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Abstract: Deep Gaussian Processes (DGPs) were proposed as an expressive Bayesian model capable
of a mathematically grounded estimation of uncertainty. The expressivity of DPGs results from not
only the compositional character but the distribution propagation within the hierarchy. Recently,
it was pointed out that the hierarchical structure of DGP well suited modeling the multi-fidelity
regression, in which one is provided sparse observations with high precision and plenty of low fidelity
observations. We propose the conditional DGP model in which the latent GPs are directly supported
by the fixed lower fidelity data. Then the moment matching method is applied to approximate the
marginal prior of conditional DGP with a GP. The obtained effective kernels are implicit functions of
the lower-fidelity data, manifesting the expressivity contributed by distribution propagation within
the hierarchy. The hyperparameters are learned via optimizing the approximate marginal likelihood.
Experiments with synthetic and high dimensional data show comparable performance against other
multi-fidelity regression methods, variational inference, and multi-output GP. We conclude that, with
the low fidelity data and the hierarchical DGP structure, the effective kernel encodes the inductive
bias for true function allowing the compositional freedom.

Keywords: multi-fidelity regression; Deep Gaussian Process; approximate inference; moment match-

ing; kernel composition; neural network.

1. Introduction

Multi-fidelity regression refers to a category of learning tasks in which a set of sparse
data is given to infer the underlying function but a larger amount of less precise or noisy
observations is also provided. Multifidelity tasks frequently occur in various fields of
science because precise measurement is often costly while approximate measurements are
more affordable (see [1,2] for example). The assumption that the more precise function is
a function of the less precise one [1,3] is shared in some hierarchical learning algorithms
(e.g., one-shot learning in [4], meta learning [5], and continual learning [6]). Thus, one can
view the plentiful low fidelity data as a source of prior knowledge so the function can be
efficiently learned with sparse data.

In Gaussian Process (GP) regression [7] domain experts can encode their knowledge
into the combinations of covariance functions [8,9], building an expressive learning model.
However, construction of an appropriate kernel becomes less clear when building a prior
for the precise function in the context of multi-fidelity regression because the uncertainty,
both epistemic and aleatoric, in the low fidelity function prior learned by the plentiful
data should be taken into account. It is desirable to fuse the low fidelity data to an effective
kernel as a prior, taking advantage of marginal likelihood being able to avoid overfitting,
and then perform the GP regression as if only the sparse precise observations are given.

Deep Gaussian Process (DGP) [10] and the similar models [11,12] are expressive
models with a hierarchical composition of GPs. As pointed out in [3], a hierarchical
structure is particularly suitable for fusing data of different fidelity into one learning
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model. Although full Bayesian inference is promising in obtaining expressiveness while
avoiding overfitting, exact inference is not tractable and approximate solutions such as
the variational approach [13-15] are employed. Ironically, the major difficulty in inference
comes from marginalization of the latent GPs in Bayesian learning, which, on the flip side,
is also why overfitting can be prevented.

We propose a conditional DGP model in which the intermediate GPs are supported
by the lower fidelity data. We also define the corresponding marginal prior distribution
which is obtained by marginalizing all GPs except the exposed one. For some families of
kernel compositions, we previously developed an analytical method in calculating exact
covariance in the marginal prior [16]. As such, the method is applied here so the marginal
prior is approximated as a GP prior with an effective kernel. The high fidelity data are
then connected to the exposed GP, and the hyperparameters throughout the hierarchy are
optimized via the marginal likelihood. Our model, therefore, captures the expressiveness
embedded in hierarchical composition, retains the Bayesian character hinted in the marginal
prior, but loses the non-Gaussian aspect of DGP. From the analytical expressions, one can
partially understand the propagation of uncertainty in latent GPs as it is responsible for
the non-stationary aspect of effective kernels. Moreover, the compositional freedom, i.e.,
different compositions may result in the same target function, in a DGP model [17,18] can
be shown to be intact in our approach.

The paper is organized as follows. In Section 2, we review the literature of multi-
fidelity regression model and deep kernels. A background of GP, DGP, and the moment
matching method is introduced in Section 3. The conditional DGP model defined as a
marginal prior and the exact covariance associated with two families of kernel compositions
are discussed in Section 4. The method of hyperparameter learning is given in Section 5,
and the simulation of synthetic and high dimensional multi-fidelity regression in a variety
of situations are presented in Section 6. A brief discussion followed by the conclusion
appear in Sections 7 and 8, respectively.

2. Related Work

Assuming autoregressive relations between data of different fidelity, Kennedy and
O’Hagan [1] proposed the AR1 model for multi-fidelity regression tasks. Le Gratiet and
Garnier [19] improved computational efficiency with a recursive multi-fidelity model.
Deep-MF [20] mapped the input space to the latent space and followed the work in Kennedy
and O’Hagan [1]. NARGP [21] stacked a sequence of GPs in which the posterior mean
about the low-fidelity function is passed to the input of the next GP while the associated
uncertainty is not. GPAR [22] uses a similar conditional structure between functions of
interest. MF-DGP in [3] exploited the DGP structure for the multi-fidelity regression tasks
and used the approximate variational inference in [13]. Multi-output GPs [23,24] regard the
observations from different data sets as realization of vector-valued function; [25] modeled
the multi-output GP using general relation between multiple target functions and multiple
hidden functions. Alignment learning [26,27] is an application of warped GP [11,12] to
time series data. We model the multi-fidelity regression as a kernel learning, effectively
taking the space of functions representing the low fidelity data into account.

As for general studies of deep and non-stationary kernels, Williams [28] and Cho
and Saul [29] used the basis of error functions and Heaviside polynomial functions to
obtain the arc-sine and arc-cosine kernel functions, respectively, of neural networks.
Duvenaud et al. [30] employed the analogy between neural network and GP, and con-
structed the deep kernel for DGP. Dunlop et al. [31] analyzed variety of non-stationary
kernel compositions in DGP, and Shen et al. [32] provided an insight from Wigner trans-
formation of general two-input functions. Wilson et al. [33] proposed the general recipe
for constructing the deep kernel with neural networks. Daniely et al. [34] computed the
deep kernel from the perspective of two correlated random variables. Mairal et al. [35]
and Van der Wilk et al. [36] studied the deep kernels in the convolutional models. The mo-
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ment matching method [16] allows obtaining the effective kernel encoding the uncertainty
in learning the lower fidelity function.

3. Background
3.1. Gaussian Process and Deep Gaussian Process

Gaussian Process (GP) [7] is a popular Bayesian learning model in which the prior
over a continuous function is modeled as a Gaussian. Denoted by f ~ GP(yu, k), the
collection of any finite function values f(x;.x) with x € R? has the mean E[f(x;)] = p(x;)
and covariance E{[f(x;) — u(x;)][f(x;) — u(xj)]} = k(x;,x;). Thus, a continuous and
deterministic mean function y(-) and a positive definite kernel function k(-, -) fully specify
the stochastic process. It is common to consider the zero-mean case and write down
the prior distribution, p(f|X) = N(0,K) with covariance matrix K. In the setting of a
regression task with input and output of data {X,y}, the hyperparameters in the mean
and kernel functions can be learned by optimizing the marginal likelihood, p(y|X) =
[ dtp(y|f)p(£1X).

Deep Gaussian Process (DGP) was proposed in [10] as a hierarchical composition
of GPs for superior expressivity. From a generative view, the distribution over the com-
posite function f(x) = fp o fr_10---o0 fi(x) is a serial product of Gaussian conditional
distribution,

p(Fr,Fr_1,--- ,F1|x) = p(FL|F _1)p(FL_1|FL—2) - - - p(F1]X), (1)

in which the capital bolded face symbol F; stands for a multi-output GP in ith layer and the
independent components have p(f;|F;_1) = N (0, K(F;_1.F;_1)). The above is the general
DGP, and the width in each layer is denoted by H; := |F;|. In such notation, the zeroth
layer represents the collection of inputs X. Here, we shall consider the DGP with L = 2
and Hy = H; = 1 and the three-layer counterpart.

The intractability of exact inference is a result of the fact that the random variables F;
for L > i > 0 appear in the covariance matrix K. In a full Bayesian inference, the random
variables are marginalized in order to estimate the evidence p(y|X) associated with the data.

3.2. Multi-Fidelity Deep Gaussian Process

The multi-fidelity model in [1] considered the regression task for a data set consisting
of observations measured with both high and low precision. For simplicity, the more
precise observations are denoted by {X, y} and those with low precision by {X1,y1}. The
main assumption made in [1] is that the less precise observations shall come from a function
f1(x) modeled by a GP with zero mean and kernel k, while the more precise ones come
from the combination f(x) = afi(x) + h(x). With the residual function h being a GP
with kernel kj, one can jointly model the two subsets with the covariance within precise
observations E[f(x;) f(x;)] = a%k;j + ky,;, within the less precise ones E[f3 (x;) f1(xj)] = kij,
and the mutual covariance E[f(x;) f1(xj)] = ak;;. k;; refers to the covariance between the
two inputs at x; and x;.

The work in [3] generalized the above the linear relationship between the more and
less precise functions to a nonlinear one, i.e., f(x) = f2(f1(x)) + noise. The hierarchical
structure in DGP is suitable for nonlinear modeling. The variational inference scheme [13]
was employed to evaluate the evidence lower bounds (ELBOs) for the data with all levels
of precision, and the sum over all ELBOs is the objective for learning the hyperparameters
and inducing points.

3.3. Covariance in Marginal Prior of DGP

The variational inference, e.g., [13], starts with connecting the joint distribution
p(f1, f2|1X) with data y, followed by applying the Jensen’s inequality along with an approx-
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imate posterior in evaluating the ELBO. In contrast, we proposed in [16] that the marginal
prior for the DGP,

plEX) = [ dfip(Ealf)p(81X), @

with the bolded face symbols representing the set of function values, f(-) = f2(f1(+)), f2(-),
and f(-), can be approximated as a GP, i.e., (f|X) = N (0, K) in the zero-mean case. The
matching of covariance in p and g leads to the closed form of effective covariance function
for certain families of kernel compositions. The SE[SC] composition, i.e., the squared
exponential and squared cosine kernels being used in the GPs for f,|f1 and fi, respectively,
is an example. With the intractable marginalization over the intermediate f; being taken
care of in the moment matching approximation, one can evaluate the approximate marginal

likelihood for the data set {X,y},

pyX) ~ [ dep(ylBa(eX) . @)

In the following, we shall develop along the line of [16] the approximate inference for
the multi-fidelity data consisting of precise observations {X, y} and less precise observa-
tions {X1.._1,y1..—1} with the L-layer width-1 DGP models. The effective kernels k¢ shall
encode the knowledge built on these less precise data, which allows modeling the precise
function even with a sparse data set.

4. Conditional DGP and Multi-Fidelity Kernel Learning

In the simplest case, we are given two subsets of data, {X, y} with high precision and
{X1,y1} with low precision. We can start with defining the conditional DGP in terms of
the marginal prior,

pUEX X, y1) = [ dfsp(Ealf)p (81X, X0, y1), @

where the Gaussian distribution p(f;|X,X1,y1) = N (f1(x1.n)|m, X) has the conditional
mean in the vector form,

m = Kx x, K§11,X1Y1 , 5)

and the conditional covariance in the matrix form,

Y = Kxx — Kxx, K)lelxl Kx, x - (6)

The matrix Kx x, registers the covariance among the inputs in X and X;, and likewise
for Kx x and K, x,. Thus, the set of function values f; (x.y) associated with the N inputs
in X are supported by the low fidelity data.

The data {X,y} with high precision are then associated with the function f(x) =
f2(f1(x)). Following the previous discussion, we may write down the true evidence for
the precise data conditioned on the less precise ones shown below,

POXXyy1) = [ dEp(yIOp(EX X0, y1) = [ dtideap(yIE)p(E1E)p(EX X0 y1) . @)

To proceed with the moment matching approximation of the true evidence in Equation (7),
one needs to find the effective kernel in the approximate distribution q(£|X, X, y1) = N (0, Kegt)
and replace the true distribution in Equation (4) with the approximate distribution,

PYX Xy, y1) = [ dep(yDa(EIX,X,, 1) = N (710, Kt +21n). ®)

Therefore, the learning in the conditional DGP includes the hyperparameters in the
exposed GP, f»|f1, and those in the intermediate GP, f;. Standard gradient descent is
applied to above approximate marginal likelihood. One can customize the kernel K¢ in the
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GPy [37] framework and implement the gradient components 0K /00 with 6 € {1,412}
in the optimization.

4.1. Analytic Effective Kernels

Here, we consider the conditional DGP with two-layer and width-1 hierarchy, focusing
on the cases where the exposed GP for f;|f; in Equation (4) uses the squared exponential
(SE) kernel or the squared cosine (SC) kernel. We also follow the notation in [16] so that
the composition denoted by kj[k1] represents that k; is the kernel used in the exposed GP
and k used in the intermediate GP. For example, SE[SC] means k; is SE while k; is SC.
Following [16], the exact covariance in the marginal prior Equation (4) is calculated,

E¢[f(xi) f(x))] := Eg, [Eg, ¢, [f2(f1(x:)) f2(f1(x;)]] = ./df1 ka(f1(xi), f1(x))p(£11X, X1, 1) - 9)

Thus, when the exposed GP has the kernel k; in the exponential family, the above
integral is tractable and the analytic ko can be implemented as a customized kernel. The
following two lemmas from [16] are useful for the present case with a nonzero conditional
mean and a conditional covariance in f3.

Lemma 1. (Lemma 2 in [16]) For a vector of Gaussian random variables g1., ~ N (m, C), the expec-

tation of exponential quadratic form exp[—3Q(81, 82, , §n)] with Q(g1.0) = Y Aijgigj > 0
has the following closed form,

exp [—%mT(In + AC)’lAm}
Vi Tca

The n-dimensional matrix A appearing in the quadratic form Q is symmetric.

E[e—%Q(gm)] — (10)

Lemma 2. (Lemma 3 in [16]) With the same Gaussian vector g in Lemma 1, the expectation value
of the exponential inner product exp|a'g| between g and a constant vector a reads,

1
]E[eatg] =exp{a'm + ETr[Caat]} , (11)
where the transpose operation on column vector is denoted by the superscript.

We shall emphasize that our previous work [16] did not discuss the cases when
the intermediate GP for f; is conditioned on the low precision data {X1,y;}. Thus, the
conditional mean and the non-stationary conditional covariance were not considered
in [16].

Lemma 3. The covariance in the marginal prior with a SE ky(x,y) = 02 exp|—(x — y)?/2¢2]
in the exposed GP can be calculated analytically. With the Gaussian conditional distribution,
p(£11X, X1, y1), supported by the low fidelity data, the effective kernel reads,

i) — o3 exp (mi —my)?
N e 2(63 + 63)

where m;; = E[f1(x;;)|X1,y1] being the conditional mean of fi. The positive parameter
51.2]- := ¢jj + ¢jj — 2cyj is defined with the conditional covariance c;; := cov[f1(x;), f1(xj)[X1, y1]-
51.2]. and and the the length scale {5 in k, dictates how the uncertainty in f1(x) affects the func-
tion composition.

, (12)

Proof. For SE[ ] composition, one can represent the kernel k, = exp{—[f1(x;) — f1 (xj)]2 /2}

-1 1
is set for ease of notation. Now f; is a bivariate Gaussian variable with mean m and

as an exponential quadratic form exp[—$] with Q = £ Af; with A = ( Lt ) lh =1
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covariance matrix C. To calculate the expectation value in Equation (12), we need to
compute the following 2-by-2 matrix and one can show [l + AC] ' can be reduced to

1 <1+C]']‘—Cij C]‘]'—Ci]' ) ' (13)
T+ci+cjj—20\ ci—cij  14cii—cj

The seemingly complicated matrix in fact is reducible as one can show that (I, +
AC)'A = A/(1+ 51-2]-), which leads to the exponential term in the kernel. With the

determinant |I; + CA| = (1 + 55) and restoring back the length scale ¢, the kernel in
Equation (12) is reproduced. O

A few observations are in order. First, we can rewrite 51'2j =(1-1) (E; ﬁ; ) ( _11 ), which
guarantees the positiveness of 62 as the two-by-two sub-block of covariance matrix is
positive-definite. Secondly, there are deterministic and probabilistic aspects of the kernel
in Equation (12). When the the length scale /; is very large, the term 62 encoding the
uncertainty in f; becomes irrelevant and the kernel is approximately a SE kernel with the
input transformed via the conditonal mean Equation (5), which is reminiscent of the deep
kernel proposed in [33] where GP is stacked on the output of a DNN. The kernel used
in [21] similarly considers the conditional mean in f; as a deterministic transformation
while the uncertainty is ignored. On the other hand, when 6% and ¢3 are comparable, it
means that the (epistemic) uncertainty in f; shaped by the supports y; is relevant. The
effective kernel then represents the covariance in the ensemble of GPs, each of which
receives the inputs transformed by one f; sampled from the intermediate GP. Thirdly,
we shall stress that the appearance of 62 is a signature of marginalization over the latent
function in deep probabilistic models. Similar square distance also appeared in [30] where
the effectively deep kernel was derived from a recursive inner product in the space defined
by neural network feature functions.

In the following lemma, we consider the composition where the kernel in outer layer is
squared cosine, ky, (x,y) = (¢2/2){1 + cos[(x — y)/£>]}, which is a special case of spectrum
mixture kernel [38].

Lemma 4. The covariance in f of the marginal prior with SC kernel used in the exposed GP is
given below,

2

2
o i
keff(xi,x]-) = ]Ep[fzf]] = 72 1+ COS(TTZZ' — m]) exp(—ﬁ) , (14)
2

where 51.2]- has been defined in the previous lemma.

The form of product of cosine and exponential kernels is similar with the deep spectral
mixture kernel [33]. In our case the cosine function has the warped input m(x;) — m(x;), but
the exponential function has the input c(x;, x;) + c(x;, x;) — 2¢(x;, x;) due to the conditional
covariance in the intermediate GP.

4.2. Samples from the Marginal Prior

Now we study the samples from the approximate marginal prior with the effective
kernel in Equation (12). We shall vary the low fidelity data X1, y1 to see how they affect the
inductive bias for the target function. See the illustration in Figure 1. The top row displays
the low-fidelity functions f;|Xj, y1, which are obtained by a standard GP regression. Here,
the low-fidelity data are noiseless observations of three simple functions (linear in the left,
hyper tangent in middle, and sine in right). The conditional covariance and condition mean
are then fed into the effective kernel in Equation (12), and so we can sample functions from
the prior carrying the effective kernel. The samples are displayed in the second row.
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In such cases, it can be seen that f1|X1, y; is nearly a deterministic function (top row)
given the sufficient amount of noiseless observations in {Xj,y1 }. In fact, the left panel in
the second row is equivalent to the samples from a SE kernel as f; is the identity function.
Moving to the second column, one can see the effect of nonlinear warping generates
additional kinks in the target functions. The case on the third column with periodic
warping results in periodic patterns to the sampled functions.

Next, we shall see the effect of uncertainty in f;|Xj,y; (third row) on the sampled
functions (bottom row). The increased uncertainty (shown by shadow region) in f; gener-
ates the weak and high frequency signal in the target function due to the non-stationary 5
in Equation (12). We stress that these weak signals are not white noise. The noise in the
low fidelity data even reverses the sign of sampled functions, i.e., comparing the second
against the bottom rows in the third column. Consequently, the expressivity of the effective
kernel gets a contribution from the uncertainty in learning the low fidelity functions.

i K== ’)s(
] x =
0.4 X e ;N ;l" \
e e ! \ / \
0.24 e 1 / 1/ \ K \
. Pt ,)x ! ’; / \
1
0.0 - B yd 11 Y ! ‘\‘ |
,,,e?( RS t { \ /
—0.24 Xx ) X p X ! \ /
)xe( ’ \ ,x \‘ I’
-0.4 x~ Y \
- S WA \_*

0.44
0.21
0.0
-0.24

—0.44

-0.6+

| | ! |
d h MWWM W Py ”M"VM\‘VM

] Uil
]

0.0 0.2 0.4 0.6 0.8 1.0 0.1

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1. Sampling random functions from the approximate marginal prior 4(f) which carries the
effective kernel in Equation (12). The low fidelity data Xi, y1, marked by the cross symbols, and
the low fidelity function f1|Xj, y; and the uncertainty are shown in the top (noiseless) and the third
(noisy) rows. Top row: the uncertainty in Xy, y; is negligible so f; is nearly a deterministic function,
so the effective kernels are basically kernels with warped input. The corresponding samples from g
are shown in the second row. Third row: the noise in Xj,y; generates the samples in bottom row
which carry additional high-frequency signals due to the non-stationary 6> in Equation (12).

5. Method

Since we approximate the marginal prior for the conditional DGP with a GP, the
corresponding approximate marginal likelihood should be the objective for jointly learning
the hyperparameters including those in the exposed GP and the intermediate GPs. From the
analytical expression for the effective kernel, e.g., Equation (12), the gradient components
include the explicit derivatives 0K/ dop and dKege /905 as well as those implicit derivatives
0Kege/ 001 and 0K /941 which can be computed via chain rule.
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With the data consisting of observations of different fidelity, an alternative method
can learn the hyperparameters associated with each layer of the hierarchy sequentially. See
Algorithm 1 for details. The low fidelity data are fed into the first GP regression model
for inferring f; and the hyperparameters /; and oq. The conditional mean and conditional
covariance in f1|Xy,y; are then sent to the effective kernel. The second GP using the
effective kernel is to infer the high fidelity function f with the marginal likelihood for the
high fidelity data being the objective. Optimization of the second model results in the
hyperparameters ¢, and o5 in the second layer. Learning in the three-layer hierarchy can
be generalized from the two-layer hierarchy. In the Appendix, a comparison of regression
using the two methods is shown.

Algorithm 1 A learning algorithm for conditional DGP multi-fidelity regression

Input: two sources of data, low-fidelity data (X3, y;) and high-fidelity data (X, y), kernel
kq for function f1, and the test input x..

1.k = Kernel(var:(flz, lengthscale=/7) {Initialize the kernel for inferring g}

2. model; = Regression(kernel=kq, data=X; and y;) {Initialize regression model for f1}

3. model;.optimize()

4. m, C = model;.predict(input = X, x,, full-cov=true) {Output pred. mean and post cov.
of f1}

5. ket = EffectiveKernel(var:(Tzz, lengthscale=¢5, m, C) {Initialize the effective kernel in
Equation (12) for SE[ ] and Equation (14) for SC[ ].}

6. model, = Regression(kernel=k.¢, data = X, y) {Initialize regression model for f}

7. model,.optimize()

8. ,0% = model,.predict(input=x..)

Output: Optimal hyper-parameters {(712,2, {15} and predictive mean i, and variance o
at X.

6. Results

In this section, we shall present the results of multi-fidelity regression given low
fidelity data X1, y; and high fidelity X, y and use the 2-layer conditional DGP model. The
cases where there are three levels of fidelity can be generalized with the 3-layer counterpart.
The toy demonstrations in Section 6.1 focus on data sets in which the target function is a
composite, f(x) = fo(f1(x)). The low fidelity data are observations of f;(x) while the high
fidelity are those of f(x). The aspect of compositional freedom is discussed in Section 6.2,
and the same target function shall be inferred with the same high fidelity data but the low
fidelity data now result from a variety of functions. In Section 6.3, we switch to the case
where the low fidelity data are also observations of the target function f but with large
noise. In Section 6.4, we compare our model with the work in [3] on the data set with high
dimensional inputs.

6.1. Synthetic Two-Fidelity Function Regression

The first example in Figure 2 consists of 10 random observations of the target function
f(x) = (x — V2)f*(x) (red dashed line) along with 30 observations of the low fidelity
function f;(x) = sin87x (not shown). The 30 observations of f; with a period 0.25 in the
range of [0, 1] is more than sufficient to reconstruct f; with high confidence. In contrast,
the 10 observations of f alone (shown in red dots) are difficult to reconstruct f if a GP
with SE kernel is used. The above figures demonstrate the results from a set of multi-
source nonparametric regression methods which incorporate the learning of f; into the
target regression of f. Our result, the SE[SE] [panel (f)] kernel, and NARGP [panel (c)]
successfully capture the periodic pattern inherited from the low fidelity function f;, but
the target function is fully covered in the confidence region in our prediction only. On
the other hand, in the input space away from the target observations, AR1 [panel (a)] and
ME-DGP [panel (e)] manages to only capture part of the oscillation. Predictions in LCM
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[panel(b)] and DEEP-MF [panel (d)] are reasonable near the target observations but fail to
capture the oscillation away from these observations.

{a)AR1 “l(b) LCM — tien **(c) NARGP

Confidence

Figure 2. Multi-fidelity regression with 30 observations (not shown) of low fidelity f1(x) = sin87mx and 10 observations
(red dots) from the target function, f(x) = (x — v/2)f?(x) (shown in red dashed line). Only the target prediction (solid
dark) and associated uncertainty (shaded) are shown. Top row: (a) AR1, (b) LCM, (c) NARGP. Bottom row: (d) DEEP-MF,
(e) MF-DGP, (f) our model with SE[SE] kernel.

Figure 3 demonstrates another example of multi-fidelity regression on the nonlinear
composite function. The low fidelity function is also periodic, f; = cos 15x, and the target
is exponential function, f = xexp[fi(2x —2)] — 1. The 15 observations of f (red dashed
line) are marked by the red dots. The exponential nature in the mapping f; — f might
make the reconstruction more challenging than the previous case, which may lead to less
satisfying results from LCM [panel (b)]. NARGP [panel (c)] and MF-DGP [panel (e)] have
similar predictions which mismatch some of the observations, but the target function is
mostly covered by the uncertainty estimation. Our model with SE[SE] kernel [panel (f)], on
the other hand, has predictions consistent with all the target observations, and the target
function is fully covered by the uncertainty region. Qualitatively similar results are also
obtained from AR1 [panel (a)] and DEEP-MF [panel (d)].

6.2. Compositional Freedom and Varying Low-Fidelity Data

Given the good learning results in the previous subsection, one may wonder the
effects of having a different low fidelity data set on inferring the high fidelity function.
Here, we consider the same high fidelity data from the target function in Figure 2, but
the low fidelity data are observations of f1(x) = x, fi(x) = tanhx, f;(x) = sin4mx, and
f1(x) = sin8mx. Figure 4 displays the results. Plots in the top rows represent f1|X1,y1,
while the bottom rows show the inferred target function given the high fidelity data (red
dots). It can be seen in the left most column in panel (a) that the linear f; is not a probable
low fidelity function as the true target function (red dashed line) in the bottom is outside
the predictive confidence. Similarly in the second plot in (a), f; being a hyper tangent
function is not probable to account for the true target function. In the end, f; being a
periodic function is more likely to account for the true target function than the first two
cases, but the right most plot with f;(x) = sin87rx leads to the predictive mean very close
to the true target function.
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(a) AR1

Confidence

f =7 E (b)LCM — 1»{(¢) NARGP /

Figure 3. Multi-fidelity regression on the low-level true function, h(x) = cos 15x, with 30 observations and high-level one,

f(x) = xexp[h(2x — 0.2)] — 1, with 15 observations. Top row: (a) AR1, (b) LCM, and (c) NARGP. Bottom row: (d) DEEP-MF,
(e) MF-DGP, and (f) Our method with SE[SE] kernel.
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(b) Inference with noisy low-fidelity data from 4 functions

Figure 4. Demonstration of compositional freedom and effects of uncertainty in low fidelity function
f1 on the target function inference. Given the same high fidelity observations of target function, four
different sets of observations of f1(x) = x, f1(x) = tanhx, f1(x) = sin47mx, and f1(x) = sin87x are
employed as low fidelity data in inferring the target function. In panel (a), the low fidelity data are
noiseless observations of the four functions. The true target function is partially outside the model
confidence for the first two cases. In panel (b), the low fidelity data are noisy observations of the same
four functions. Now the first three cases result in the inferred function outside the model confidence.
The effect of uncertainty in low fidelity is most dramatic when comparing the third subplots in (a,b).
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Next, the low fidelity data become the noisy observations of the same four functions.
As shown in panel (b), the increased variance in f1|Xj, y1 also results in raising the variance
in f, especially comparing the first two cases in (a) against those in (b). A dramatic
difference can be found in comparing the third plot in (a) against that in (b). In (b), the
presence of noise in the low fidelity data slightly raises the uncertainty in f;, but the
ensuing inference in f generates the prediction which fails to contain most of the true
target function within its model confidence. Thus, the likelihood that f1(x) = sin4rx is the
probable low fidelity function is greatly reduced by the noise in the observation. Lastly, the
noise in observing f1(x) = sin87x as the low fidelity data does not significantly change
the inferred target function.

Therefore, the inductive bias associated with the target function is indeed controllable
by the intermediate function distribution conditioned on the lower fidelity data. The obser-
vation motivates the DGP learning from the common single-fidelity regression data with
the intermediate GPs conditioned on some optimizable hyperdata [39]. These hyperdata
constrain the space of intermediate function, and the uncertainty therein contribute to the
expressiveness of the model.

6.3. Denoising Regression

Here we continue considering the inference of the same target function in f(x) =
(x — v/2) sin? 87tx, but now the low fidelity data set becomes the noisy observations of the
target function. See Figure 5 for illustration. Now we have 15 observations of f with noise
level of 0.001 (red dots) as high fidelity data and 30 observations of the same function with
nosie level of 0.1 (dark cross symbol) as the low fidelity data. Next, we follow the same
procedure in inferring f; with the low fidelity, and then use the conditional mean and
covariance in constructing the effective kernel for inferring the target function f with the
high fidelity data. Unlike the previous cases, the relation between f and f; here is not clear.
However, the structure of DGP can be viewed as the intermediate GP emitting infinitely
many samples of f; into the exposed GP. Qualitatively, one can expect that the actual
prediction for f is the average over the GP models with different warping f;. Consequently,
we may expect the variance in predicting f is reduced.

1.5+

—-= True function
= HF pred. mean
= LF pred. mean
1.04 ® HF observation
HF uncertaity
X  LF observation
LF uncertainty

0.5

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5. Denoising regression with 30 high-noise and 15 low-noise observations from the target
function y = (x — 1/2) sin? 87rx (red dashed line). The uncertainty is reduced in the GP learning with
the SE[SE] kernels.

Indeed, as shown in Figure 5, the predictive variance using a GP with the low fidelity
(high noise) observations only is marked by the light-blue region around the predictive
mean (light-blue solid line). When the statistical information in f;|Xy,y; is transferred
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to the effective kernel, the new prediction and model confidence possess much tighter
uncertainty (marked by the light-green shaded region) around the improved predictive
mean (dark solid line) even in the region away from the low-noise observations.

6.4. Multi-Fidelity Data with High Dimensional Input

The work in [3] along with their public code in emukit [40] assembles a set of multi-
fidelity regression data sets in which the input x is of high dimension. Here we demonstrate
the simulation results on these data (see [3] for details). The simulation is performed using
the effective kernels with compositions: SE[SE] and SC[SE] for the Borehole (two-fidelity)
regression data set, SE[SE[SE]]] and SC[SC[SE]] for Branin (three-fidelity) regression data
set. The data are obtained from deploying the modules in [40]. Algorithm 1 is followed to
obtain the results here. The performance of generalization is measured in terms of mean
negative log likelihood (MNLL). Table 1 displays the results using the same random seed
from ME-DGP and our methods. We also include the simulation of standard GP regression
with the high fidelity data only. It is seen that the knowledge about the low fidelity function
is significant for predicting high-level simulation (comparing with vanilla GP) and that the
informative kernels have better performance in these cases.

Table 1. MNLL results of multi-fidelity regression.

MFDGP SE[ ] SC[ ] GP+‘Df
Borehole —1.87 2.08 —2.08 0.56
Branin -2.7 —2.52 —-2.93 5180

7. Discussion

In this paper, we propose a novel kernel learning which is able to fuse data of low
fidelity into a prior for high fidelity function. Our approach addresses two limitations of
prior research on GPs: the need to choose or design kernel [8,9] and the lack of explicit
dependence on the observations in the prediction (in Student-t process [41] the latter is
possible). We resolve limitations associated with reliance on designing kernels, introducing
new data-dependent kernels together with effective approximate inference. Our results
show that the method is effective, and we prove that our moment-matching approximation
retains some multi-scale, multi-frequency, and non-stationary correlations that are charac-
teristic of deep kernels, e.g., [33]. The compositional freedom [18] pertaining to hierarchical
learning is also manifested in our approach.

8. Conclusions

Central to the allure of Bayesian methods, including Gaussian Processes, is the ability
to calibrate model uncertainty through marginalization over hidden variables. The power
and promise of DGP is in allowing rich composition of functions while maintaining the
Bayesian character of inference over unobserved functions. Modeling the multi-fidelity
data with the hierarchical DGP is able to exploit its expressive power and to consider the
effects of uncertainty propagation. Whereas most approaches are based on variational ap-
proximations for inference and Monte Carlo sampling in the prediction stage, our approach
uses a moment-based approximation in which the marginal prior of DGP is analytically
approximated with a GP. For both, the full implications of these approximations are un-
known. Continued research is required to understand the full strengths and limitations of
each approach.
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Appendix A

Figure A1l shows the two results of multi-fidelity regressions with the same data.
The left panel is obtained with jointly learning the hyperparameters in all layers with the
standard gradient descent on the approximate marginal likelihood, while the right panel is
from learning the hyperparameters sequentially with the Algorithm 1. It is noted that the
right panel yields higher log of marginal likelihood.

10 Target function f(x) 10 Target function f(x)

0.5 0.5

0.0 0.0

-0.5 -0.5

~1.0 -1.0

—15 -15

20 -2.0

25 -2.5
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure A1l. Comparison between the joint learning (left) and the sequential learning with Algorithm 1
(right). The same 10 training data are shown by the red dots. The joint learning algorithm results
in a log marginal likelihood 1.65 while the alternative one 2.64. The hyperparameters are {o}, =
(3.3,1.24), 415 = (0.12,1.40) } (left) and {7, = (1.22,1.65), {12 = (0.08,0.98)} (right).
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