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Abstract: We formulate limits to perception under continuous quantum measurements by comparing
the quantum states assigned by agents that have partial access to measurement outcomes. To this
end, we provide bounds on the trace distance and the relative entropy between the assigned state
and the actual state of the system. These bounds are expressed solely in terms of the purity and
von Neumann entropy of the state assigned by the agent, and are shown to characterize how an
agent’s perception of the system is altered by access to additional information. We apply our results
to Gaussian states and to the dynamics of a system embedded in an environment illustrated on a
quantum Ising chain.

Keywords: quantum monitoring; Quantum Darwinism; continuous quantum measurements

Quantum theory rests on the fact that the quantum state of a system encodes all
predictions of possible measurements as well as the system’s posterior evolution. However,
in general, different agents may assign different states to the same system, depending on
their knowledge of it. Complete information of the physical state of a system is equated
to pure states, mathematically modeled by unit vectors in Hilbert space. By contrast,
mixed states correspond to a lack of complete descriptions of the system, either due to
uncertainties in the preparation, or due to the system being correlated with secondary
systems. In this paper, we address how the perception of a system differs among observers
with different levels of knowledge. Specifically, we quantify how different the effective
descriptions that two agents provide of the same system can be, when acquiring information
through continuous measurements.

Consider a monitored quantum system, that is, a system being continuously measured
in time. An omniscient agent O is assumed to know all interactions and measurements
that occur to the system. In particular, she has access to all outcomes of measurements
that are performed. As such, O has a complete description of the pure state ρOt =

(
ρOt
)2 of

the system.
While not necessary for subsequent results, we model such a monitoring process

by continuous quantum measurements [1–3] as a natural test-bed with experimental
relevance [4–6]. For ideal continuous quantum measurements, the state ρOt satisfies a
stochastic equation dictating its change,

dρOt = −i
[

H, ρOt

]
dt + Λ

[
ρOt

]
dt + ∑

α

IAα

[
ρOt

]
dWα

t . (1)
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The dephasing superoperator Λ
[
ρOt
]

is of Lindblad form,

Λ
[
ρOt

]
= −∑

α

1
8τα

m

[
Aα,

[
Aα, ρOt

]]
(2)

for the set of measured physical observables {Aα}, and the “innovation terms” are given by

IAα

[
ρOt

]
=

1√
4τα

m

(
{Aα, ρOt } − 2 Tr

(
AαρOt

)
ρOt

)
. (3)

The latter account for the information about the system acquired during the monitoring
process, and model the quantum back-action on the state during a measurement. The
characteristic measurement times τα

m depend on the strength of the measurement, and charac-
terize the time over which information of the observable Aα is acquired. The terms dWα

t
are independent random Gaussian variables of zero mean and variance dt.

An agent A without access to the measurement outcomes possesses a different–
incomplete description of the state of the system. The need to average over the unknown
results implies that the state ρAt assigned by A satisfies the master equation

dρAt = −i
[

H, ρAt

]
dt + Λ

[
ρAt

]
dt, (4)

obtained from (1) by using that 〈dWα
t 〉 = 0, where 〈·〉 denote averages over realizations

of the measurement process [1]. Assuming that agent A knows the initial state of the
system before the measurement process, ρO0 = ρA0 , the state that she assigns at later times
is ρAt ≡ 〈ρOt 〉.

As a result of the incomplete description of the state of the system, agent A suffers
from a growing uncertainty in the predictions of measurement outcomes. We quantify this
by means of two figures of merit: the trace distance and the relative entropy.

The trace distance between states σ1 and σ2 is defined as

D(σ1, σ2) =
‖σ1 − σ2‖1

2
, (5)

where the trace norm for an operator with a spectral decomposition A = ∑j λj |j〉 〈j| is
‖A‖1 = ∑j |λj|. Its operational meaning derives from the fact that the trace distance
characterizes the maximum difference in probability of outcomes for any measurement on
the states σ1 and σ2:

D(σ1, σ2) = max
0≤P≤1

|Tr(Pσ1)− Tr(Pσ2)|, (6)

where P is a positive-operator valued measure. It also quantifies the probability p of
successfully guessing, with a single measurement instance, the correct state in a scenario
where one assumes equal prior probabilities for having state σ1 or σ2. Then, the best
conceivable protocol gives p = 1

2 (1 +D(σ1, σ2)). Thus, if two states are close in trace
distance they are hard to distinguish under any conceivable measurement [7–9].

The relative entropy also serves as a figure of merit to quantify the distance between
probability distributions, in particular characterizing the extent to which one distribution
can encode information contained in the other one [10]. In the quantum case, the relative
entropy is defined as:

S(σ1||σ2) ≡ Tr(σ1 log σ1)− Tr(σ1 log σ2). (7)

In a hypothesis testing scenario between states σ1 and σ2, the probability pN of wrongly
believing that σ2 is the correct state scales as pN ∼ e−NS(σ1||σ2) in the limit of large N, where
N is the number of copies of the state that are available to measure on [11,12]. That is, σ2 is
easily confused with σ1 if S(σ1||σ2) is small [13,14].



Entropy 2021, 23, 1527 3 of 14

1. Quantum Limits to Perception

Lack of knowledge of the outcomes from measurements performed on the system
induces A to assign an incomplete, mixed, state to the system. This hinders the agent’s
perception of the system (see illustration in Figure 1). We quantify this by the trace distance
and the relative entropy.

a)

b)

c)

Figure 1. Illustration of the varying degrees of perception by different agents. The amount of
information that an agent possesses of a system can drastically alter its perception, as the expectations
of outcomes for measurements performed on the system can differ. (a) The state ρOt assigned by
omniscient agent O, who has full access to the measurement outcomes, corresponds to a complete
pure-state description of the system. O thus has the most accurate predictive power. (b) An agent
A completely ignorant of measurement outcomes possesses the most incomplete description of the
system. (c) A continuous transition between the two descriptions, corresponding to the worst and
most complete perceptions of the system respectively, is obtained by considering an agent B with
partial access to the measurement outcomes of the monitoring process.

We are interested in comparing A’s incomplete description to the pure state ρOT
assigned by O, i.e., to the complete description. Under ideal monitoring of a quantum
system, the pure state ρOT remains pure. Therefore, the following holds [7]:

1− Tr
(

ρOT ρAT

)
≤ D

(
ρOT , ρAT

)
≤
√

1− Tr
(
ρOT ρAT

)
. (8)

One can then directly relate the average trace distance to the purity P
(
ρAT
)
≡ Tr

(
ρAT

2
)

of

state ρAT as

1−P
(

ρAT

)
≤
〈
D
(

ρOT , ρAT

)〉
≤
√

1−P
(
ρAT
)
, (9)

by using Jensen’s inequality and the fact that the square root is concave. The level of
mixedness of the state ρAT that A assigns to the system provides lower and upper bounds
to the average probability of error that she has in guessing the actual state of the system
ρOT . This provides an operational meaning to the purity of a quantum state, as a quantifier
of the average trace distance between a state ρOt and post-measurement (average) state ρAt .

To appreciate the dynamics in which the average trace distance evolves, we note that
at short times

T
τD
≤
〈
D
(

ρOT , ρAT

)〉
≤

√
T

τD
, (10)
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where the decoherence rate is given by [15,16]

1
τD

= ∑
α

1
4τα

m
VarρA0

(Aα), (11)

in terms of the variance VarρA0
(Aα) of the measured observables over the initial pure state

ρA0 . Analogous bounds can be derived at arbitrary times of evolution for the difference of
perceptions among various agents (see Appendix A).

For the case of the quantum relative entropy between states of complete and incom-
plete knowledge, the following identity holds:〈

S
(

ρOt ||ρAt
)〉

= S
(

ρAt

)
, (12)

proven by using that ρOt is pure and that the von Neumann entropy of a state σ is S(σ) :=
−Tr(σ log σ). Thus, the entropy of the state assigned by the agent A fully determines
the average relative entropy with respect to the complete description ρOt (alternative
interpretations to this quantity have been given in [17,18]).

Similar calculations allow to bound the variances of D
(
ρOT , ρAT

)
and of S

(
ρOt ||ρAt

)
as

well. The variance of the trace distance, ∆D2
T ≡

〈
D2(ρOT , ρAT

)〉
−
〈
D
(
ρOT , ρAT

)〉2, satisfies

∆D2
T ≤ P

(
ρAT

)
−P

(
ρAT

)2
, (13)

while for the variance of the relative entropy it holds that

∆S2
(

ρOt ||ρAt
)
≤ Tr

(
ρAt log2 ρAt

)
− S2

(
ρAt

)
. (14)

The right-hand side of this inequality admits a classical interpretation in terms of the
variance of the surprisal (− log pj) over the eigenvalues pj of ρAt [14]. We thus find that, at
the level of a single realization, the dispersion of the relative entropy between the states
assigned by the agents O and A is upper bounded by the variance of the surprise in the
description of A. The later naturally vanishes when ρAt is pure, and increases as the state
becomes more mixed.

2. Transition to Complete Descriptions

So far we considered the extreme case of comparing the states assigned byA, who is in
complete ignorance of the measurement outcomes, and by an omniscient agent O. One can
in fact consider a continuous transition between these limiting cases, i.e., as the accuracy in
the perception of the monitored system by an agent is enhanced, as illustrated in Figure 1.
Consider a third agent B, with access to a fraction of the measurement output. This can be
modeled by introducing a filter function η(α) ∈ [0, 1] characterizing the efficiency of the
measurement channels in Equation (1) [1]. Then, the dynamics of state ρBt is dictated by

dρBt = −i
[

H, ρBt

]
dt + Λ

[
ρBt

]
dt + ∑

α

√
η(α)IAα

[
ρBt

]
dVα

t , (15)

with dVα
t Wiener noises for observer B. It holds that ρBt ≡ 〈ρOt 〉B , where the average is now

over the outcomes obtained by O that are unknown to B [1].
Note that the case with null measurement efficiencies η(j) = 0 gives the exact same

dynamics as that of a system in which the monitored observables {Aα} are coupled to
environmental degrees of freedom, producing dephasing [19,20]. Equations (15) and (1)
then correspond to unravellings in which partial or full access to environmental degrees
of freedom allow learning the state of the system by conditioning on the state observed
in the environment. Therefore, knowing how D

(
ρBt , ρOt

)
and S

(
ρOt ||ρBt

)
decrease as η

increases directly informs of how much the description of an open system can be improved
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by observing a fraction of the environment. This is reminiscent of the Quantum Darwinism
approach, whereby fractions of the environment encode objective approximate descrip-
tions of the system. While in the Darwinistic framework the focus is on environmental
correlations, we focus on the state of the system itself.

The results of the previous section hold for partial-ignorance state ρBt as well:

1−P
(

ρBT

)
≤
〈
D
(

ρOT , ρBT

)〉
B
≤
√

1−P
(
ρBT
)

(16a)〈
S
(

ρOt ||ρBt
)〉
B
= S

(
ρBt

)
. (16b)

Similar extensions are obtained for the variances. This allows exploring the transition from
the incomplete description of A, to a complete description of the state of the system as
η → 1. Note that these results hold for each realization of a trajectory of B’s state ρBt , and
that if one averages over the measurement outcomes unknown to both agents A and B,
Equation (16b) gives 〈S

(
ρOt ||ρBt

)
〉 = 〈S(ρBt )〉.

These results allow to compare the descriptions of different agents that jointly monitor
a system [1,20–23]. We show in Appendix A that∣∣∣Tr

(
ρAT

2)− Tr
(

ρBT
2)∣∣∣ ≤ 〈D(ρAT , ρBT

)〉
AB
≤
√

1− Tr
(

ρAT
2
)
+

√
1− Tr

(
ρBT

2
)

. (17)

The joint monitoring of a system by independent observers has been realized experimen-
tally in [24,25].

3. Illustrations
3.1. Evolution of the Limits to Perception

Consider a 1D transverse field Ising model, with the Hamiltonian

H = −h
N

∑
j

σx
j − J

N−1

∑
j

σz
j σz

j+1, (18)

where σx
j and σz

j denote Pauli matrices on the x and z directions, and {h, J} denote coupling
strengths.

We study the case of observer O monitoring the individual spin z components.
Equation (1) thus governs the evolution of the state ρOt , with {Aα} = {σz

j }. Mean-
while, the state assigned by observers with partial access to measurement outcomes fol-
lows Equation (15). The case η(j) = 0 gives equivalent dynamics to that of an Ising
chain in which individual spins couple to environmental degrees of freedom via σz

j ,
producing dephasing.

Figure 2 illustrates the evolution of the averaged relative entropy
〈
S
(
ρOt ||ρBt

)〉
be-

tween the complete description and B’s partial one, for different values of the monitoring
efficiency η. The average 〈·〉 is over all measurement outcomes. Analogous results for
the average trace distance can be found in Appendix A. The dynamics are simulated by
implementation of the monitoring process as a sequence of weak measurements, which can
be modeled by Kraus operators acting on the state of the system. Specifically, the evolution
of ρOt and corresponding state ρBt with partial measurements is numerically obtained from
assuming two independent measurement processes, as in [1].
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0
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Figure 2. Evolution of the average relative entropy. Simulated evolution of the average
〈

S
(

ρOt ||ρBt
)〉

=〈
S
(

ρBt

)〉
of the relative entropy between complete and incomplete descriptions for a spin chain

initially in a paramagnetic state on which individual spin components σz
j are monitored. Here 〈·〉

denotes an average over all measurement outcomes, and ρBt = 〈ρOt 〉B is the state assigned by agent
B after discarding the outcomes unknown to him. The simulation corresponds to N = 6 spins, with
couplings Jτm = hτm = 1/2. For η = 0 (black continuous curve), agent A, without any access to
the measurement outcomes, has the most incomplete description of the system. For η = 0.5 (red
dashed curve), B gets closer to the complete description of the state of the system, after gaining
access to partial measurement results. Finally, when η = 0.9 (blue dotted curve), access to enough
information provides B with an almost complete description of the state. Importantly, in all cases the
agent can estimate how far the description possessed is from the complete one solely in terms of the
entropy S(ρBt ).

3.2. Transition to Complete Descriptions

Consider the case of a one-dimensional harmonic oscillator with position and momen-
tum operators X and P. We assume agent B is monitoring the position of the oscillator
with an efficiency η. The dynamics is dictated by Equation (15) for the case of a single
monitored observable X, and can be determined by a set of differential equations on the
moments of the Gaussian state ρBt [1,21].

We prove in Appendix A that the purity of the density matrix for long times has a
simple expression in terms of the measurement efficiency, satisfying P

(
ρBT
)
−→ √η for

long times. Equation (16) and properties of Gaussian states [22–26] then imply

1−√η ≤
〈
D
(

ρOT , ρBT

)〉
B
≤
√

1−√η, (19)

and〈
S
(

ρOt ||ρBt
)〉
B
=

(
1

2
√

η
+

1
2

)
log
(

1
2
√

η
+

1
2

)
−
(

1
2
√

η
− 1

2

)
log
(

1
2
√

η
− 1

2

)
. (20)

See [27] for further results on the gains in purity that can be obtained from condition-
ing on measurement outcomes in Gaussian systems. Figure 3 depicts the trace distance〈
D
(
ρBt , ρOt

)〉
B and the relative entropy

〈
S
(
ρOt ||ρBt

)〉
B as a function of the measurements

efficiency of B’s measurement process, illustrating the transition from least accurate per-
ception to most accurate perception and optimal predictive power as η → 1. Note that,
since both the bounds on the trace distance and relative entropy are independent of the
parameters of the model in this example, the transition to most accurate perceptions of
the system is solely a function of the measurement efficiency. The figures show that
a high knowledge of the state of the system is gained for η ∼ 0 as η increases. This
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gain decreases for larger values of η. This observation is confirmed by explicit compu-
tation using the relative entropy, which satisfies d

dη

〈
S
(
ρOt ||ρBt

)〉
B = log

(
1−√η
1+
√

η

)
/(4η3/2).

Thus, its rate of change and the information gain diverges for η → 0 as a power law
d

dη

〈
S
(
ρOt ||ρBt

)〉
B = −(1/6 + 1/2η) + O(η2), while it becomes essentially constant for

intermediate values of η. In the transition to most accurate perception the effective descrip-
tion of the system changes from a mixed to a pure state, and the information gain becomes
divergent as well as η → 1.

0 0.5 1
0

1

2

3

4

Figure 3. Transition between levels of perception. Bounds on average trace distance (left) and average relative entropy
(right) as function of measurement efficiency for a harmonic oscillator undergoing monitoring of its position. For such a
system the purity of the state ρBt depends solely on the measurement efficiency with which observer B monitors the system.
This illustrates the transition from complete ignorance of the outcomes of measurements performed (η = 0), to the most
complete description as η → 1—the situation with the most accurate perception. Efficient use of information happens when

a small fraction of the measurement output is incorporated at η � 1, as then both D
(

ρBt , ρOt

)
and the relative entropy

S
(

ρOt ||ρBt
)

decay rapidly.

4. Discussion

Different levels of information of a system amount to different effective descriptions.
We studied these different descriptions for the case of a system being monitored by an
observer, and compared this agent’s description to that of other agents with a restricted
access to the measurement outcomes. With continuous measurements as an illustrative
case study, we put bounds on the average trace distance between states that different
agents assign to the system, and obtained exact results for the average quantum relative
entropy. The expressions solely involve the state assigned by the less-knowledgeable agent,
providing estimates for the distance to the exact state that can be calculated by the agent
without knowledge of the latter.

The setting we presented here has a natural application to the case of a system
interacting with an environment. For all practical purposes, one can view the effect of an
environment as effectively monitoring the system with which it interacts [28,29]. Without
access to the environmental degrees of freedom, the master equation that governs the
state of the system takes a Lindblad form with Hermitian operators, as in Equation (4).
However, access to the degrees of freedom of the environment can provide information of
the state of the system, effectively leading to a dynamics governed by Equation (15). Access
to a high fraction of the environment leads to a dynamics as in Equation (1), providing
complete description of the state of the system by conditioning on the observed state of
the environmental degrees of freedom. With this in mind, our results shed light on how
much one can improve the description of a given system by incorporating information
encoded in an environment [29–35], as experimentally explored in [36,37]. Note that since
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our bounds depend on the state assigned by the agent with less information, the above is
independent of the unraveling chosen. It would also be interesting to extend our results
and the connections to the dynamics of open systems to more general monitoring dynamics
(e.g., non-Hermitian operators or other noise models).

As brought up by an analysis of a continuously-monitored harmonic oscillator, a large
gain of information about the state of the system occurs when an agent has access to a small
fraction of the measurement output, when quantified both by the trace distance and by
the relative entropy. Our results thus complement the Quantum Darwinism program and
related approaches [29–35], where the authors compare the state of a system interacting
with an environment and the state of fractions of such an environment. While those
works focused on the correlation buildup between the system and the environment, we
instead address the subjective description that observers assign to the state of the system,
conditioned on the information encoded in a given measurement record.
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Appendix A.

Appendix A.1. Derivation of Bounds to Average Trace Distance

Using Equations (2) and (4) in the main text and that ρO0 = ρA0 , we find

〈
1− Tr

(
ρOT ρAT

)〉
= −

〈∫ Tr(ρOT ρAT )

Tr(ρO0 ρA0 )
d Tr

(
ρOt ρAt

)〉
(A1)

= −
∫ FT

F0

d Tr
(

ρAt ρAt

)
= −2

∫ T

0
Tr
(

ρAt Λ
[
ρAt

])
dt

= +2 ∑
α

1
8τα

m

∫ T

0
Tr
([

Aα,
[

Aα, ρAt

]]
ρAt

)
dt

= ∑
α

1
4τα

m

∫ T

0
Tr
([

ρAt , Aα

][
Aα, ρAt

])
dt.

This identity can be conveniently expressed in terms of the 2-norm of the commutator
[ρAt , A] as 〈

1− Tr
(

ρOT ρAT

)〉
= ∑

α

1
4τα

m

∫ T

0

∥∥∥[ρAt , Aα

]∥∥∥2

2
dt = ∑

α

T
4τα

m

∥∥[ρAt , Aα

]∥∥2
2, (A2)

where we denote the time-average of a function f by f ≡
∫ T

0 f (t)dt/T. Note that the

expression ∑α
1

4τα
m

∥∥[ρAt , Aα

]∥∥2
2 plays the role of a time-averaged decoherence time [15,16],

generalizing Equation (11) in the main text.
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This sets alternative bounds on the average distance between the state ρAt assigned by
A and the actual state of the system ρOt , in terms of the effect of the Lindblad dephasing
term acting on the incomplete-knowledge state ρAt ,

T ∑
α

1
4τα

m

∥∥[ρAt , Aα

]∥∥2
2 ≤

〈
D
(

ρOT , ρAT

)〉
≤
√

T ∑
α

1
4τα

m

∥∥[ρAt , Aα

]∥∥2
2 .

A short time analysis provides a sense of the evolution of the upper and lower bounds
on the trace distance and how they compare to its variance. To leading order in a Taylor
series expansion,

P
(

ρAτ

)
≈ 1 + 2 Tr

(
ρA0 Λ

[
ρA0

])
τ = 1−∑

α

1
4τα

m
Tr
([

ρA0 , Aα

][
Aα, ρA0

])
τ, (A3)

and one finds

τ ∑
α

1
4τα

m

∥∥∥[ρA0 , Aα

]∥∥∥2

2
≤
〈
D
(

ρOτ , ρAτ

)〉
≤
√

τ ∑
α

1
4τα

m

∥∥[ρA0 , Aα

]∥∥2
2. (A4)

Note that the behavior of the trace distance is determined by the timescale in which
decoherence occurs.

Using Equation (9) in the main text and Jensen’s inequality, one obtains〈
D2
(

ρOT , ρAT

)〉
≤ 1−P

(
ρAT

)
, (A5)

which implies that the variance ∆D2
T ≡

〈
D2(ρOT , ρAT

)〉
−
〈
D
(
ρOT , ρAT

)〉2 satisfies

∆D2
T ≤ P

(
ρAT

)
−P

(
ρAT

)2
. (A6)

In the short time limit this becomes

∆D2
τ ≤ −2 Tr

(
ρA0 Λ

[
ρA0

])
τ. (A7)

Appendix A.2. Derivation of the Average and Variance of the Quantum Relative Entropy

Using that ρOt is pure, and that the von Neumann entropy is given by S(ρ) ≡
−Tr(ρ log ρ), we obtain that the average over the results unknown to agent A satisfy〈

S
(

ρOt ||ρAt
)〉

=
〈

Tr
(

ρOt log ρOt

)〉
−
〈

Tr
(

ρOt log ρAt

)〉
(A8)

= 0− Tr
(

ρAt log ρAt

)
= S

(
ρAt

)
.

This sets a direct connection between the average error induced by assigning state
ρAt instead of the exact state ρOt , as quantified by the relative entropy, in terms of the von
Neumann entropy of the state accessible to agent A.

In turn, the variance of the relative entropy satisfies

∆S2
(

ρOt ||ρAt
)
=
〈

S2
(

ρOt ||ρAt
)〉
−
〈

S
(

ρOt ||ρAt
)〉2

(A9)

=

〈
Tr
(

ρOt log ρAt

)2
〉
− S2

(
ρAt

)
≤
〈

Tr
(

ρOt

)
Tr
(

ρOt log2 ρAt

)〉
− S2

(
ρAt

)
= Tr

(
ρAt log2 ρAt

)
− S2

(
ρAt

)
,
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using the Cauchy–Schwarz inequality in the third line. Note that this expression is iden-
tical to the variance of the operator

(
− log ρAt

)
, which can be thought of as the quantum

extension to the notion of the “information content” or “surprisal” (− log p) in classical
information theory.

Appendix A.3. Bounds to the Difference between Perceptions of Multiple Agents

Consider two agents A and B who simultaneously monitor different observables on
a system. Each one has access to the measurement outcomes of their devices, but not to
the results obtained by the other agent. The states ρAT and ρBT that A and B assign to the
system differ from the actual pure state ρOT that corresponds to the complete description
of the system. For simplicity let us consider that Amonitors a single observable A and B
monitors a single observable B. The complete-description state of the system assigned by
all-knowing agent O evolves according to

dρOt = L
[
ρOt

]
dt + IA

[
ρOt

]
dWAt + IB

[
ρOt

]
dWBt , (A10)

with the Lindbladian L
[
ρOt
]
≡ −i

[
H, ρOt

]
+ ΛA

[
ρOt
]
+ ΛB

[
ρOt
]
, with corresponding de-

phasing terms on observables A and B. The innovation terms IA and IB are defined as in
Equation (3) in the main text, and dWAt and dWBt are independent noise terms.

The states of both observers satisfy

dρAt = L
[
ρAt

]
dt + IA

[
ρAt

]
dVAt (A11)

dρBt = L
[
ρBt

]
dt + IB

[
ρBt

]
dVBt . (A12)

Consistency between observers implies that their noises are related to the ones ap-
pearing in Equation (A10) by [1,3]:

dWAt =
(

Tr
(

ρAt A
)
− Tr

(
ρOt A

)) dt
τm

+ dVAt

dWBt =
(

Tr
(

ρBt B
)
− Tr

(
ρOt B

)) dt
τm

+ dVBt . (A13)

As the state of each observer satisfies Equation (9), the triangle inequality provides
the upper bound

〈
D
(

ρAT , ρBT

)〉
AB ≤

√
1− Tr

(
ρAT

2
)
+

√
1− Tr

(
ρBT

2
)

, (A14)

and the lower bound 〈
D
(

ρAT , ρBT

)〉
AB ≥

∣∣∣Tr
(

ρAT
2)− Tr

(
ρBT

2)∣∣∣. (A15)

Appendix A.4. Illustration—Evolution of Limits to Perception

We consider the case of observer O monitoring the spin components σz
j on a 1D

transverse field Ising model, with the Hamiltonian defined in Equation (18) of the main
text. Figure A1 shows the evolution of the average trace distance

〈
D
(
ρOT , ρBT

)〉
between

the complete description and B’s partial one, along with the bounds (16), for different
values of the monitoring efficiency η. Figure A2 shows the evolution of the average relative
entropy

〈
S
(
ρOT ||ρBT

)〉
. The dynamics are simulated by implementation of the monitoring

process as a sequence of weak measurements modeled by Kraus operators acting on the
state of the system. Specifically, the evolution of ρOt and corresponding state ρBt with partial
measurements is numerically obtained from assuming two independent measurement
processes, as in [1].
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Figure A1. Evolution of the average trace distance and its bounds. Simulated evolution of the average trace distance〈
D
(

ρOT , ρBT

)〉
between complete and incomplete descriptions for a spin chain initially in a paramagnetic state on which

individual spin components σz
j are monitored. The simulation corresponds to N = 6 spins, with couplings Jτm = hτm = 1/2.

The upper and lower bounds (16) on the average trace distance is depicted by dashed lines, while the shaded area represents
the (one standard deviation) confidence region obtained from the upper bound (13) on the standard deviation in the main
text, calculated with respect to the mean distance. For η = 0 (left), agent A, without any access to the measurement
outcomes, has the most incomplete description of the system. After gaining access to partial measurement results, with
η = 0.5 (center) B gets closer to the complete description of the state of the system. Finally, when η = 0.9 (right), access to
enough information provides B with an almost complete description of the state. Importantly, in all cases the agent can

bound how far the description possessed is from the complete one solely in terms solely of the purity P
(

ρBT

)
.

Figure A2. Evolution of the average relative entropy and its bounds. Simulated evolution of the average relative entropy〈
S
(

ρOT ||ρBT
)〉

between complete and incomplete descriptions for a spin chain on which the z components of individual
spins are monitored. The shaded area represents the (one standard deviation) confidence region obtained from the upper
bound on the standard deviation of the relative entropy, Equation (14) in the main text. As in the case of the trace distance,
access to more information leads to a more accurate state assigned by the agent.

Appendix A.5. Illustration—Transition to Complete Descriptions

Consider the case of a one-dimensional harmonic oscillator with position and mo-
mentum operators X and P, respectively. We assume agent B is monitoring the position
of the harmonic oscillator, with an efficiency η. The dynamics of state ρBt is dictated by
Equation (15) in the main text for the case of a single monitored observable, with

Λ
[
ρBt

]
=

1
8τm

[
X,
[

X, ρBt

]]
; IX

[
ρBt

]
=

1√
4τm

(
{X, ρBt } − 2 Tr

(
XρBt

)
ρBt

)
. (A16)

Such a dynamics preserves the Gaussian property of states. For these, the variances

vx ≡ Tr
(

ρBt X2
)
− Tr

(
ρBt X

)2
, (A17)

vp ≡ Tr
(

ρBt P2
)
− Tr

(
ρBt P

)2
, (A18)
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and covariance

cxp ≡ Tr
(

ρBt
{X, P}

2

)
− Tr

(
ρBt X

)
Tr
(

ρBt P
)

, (A19)

satisfy the following set of differential equations (in natural units) [1,21]:

d
dt

vx = 2ωcxp −
η

τm
v2

x, (A20a)

d
dt

vp = −2ωcxp +
1

4τm
− η

τm
c2

xp, (A20b)

d
dt

cxp = ωvp −ωvx −
η

τm
vxcxp. (A20c)

While the first moments do evolve stochastically, the second moments above satisfy a
set of deterministic coupled differential equations. This in turn implies that the purity of
the state, which can be obtained from the covariance matrix [22–26]

σ(t) ≡
[

vx cxp
cxp vp

]
(A21)

as

P
(

ρBT

)
=

1
2
√

det [σ(t)]
, (A22)

evolves deterministically as well.
The solution for long times can be derived from Equations (A20), giving

css
xp = −ωτm ±

√
ω2τ2

m + η/4
η

, (A23a)

vss
x =

√
2ωτm

η
css

xp , (A23b)

vss
p = vss

x

(
1 +

η

ωτm
css

xp

)
, (A23c)

which provides the long-time asymptotic value of the purity as a function of the measure-
ment efficiency. The latter turns out to have the following simple expression

P
(

ρBT

)
=

1

2
√

vss
x vss

p − (css
xp)

2
(A24)

=
1

2
√

2ωτm
η css

xp

(
1 + η

ωτm
css

xp

)
− (css

xp)
2

=
1

2
√

2ωτm
η css

xp + (css
xp)

2

=
1

2
√

τm
η

(
1

4τm
− η

τm
(css

xp)
2
)
+ (css

xp)
2
=

1

2
√

1
4η

=
√

η. (A25)

Using that

1−P
(

ρBT

)
≤
〈
D
(

ρOT , ρBT

)〉
B
≤
√

1−P
(
ρBT
)
, (A26)
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then implies

1−√η ≤
〈
D
(

ρOT , ρBT

)〉
B
≤
√

1−√η. (A27)

The entropy of a 1-mode Gaussian state can be expressed in terms of the purity of the
state as

S
(

ρBT

)
=

(
1

2P
(
ρBT
) + 1/2

)
log

(
1

2P
(
ρBT
) + 1/2

)
(A28)

−
(

1
2P
(
ρBT
) − 1/2

)
log

(
1

2P
(
ρBT
) − 1/2

)
.

Then, using that
〈
S
(
ρOt ||ρBt

)〉
B = S

(
ρBt
)

and Equation (A25), we obtain that for
long times, 〈

S
(

ρOt ||ρBt
)〉
B
=S
(

ρBT

)
(A29)

=

(
1

2
√

η
+

1
2

)
log
(

1
2
√

η
+

1
2

)
−
(

1
2
√

η
− 1

2

)
log
(

1
2
√

η
− 1

2

)
.
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