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Abstract: We present an analysis of the relationship between SARS-CoV-2 infection rates and a social
distancing metric from data for all the states and most populous cities in the United States and Brazil,
all the 22 European Economic Community countries and the United Kingdom. We discuss why the
infection rate, instead of the effective reproduction number or growth rate of cases, is a proper choice
to perform this analysis when considering a wide span of time. We obtain a strong Spearman’s rank
order correlation between the social distancing metric and the infection rate in each locality. We
show that mask mandates increase the values of Spearman’s correlation in the United States, where a
mandate was adopted. We also obtain an explicit numerical relation between the infection rate and
the social distancing metric defined in the present work.

Keywords: COVID-19; social isolation; epidemiological model

1. Introduction

The current COVID-19 pandemic is the main health crisis in the world in a century,
with over 220 million cases and 4.5 million deaths [1]. It began in China at the end
of 2019, and has since expanded to every country in the world, with waves occurring
at different times in each location. A number of interventions were implemented in
most countries, such as travel ban, social distancing and mandatory mask use [2,3], and
their effects have been discussed in different works, which generally concluded that they
were effective in reducing the growth of cases and deaths [4–9]. Possibly, more effective
measures are lock-downs, closing of workplaces, businesses school closing, i.e., the social
distancing policies [10], with travel restrictions expected to have modest effects in reducing
transmission when there is a high circulation of the virus [11].

In order to quantify and qualify the degree of social distancing and its effects, some
different approaches have been proposed: by survey questionnaires in the population in
order to assess adherence to social distancing and to compare it to the growth of cases, or
deaths [12], or by using mobility data from different sources [13–19]. In the latter case, a
mobility or social distancing metric is compared to the growth rate of cases (or deaths) of
COVID-19, or to the effective reproduction number Rt. As we discuss below, this introduces
a limitation in the analysis due to the fact that the interpretation of both the growth rate
and Rt at the beginning of the pandemic, when most of the population is still susceptible
to the virus, is different to that at latter stages, when a non-negligible proportion of the
population has already been infected, or has already been vaccinated. A more informative
parameter, that better represents information on the circulation of the SARS-CoV-2 virus, is
the average infection rate β, which is proportional to Rt divided by the proportion of the
susceptible population (see Equation (3) below). This explains particularly the result by
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Gatalo et al. [20] who obtained a strong Pearson correlation between phone mobility data
and COVID-19 growth rates at earlier stages, but a weaker correlation at later stages, for
25 counties in the United States.

We present here an analysis of the effect of social distancing for 22 European countries
and for the 50 and 27 states of the United States and Brazil, and the most populous cities
and municipalities for the latter two, respectively. These localities have different situations
and histories of the pandemic. For instance, as mask use became mandatory at different
moments for American states, we were able to obtain quantitative evidence on its effect on
enhancing social distancing policies.

Our main goal is to evidence a monotonous relationship between social distancing
data and the value of the infection rate, and to quantify it explicitly.

2. Material and Methods
2.1. Effective Reproduction Number

The effective reproduction number Rt at day t, estimated from the generation time
distribution w(t) with t the number of days between infections, is given by [21]:

Rt =
I(t)

∑t′ w(t′)I(t− t′)
, (1)

with I(t) the number (or proportion) of infected individual at day t. The effective repro-
duction number can also be estimated from the series of deaths by first determining the
number of infected individuals as:

I(t) =
1
θ

∑
t′

Ndeaths(t + t′)u(t′), (2)

where u(t) is the distribution of the number t of days (taken as discrete) between first
symptom and death [22], Ndeaths(t) the number of deaths at day t and θ is the average
infection fatality ratio [23], computed from the demographic structure in each locality. We
then use Equation (1) to determine Rt at a given day.

2.2. Infection Rate

The infection rate can be estimated as [24]:

β =
γRt

S(t)
, (3)

with S(t) the proportion of susceptible individuals in the population at day t, Rt the time-
dependent effective reproduction number, and γ the recovery rate from infection with the
value reported in the literature [25]. We can also write that

β = PcC, (4)

where C is the average number of contacts of one individual per day, and Pc the prob-
ability of contagion of a susceptible individual from a single contact with an infected
individual. Social distancing acts by reducing the number of contacts C, while other
non-pharmaceutical interventions reduce the value of Pc.

2.3. Social Distancing Metric

As a proxy for the “amount” of social distancing, we define a metric quantifying the
deviation from a baseline representing the pre-pandemic normality. Many possibilities
exist, and different mobility data are available from different sources [26–29]. We require
that data are freely available, with coverage up to the city level. For these sources, only
Google mobility trends satisfies these two criteria, providing data on the following six
categories of locations: retail and recreation (D1); grocery and pharmacy (D2); parks (D3);
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transit stations (D4); workplaces (D5) and residential (D6), as percentages of variation
of time spent in each type of place, with respect to a baseline defined for the period of
3 January to 6 February 2020. The symbols between parenthesis represent the numeric
value of the time series for each type of data. An increase in the time spent at residence
is expected to decrease the value of the infection rate β, and is considered as a negative
contribution to the metric, while an increase in the remaining five categories are expected
to increase β and thus contribute with a positive sign. The social distancing metric is then
defined as a weighted average of the data for each category, with the specified sign, with
weights given by an (arbitrarily) estimated average proportion of the duration of a day
spent in each type of location, and given by

M ≡ 100 +
0.5
24

D1 +
1

24
D2 +

0.5
24

D3 +
1

24
D4 +

9
24

D5 −
12
24

D6, (5)

where the value of 100 is added such that the baseline is close to this value, and has no
effect of the value of the Spearman’s correlation. The resulting metric M for each Brazilian
and American state is shown in Figure 1A,B, respectively, with a similar behavior for the
other localities considered here (not shown). This definition is such that a smaller value of
M represents a more beneficial situation.
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Figure 1. Social distancing metric M in Equation (5) for (A) Brazil states and (B) USA states.

2.4. Spearman’s Rank-Order Correlation

Spearman’s rank-order correlation rs(A, B) between two time series A = (A1, . . . , ANdata)
and B = (B1, . . . , BNdata), of length Ndata, with Ai the value of the series at the i-th data
value, is defined as [30]:

rs[A, B] = 1− 6
∑Ndata

i=1 d2
i

Ndata(N2
d − 1)

, (6)

such that −1 ≥ rs ≥ 1 and di is the difference in paired ranks of the two series A and B, i.e.,
the difference in position of the i-th data point for the two datasets when ordered in ascend-
ing order. The coefficient rs measures the strength of how two variables are monotonically
related, by an increasing or decreasing relation if rs > 0 or rs < 0, respectively.

In order to show the importance to account for the decreasing number of susceptible
individuals with time, we show in Figure 2A the time evolution of Rt and β for the Los
Angeles county in the United States. As the proportion of susceptible individuals decreases
over time, Rt and β diverge slowly. By computing the Spearman’s correlation between
M and Rt and between M and β, for a period of Ndata = 150 days for the same data, we
see from Figure 2B that a small difference between Rt and β has a significant effect on the
value of rs. The Spearman’s correlation between M and Rt is close to zero at later times
while clearly positive for M and β. This is explained by the fact that, from Equation (3),
that the same value of Rt can correspond to different values of the infection rate β which is
directly related to the circulation of the virus, as it measures the rate at which susceptible
individuals are infected, and thus more closely related to the different mitigation policies
implemented. We conclude that using Rt to represent the stage of the pandemic can lead to
misleading results at later stages in assessing the effectiveness of social distancing, as the
number of susceptible individuals decreases, and that of vaccinated individuals increase.
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Figure 2. (A) Time variation of β(t) and Rt for Los Angeles county. (B) Spearman’s rank-order
correlation rs[M, β] between the social distancing metric M and the infection rate β and rs[M, Rt]

between M and the effective reproduction number Rt for Los Angeles county in the United States.

2.5. Data Sources

The following data sources were employed in the present work:

• Population by age for Europe: World Population Prospects—United Nations—Available
online: https://population.un.org/wpp (accessed on 4 September 2021).

• Time series of deaths and cases by country: World Health Organization—Available on-
line: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed
on 4 September 2021).

• Time series of cases and deaths by US counties and states: New York Times COVID-19
Tracker dataset—Available online: https://raw.githubusercontent.com/nytimes/covi
d-19-data/master/us-counties.csv (accessed on 4 September 2021).

• Population by age group in US counties and states: United States Census Bureau—
Available online: https://www.census.gov/data/tables/time-series/demo/popest
/2010s-counties-detail.html (accessed on 4 September 2021).

• Data on days of mask mandate in the US: Center for Disease Control and Prevention—
Available online: https://data.cdc.gov/Policy-Surveillance/U-S-State-and-Territo
rial-Public-Mask-Mandates-Fro/62d6-pm5i (accessed on 4 September 2021).

• Population by age group for Brazilian municipalities and states: Brazilian Institute for
Geography and Statistics—Available online: https://brasilemsintese.ibge.gov.br/po
pulacao (accessed on 4 September 2021).

• Time series for cases and deaths by COVID-19 by municipality and state in Brazil:
Brazilian Ministry of Health—Available online: https://covid.saude.gov.br (accessed
on 4 September 2021).

• Detailed data on vaccination in Brazil: Brazilian Ministry of Health—Available on-
line: https://opendatasus.saude.gov.br/dataset/covid-19-vacinacao (accessed on 4
September 2021).

3. Results and Discussion

The localities analyzed here are:

• All 50 US states, from the first reported case up to 20 December 2020;
• The 24 US counties with a population of at least one million and at least 1000 deaths in

2020 (Nassau was not considered due to inconsistent data for the number of deaths),
from the first reported case in each county up to 20 December 2020;

• All 27 Brazilian states, from 26 February 2020 to 14 June 2021;
• The 22 Brazilian cities (municipalities) with a population of at least 750 thousand from

26 February 2020 to 14 June 2021;
• All countries in the European Economic Community and the United Kingdom with

Google Mobility data and at least one thousand deaths by COVID-19 in 2020, from 1
March 2020 to 31 December 2020, with a total of 22 countries.

https://population.un.org/wpp
 https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv
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https://data.cdc.gov/Policy-Surveillance/U-S-State-and-Territorial-Public-Mask-Mandates-Fro/62d6-pm5i
https://data.cdc.gov/Policy-Surveillance/U-S-State-and-Territorial-Public-Mask-Mandates-Fro/62d6-pm5i
https://brasilemsintese.ibge.gov.br/populacao
https://brasilemsintese.ibge.gov.br/populacao
https://covid.saude.gov.br
https://opendatasus.saude.gov.br/dataset/covid-19-vacinacao
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The span of time of the data was chosen to avoid the effect of vaccination in the
United States and Europe, while for Brazil detailed and publicly available anonymized
data on each vaccine shot delivered allows modeling the time evolution of the pandemic
for a longer period. For estimations of susceptible population in Equation (3), we use the
epidemiological model described in [31] to determine the attack rate in each locality and
the model is described in Appendix A. Serological surveys also provide such estimates, but
are not available for every locality and for the required time window and, where available,
data do not have the required time resolution.

The results of the Spearman’s rank-order correlation between the social distancing
metric M and the infection rate β for each locality are show in Figure 3. In order to assess
the effect of mandatory mask use in each US county and state, we compute rs for two
periods: for the whole period, indicating in the corresponding graphic the percentage of
time with a mask mandate, and for the period with a mask mandate, for those counties
with a mandate for at least 50% of the days since the beginning of the pandemic, while
for the remaining counties, we consider the whole period and display the corresponding
histogram in black. We also computed the Spearman’s correlation separately for each of the
six mobility data reported by Google, with results shown in Figures 4 and 5. The average
of β/γ, over the time period considered for each locality, versus the total number of deaths
at the end of each period is shown in Figure 6, where an approximately linear relation is
clearly visible, with the exception of a few cases in Brazil.

In order to established a numeric relationship between β and M, let us assume the
linear relation

β(t) = αM(t), (7)

with α a constant, and consider only the time window that allows to an accurate estima-
tion of Rt. The distributions of values of the ratio α/γ = β(t)/γM(t) for the Brazilian
states, Brazilian municipalities, European countries, US states and counties are shown in
Figure 7A–E, with values for α/γ (CI 95%) given by 0.015 (0.0096–0.023), 0.019 (0.0081–0.042),
0.014 (0.0089–0.021), 0.015 (0.0091–0.027) and 0.014 (0.0084–0.024), respectively. We also
show the best fit with a log-normal distribution for values of α/γ in Figure 7F–J. The fact
that the value of α is greater in the Brazilian municipalities may be explained by different
factors. It is common in Brazil for people in smaller cities to seek health treatment in the
closest biggest city, mainly for a serious condition, and, in this way, deaths by COVID-19
contracted in other localities end up accounted for in the main municipalities, resulting in
an increased value of β and consequently of α/γ also. More crowded places and poorer
living conditions in such municipalities may also result in an increase of the transmission
rate and, thus, in an increase of α.

While vaccination reduces the proportion of susceptible individuals in the population,
it does not alter the relationship of the infection rate β with social distancing policies with
M as a proxy, and this was explicitly taken into account in our analysis by using an epi-
demiological model with vaccination compartments. The approach presented here allowed
to evidence a monotonous relationship between the infection rate in each locality and
the social distancing metric M. It also allowed to explicitly obtain a numeric relationship
between β and a metric for social distancing. Behavioral changes can also have a significant
impact on the evolution of any epidemic, and are difficult to include in the current analysis.
Nevertheless, the significant values obtained for the Spearman’s correlation indicate the
important role that social distancing has played up to now. This is particularly clear in
Belgium (rs = 0.75), Spain (rs = 0.8) and the United Kingdom (rs = 0.88), three countries
with a high attack rate. The correlation is somewhat smaller for other localities, but never-
theless with significant positive values, clearly indicating an approximately monotonous
relationship between the two variables.
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Figure 3. Spearman’s correlation index rs between the social distancing metric M and the infection rate β for: (A) Brazilian
states; (B) Main Brazilian municipalities with population over 750 thousand; (C) 22 European countries; (D) US counties
with at least one million inhabitants. (D) Main counties in the United States. Bar colors give the proportion of days
with a mask mandate since the beginning of the pandemic in each location, up to 20 December 2020; (E) same as (D) but
considering only the period with a mask mandate. States without a mask mandate in the period considered are marked in
black. (F) Same as (D) but for all American states. (G) Same as (E) but for the American states.
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Figure 5. Spearman’s correlation index rs between changes in each mobility category and the infection rate β for (A) counties
with more than one million inhabitants and one thousand deaths for the period from the first COVID-19 case up to 20
December 2020; (B) same as (A) but for the period with a mask mandate, except those counties with no mask mandate in
2020 (marked in black in Figure 3E), for which the whole period is considered; (C) same as (A) for all US states; (D) same as
(B) for all US states.
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For Brazil and the European countries, the results for Spearman’s correlation are quite
similar: the variation in time spent at residence is negatively correlated with the infection
rate, i.e., the more time spent at home the smaller the value of β, while other categories are
positively correlated. For the United States, due to a much greater variety of mitigation
policies implemented [13], we see a slightly different picture. In general, time at residence
is negatively correlated with β while time at workplace is positively correlated with the
transmission rate, as expected. For the remaining categories (grocery and pharmacy,
park, retail and recreation and transit stations), we observe both negative and positive
correlations according to the locality, indicating that the most relevant categories are those
related to the increase of time spent at home and the decrease of time spent at work places.
For the United States case, there is a significant increase in the value of rs when considering
only the time period with a mask mandate, which indeed shows its effectiveness.

The values of the proportionality constant α/γ between β(t)/γ and M(t) are surpris-
ingly close to one another, despite the great differences in the history and implemented
policies to mitigate the COVID-19 pandemic. We obtain a log-normal distribution for the
value of α/γ (and for α consequently) for all types of localities considered here, with aver-
age values significantly close to each other, despite all the differences between countries,
implemented mitigation policies, and timings. This points to a universal efficacy of social
distancing, enhanced by a mandatory mask use. The explicit linear relation in Equation (7)
with the value obtained for the proportionality constant α can be used, for instance, in
modeling studies with different scenarios for social isolation.

Of course not only social distancing affects the evolution of the infection rate, causing
the variation observed for the Spearman’s correlation for the different localities. We note
that even a small increase in β, and thus, a small decrease in M, for a long period of time,
results in a significant increase in mortality, as can be seen from Figure 6. Our analysis
does not grasp the impact of great gatherings of individuals and the possible effect of the
so-called superspreading events [20], or the implications of contact tracing.

4. Conclusions

A proper choice of a variable to represent the current circulation of the virus is central
to assessing the effects of mitigation policies. The infection rate as expressed in Equation (4)
is affected by the reduction of social contacts through the average number contacts C, and
by other implemented protocols, such as mask wearing, that reduce the probability of
contagion per contact Pc. On the other hand, the effective reproduction number Rt, or any
other measure of growth rate of the pandemic, also depends on the current attack rate, and
confuses variables in the analysis. The value of Rt depends on two factors: the amount of
virus in circulation and the proportion of susceptible individuals in the population S(t).
For instance, for the same value of Rt = 1 occurring at two different moments of time t1 and
t2 such that S(t1) = 1 (begging of the pandemic) and S(t2) = 0.5 (half of the population
already infected) would imply β(t1) = 1 and β(t2) = 2, i.e., the probability of being infected
by unit of time at t = t2 is the double than for t = t1. A smaller infection probability is
what is sought by the mitigation measures. We see that the same value of Rt can mean
different situations depending on the attack rate by the virus, and blurs the analysis when
a wider time span is considered such that S(t) varies significantly, as is the case in the data
analyzed here. At a given moment of time, social isolation acts on β but not on S(t). While
we expect a monotonous relation between β and M, a monotonous relation between Rt
and M is only evidenced for a shorter time interval such that the proportion of susceptible
individuals does no vary significantly. We performed the same analysis for all the localities
considered (not shown) by computing the Spearman’s correlation between Rt and M, and
obtained much less significant results, as well exemplified in Figure 2. This is an important
point to consider as a more detailed analysis requires a large dataset, and consequently, a
significant variation in the proportion of susceptible individuals. Computing Spearman’s
correlation, rather than Pearson correlation, for instance, allows us to clearly evidence a
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monotonous relationship between the social distancing metric as defined here and the
infection rate, and computed from the whole time series for each locality.

One limitation of the present work is due to the fact that Spearman’s correlation
measures the “amount” of how much one variable is a monotonous function of another
variable and that the existence of a time lag for social isolation to affect the evolution of the
disease may result in a smaller value for the correlation rs. Nevertheless, the approximate
(inverse) monotonous relation between social isolation and infection rate is clearly evidenced
in our results. We also obtained a strong indication of the positive effect of mask use on
controlling the spread of the virus. For localities where a mask mandate was in place, the
value of the Spearman’s correlation is usually bigger, as well when considering only the
time period with a mask mandate. Further and more detailed studies should be performed
to put forward a more direct relation between mask use and the infection rate values.

Future research considering socioeconomic and demographic data would certainly
provide valuable information on mitigation strategies targeted at specific groups, such as
elders and individuals with comorbidities, as well as the impact of school closure, each
considered separately from other factors [32]. We hope that the present work will contribute
to a better assessment of the effects of social distancing, and at least partially of mask
mandates, on the still ongoing mitigation interventions against the COVID-19 pandemic.
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Appendix A. Epidemiological Model

In order to determine the proportion of susceptible individuals in a given locality, we
use the approach described in [31] based on the SEIAHRV epidemiological model with
variables described in Table A1.

Table A1. Variables in the SEIAHRV model reported in [31]. All variables are proportions with
respect to the initial population and the index i refers to the age-group.

Variable Description

Si Susceptible individuals
Ei Exposed individuals (non-contagious)
Ii Infected symptomatic individuals (contagious)
Ai Asymptomatic symptomatic individuals (contagious)
Hi Hospitalized individuals

V(l,k)
i

Vaccinated individual with l doses with vaccine of type k without primary
vaccination failure

U(l,k)
i

Vaccinated individual with l doses with vaccine of type k with primary
vaccination failure

Ri Recovered individuals.
d(i,k)l

Individuals vaccinated per unit of time with the l-th dose of vaccine of type k.

e(k)l
Efficacy of vaccine of type k withe l doses.
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The proportion Si of susceptible individuals is obtained from the epidemiological
model described in [31], with model equations:

dSi
dt

= −
[

λi + µ′ + ν1 +
1
pv

K

∑
k=1

d(i,k)1

]
Si

+κ′δi,1 + νi−1Si−1,

dEi
dt

= λiSi + λi

K

∑
k=1

U(k)
i + νi−1Ei−1

−
[

σ + µ′ + νi +
1
pv

K

∑
k=1

d(i,k)1 e(k)1

]
Ri,

dIi
dt

= (1− χ)σEi −
[
γ + µ′ + νi

]
Ii + νi−1 Ii−1

−(1− χ)ζiσEi(t− τ1),

dAi
dt

= χσEi −
[

γ + µ′ + νi +
1
pv

K

∑
k=1

d(i,k)1 e(k)1

]
Ai

+νi−1 Ai−1,

dHi
dt

= −
[
ψ + µ′ + νi

]
Hi + (1− χ)ζiσEi(t− τ1)

−(1− χ)θiζiσEi(t− τ2) + νi−1Hi−1,

dRi
dt

= γIi + γAi −
[

µ′ + νi +
1
pv

K

∑
k=1

d(i,k)1 e(k)1

]
Ri

+ψHi + νi−1Ri−1,

dV(1,k)
i
dt

= −
[
µ′ + νi

]
V(1,k)

i + νi−1V(1,k)
i−1

+e(k)1 d(i,k)1 − e(k)1 d(i,k)2 ,

dV(2,k)
i
dt

= −
[
µ′ + νi

]
V(2,k)

i + νi−1V(2,k)
i−1 + e(k)2 d(i,k)2 ,

dU(k)
i

dt
= −

[
λi + µ′ + νi

]
U(k)

i + νi−1U(k)
i−1

+
(1− e(k)1 )d(i,k)1 Si

pv
− (e(k)2 − e(k)1 )d(i,k)2 ,

pv = Si + Ei + Ai + Ri. (A1)
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This is a nonlinear delayed set of ODEs due to the time delay between infection, hospital-
ization and death. The different parameter values used in the model are given in Table 1
in [31]. The force of infection in Equation (A1) is given by

λi =
M

∑
j=1

βi,j
Ij + ξAj

ni
, (A2)

with βi,j the infection rate from an infected individual of age group j to infect an individual
of age-group i. The epidemiological model is calibrated using the time series of deaths in
order to avoid the significant under-notification of cases [33]. The value β in Equation (3) is
an age-independent estimate obtained from the total proportion of susceptible individuals
obtained from

S(t) =
1

Ptot
∑

i
PiSi(t), (A3)

where Pi is the population in age group i and Ptot the total population for the given locality.
The model is fitted from the time series of deaths as described in [31].
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