluster
24 if Ui’! = Ui
25 Ui = Ui’
26 else
27 num++
28 end if
29 end for
30 if num = k
31 break
32 end if
33 end while

4. Experiment
4.1. Experiment Preparation

The experimental environment is: AMD A10-7300 processor, AMD Raden R7 M260DX
graphics card, 8G of running memory, windows10 operating system, and programming
with Python 3.7–32 bits.

4.1.1. Experimental Data Set

The data set used in this article comes from the UCI data set. The name of the data set
and its attributes are shown in Table 1.
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Table 1. Experimental data set.

Data Set Number of Samples Feature Number Number of
Categories

Iris 150 4 3
Wine 178 13 3

Breast_cancer 699 10 2
Digits 1797 5 9
Pima 768 8 2

4.1.2. Experimental Evaluation Indicators

The evaluation indicators used in this paper mainly include adjusting the Rand index,
the contour coefficient, and the number of iterations. Adjustment of the Rand index and
silhouette coefficient are used to evaluate the clustering performance of the algorithm, and
the number of iterations is used to evaluate the convergence of the algorithm.

(1) Adjusted Rand index

In the clustering model, assuming that the actual category information is C and the
clustering result is K, a denotes the number of pairs of elements that are both in the same
category in C and K, and b denotes the number of pairs of elements that are both in different
categories in C and K. The Rand index is defined as:

RI =
a + b

C
nsamples
2

(12)

where C
nsamples
2 represents the total number of pairs of elements that can be composed in the

data set. The range of RI is [0, 1] and a higher value of RI means that the clustering results
match the real situation.

The problem with the Rand index is that for two random divisions, the value of the
Rand coefficient is not a constant close to zero. Therefore, the adjusted Rand index is used,
which has a higher degree of discrimination. The ARI is calculated as:

ARI =
(RI − E[RI])

max[RI]− E[RI]
(13)

where RI is the Rand index and E[RI] represents the mean value. The range of values
for ARI is [–1, 1]. A larger value for ARI means that the clustering results match the real
situation.

(2) Silhouette Coefficient

The silhouette coefficient is a way of evaluating how well clustering works. It was first
proposed by Peter J. Rousseeuw in 1986. It combines both cohesion and separation factors.

Suppose we have completed clustering by some clustering algorithm. For any one
of these samples, A represents the average distance between the sample and the other
samples in its cluster, and B represents the average distance between the sample and the
samples in the other clusters, the silhouette coefficient of the sample is:

S =
B− A

max(A, B)
(14)

where S denotes the silhouette coefficient of a single sample. The total silhouette coefficient
of clustering is the average value of all sample silhouette coefficients. The contour coeffi-
cients range from (−1, 1), with values closer to 1 indicating better clustering performance,
and conversely, values closer to −1 indicating worse clustering performance.
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(3) Number of iterations

Number of iterations: how many times the algorithm iterates until the algorithm
converges in the actual operation. Since it is a random result, the experiments in this paper
take the arithmetic average of the number of iterations after several iterations. The smaller
the value, the faster the convergence of the algorithm.

Calculation formula : Number o f iterations =
Total number o f iterations

Total number o f runs
(15)

4.2. Experimental Procedure

(1) Import the iris data set and enter the cluster category k value.
(2) The traditional k-means method and the improved k-means method are used for

clustering, respectively.
(3) Perform clustering 10 times, find the average value, and output the ARI, contour

coefficient, and number of iterations as the final result.
(4) Compare the experimental results of the improved algorithm and the traditional algorithm.
(5) Use wine, breast cancer, and other data sets for verification.

5. Results and Analysis
5.1. Iris Data Set Test Results

After 10 clusters, the ARI value of each cluster is shown in Figure 2, the Silhouette
Coefficient value is shown in Figure 3, and the number of iterations is shown in Figure 4.
The final result is obtained by calculating the average value. The ARI value of the traditional
method is 0.603, the profile coefficient value is 0.5371, and the number of iterations is
8.8 times. The ARI value of the improved method is 0.719, the silhouette coefficient value
is 0.5514, and the number of iterations is 8.3 times. From Figures 2–4, it can be seen that the
new method adopted in this paper is more stable than the traditional method, and the ARI
value and the silhouette coefficient have been effectively improved. Therefore, the accuracy
of this method is better than that of the traditional method, and better clustering effect
can be obtained. The improved method has generally reduced the number of iterations
compared with the traditional method, so the convergence of the new method is also better
than that of the traditional method.
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5.2. Validation Results of Other Data Sets

The clustering effect and convergence of the algorithm were verified by using wine,
breast cancer, digits, and pima datasets with ARI values, silhouette coefficient, and number
of iterations as shown in Figures 5–7. The analysis of Figures 5 and 6 shows that the new
method can obtain better clustering results and the output results of the new method are
more stable in the output process. However, when there are more attribute values in the
data set, the improvement of the new method is smaller. Through the analysis of Figure 7,
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it can be seen that, except for clustering using the breast cancer data set, the convergence
of the new method is slightly worse than that of the traditional method, and the overall
convergence of the new method is better than that of the traditional method.
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In summary, the new method used in this experiment can obtain better clustering
results than traditional methods, and in the output process, the variance between the
results is smaller and the output is more stable. At the same time, the convergence of the
algorithm is improved to a certain extent.
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5.3. Algorithm Comparison

In order to conduct a more in-depth verification of the performance of the evidence-
distance-based improved k-means algorithm proposed in this paper, the performance of the
traditional k-means algorithm (T-K-means), the k-means algorithm based on aggregated
distance parameters (AD-K-means) [48], the Gaussian mixture model (GMM) [49], and
the k-means algorithm based on evidence distance proposed in this paper (ED-K-means)
were selected for experimental comparison. The datasets used for the experiments were
the UCI dataset and four toy datasets, iris, digits, wine, noisy-moon, blobs, anisotropicly
distributed data, and blobs with varied variances, in that order. The parameters for the
four toy datasets are shown in Figure 8.
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The experimental results were evaluated in terms of adjusted Rand index (ARI),
silhouette coefficient, number of iterations, and algorithm runtime. The experimental
results are shown in Figures 9–12.

Entropy 2021, 23, x FOR PEER REVIEW 11 of 15 
 

 

5.3. Algorithm Comparison 
In order to conduct a more in-depth verification of the performance of the evidence-

distance-based improved k-means algorithm proposed in this paper, the performance of 
the traditional k-means algorithm (T-K-means), the k-means algorithm based on aggre-
gated distance parameters (AD-K-means) [48], the Gaussian mixture model (GMM) [49], 
and the k-means algorithm based on evidence distance proposed in this paper (ED-K-
means) were selected for experimental comparison. The datasets used for the experiments 
were the UCI dataset and four toy datasets, iris, digits, wine, noisy-moon, blobs, aniso-
tropicly distributed data, and blobs with varied variances, in that order. The parameters 
for the four toy datasets are shown in Figure 8.  

The experimental results were evaluated in terms of adjusted Rand index (ARI), sil-
houette coefficient, number of iterations, and algorithm runtime. The experimental results 
are shown in Figures 9–12. 

 
Figure 8. Data set parameters. 

 
Figure 9. Adjusted rand index. Figure 9. Adjusted rand index.

Entropy 2021, 23, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 10. Silhouette coefficient. 

Figure 9 shows the results of the adjusted Rand index, with larger values indicating 
that the clustering results are more consistent with the actual situation. The ED-K-means 
algorithm proposed in this paper gives higher results than the other three algorithms in 
both the digits and noisy-moon datasets. In the iris, wine, and blobs with varied variances 
datasets, the results are slightly lower than those of the GMM algorithm, but higher than 
those of the other two algorithms. Figure 10 shows the values of the silhouette coefficient, 
with larger values indicating that the clustering results are more consistent with the actual 
situation. The results of the ED-K-means algorithm proposed in this paper outperformed 
the other three algorithms on both the toy dataset and the UCI dataset. Therefore, the ED-
K-means algorithm proposed in this paper can achieve better clustering results. 

 
Figure 11. Number of iterations. 

Figure 10. Silhouette coefficient.

Figure 9 shows the results of the adjusted Rand index, with larger values indicating
that the clustering results are more consistent with the actual situation. The ED-K-means
algorithm proposed in this paper gives higher results than the other three algorithms in
both the digits and noisy-moon datasets. In the iris, wine, and blobs with varied variances
datasets, the results are slightly lower than those of the GMM algorithm, but higher than
those of the other two algorithms. Figure 10 shows the values of the silhouette coefficient,
with larger values indicating that the clustering results are more consistent with the actual
situation. The results of the ED-K-means algorithm proposed in this paper outperformed
the other three algorithms on both the toy dataset and the UCI dataset. Therefore, the
ED-K-means algorithm proposed in this paper can achieve better clustering results.
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Figure 11 shows the value of the average number of iterations of the algorithm and
Figure 12 shows the algorithm running time. Both algorithm metrics are smaller indicating
better convergence of the algorithm. The analysis of the results in this figure shows that in
the toy dataset, the ED-K-means algorithm proposed in this paper has the lowest number
of iterations and the running time is comparable with T-K-means and slightly higher than
the GMM algorithm. In the three UCI datasets, the number of iterations is less and the
running time is better than that of T-K-means and GMM, and similar to that of AD-K-
means. Therefore, on balance, the ED-K-means algorithm proposed in this paper has
better convergence.
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6. Conclusions

In the era of big data, data is expanding, so the clustering algorithm has a wide range
of application scenarios. This paper presents an improved k-means algorithm based on
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evidence distance. The algorithm uses the attribute values of the sample points to form the
body of evidence for the sample points. Then, the distance measure between sample points
is performed using the evidence distance instead of the Euclidean distance. Finally, the
k-means algorithm was used to cluster. Through experimental comparison, the improved
k-means algorithm based on evidence distance proposed in this paper has good clustering
effect and convergence. However, the initial clustering centers are still selected randomly
when processing the data in this paper, so it can be further optimized.
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