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linear boundary value problem on the half-line of the form A(a(n)Ax(n)) = f(n+1,x(n+1),
Ax(n+1)),n € NU{0}, with ax(0) + Ba(0)Ax(0) =0, x(c0) =d, whered,a,p € R, a® + % > 0.
To achieve our goal, we use Schauder’s fixed-point theorem and the perturbation technique for a
Fredholm operator of index 0. Moreover, we construct the necessary condition for the existence of a
solution to the considered problem.
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1. Introduction

In various physical areas, such as hydrodynamics or the unsteady flow of gas through
a semi-infinite porous media, studying radially symmetric solutions leads to the Sturm-
Liouville equation with boundary value conditions of the form x’(0) = 0, x(o) = C,
C € (0,1); see for example [1,2]. Let us remind the reader of the classical Sturm-Liouville
boundary value problem on the half-line:

(px) (1) + Ap(1) f(t,x(£) =0, t€ (0,00)
wx(0) ~ 1 lim p()'(1) =0 0
ap tlLrglo x(t) + B2 tli_glo p(t)x'(t) =0,

where A > 0, f : [0,00) x R — R is continuous, ¢ : (0,00) — oo is continuous, p €

C[0,00) N C1(0,00), p > 0 on (0,00), fo""% < oo, a;, B >0,i=1,2 a8 +a1B2+

X1 f0°° % > 0. Many authors considered the above problem or its simplifications, see,
for instance, [3-7] or slightly different boundary value problems on the half-line [8-11] and
the references therein.

Difference equations represent the discrete counterpart of ordinary differential equa-
tions and are usually studied in connection with the numerical analysis. In this paper we
consider the following discrete boundary value problem on the half-line:

n e NU{0},

{A(a(n)Ax(n)) = f(n+1,x(n+1),Ax(n+1)), 2
0,

ax(0) + Ba(0)Ax(0) = x(c0) =d,

where x(0) = limy, 00 x(n),d € R, &, B € R, a® + B2 > 0. We want to construct sufficient
conditions for the existence of a solution to (2) in dependence on the parameters «, 8. First,
we divide our consideration into two cases, when problem (2) is without resonance, which
means that § # a} 2 ﬁ, and with resonance. For the problem without resonance we

use the fixed-point approach, which requires } ;° , a(IT) < oo and the growth condition on
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a nonlinear continuous function f. In both cases, with and without resonance, we prove
that } ;2 a(IT) < oo is the necessary condition for the existence of a solution to (2). By the

resonant case we mean the following problem:

{A(a(n)Ax(n)) =f(n+1Lx(n+1),Ax(n+1)), neNuU{0},
x(0) +a(0) (T2 747 ) Ax(0) = 0, x(e0) = d.

This is called resonant, because for d = 0 we can write the above problem in an abstract
form, Lx = Nx, where L is a linear, noninvertible operator, and N is a nonlinear operator.
We notice that the noninvertible operator L is a Fredholm operator of index 0 and to obtain
a solution to the above problem we use the Przeradzki perturbation method, see [12,13].
We construct Landesmann-Lazer type conditions for a bounded and continuous nonlinear
function f. The used perturbation technique allows us to establish sufficient conditions
for the existence of a solution to the above problem not only for d = 0, but for alld € R.
The Przeradzki perturbation method is one of the tools used to deal with boundary value
problems in the resonant case. Another classical approach is Mawhin’s coincidence degree,
see for example [14]. More information about properties of Fredholm operators can be
found in [13,15,16] and the references therein.

Many authors have considered a discrete version of (1) or its generalizations using
different tools, see for example [2,17-21] and the references therein. Lian et al., in [19],
established the sufficient conditions for the existence of one and three solutions of the
following problem:

~N’x(n—1) = f(n,x(n),Ax(n—1)), neN

xg — aAxg = B, Ax(0) =C,
with a > 0, B,C € R, using an upper and lower solutions method combined with the
fixed-point approach and the degree theory. The method of upper and lower solutions on

finite intervals with the degree theory was used by Tian et al. in [21] to prove the existence
of three solutions to

N’x(n—1) — pAx(n —1) —gx(n—1) + f(n,x(n),Ax(n)) =0, n €N
x(0) —aAx(l) = B, x(n) is bounded on (0, o),

with] € N,B€R,p>¢g>0.Fora,f>0,a>+p2>0,p,q9>0,1+p > g, Tian and Ge

in [20] searched for positive solutions to the following problem:

A’x(n—1) — pAx(n—1) —gx(n—1) + f(n,x(n)) =0, n € N
ax(0) — BAx(0) =0, x(c0) =0

via the fixed-point approach in a Fréchet space.
To obtain the main results of this paper we need some auxiliary tools. Let us remind
the reader of some of them.

Theorem 1 ([22], p. 56). Let M be a nonempty, closed, bounded, convex subset of a Banach space,
and suppose T : M — M is a compact operator. Then, T has a fixed point.

By co we denote the Banach space of all sequences convergent to zero, whereas by ¢
we denote the Banach space of all convergent sequences. We consider the supremum norm
in both spaces.

Proposition 1 ([23], p. 107). A set A C cy is relatively compact (with respect to norm topology)
if and only if there is a sequence {A(n)} € co such that |x(n)| < A(n) for any {x(n)} € A and
forany n € NU {0}.
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From Lemma 3.1 in [24] or Lemma 5 in [25] we have:

Lemma 1. If 2 |gj| < oo, and one of series Y37 |wk| Yk 87l 2o I8k] Z;'{:o |w;| is con-
vergent, then the second series is convergent and

Zwkzg; ngzw n e NU{0}.

k=n

The plan of the paper is as follows: Section 2 is devoted to the study of Problem (2)
with B # a } )7 -7, and in Section 3 the resonant case is presented.

2. Problem without Resonance

This section begins with the presentation of sufficient conditions for the existence of a
solution to (2) with B # &} ;% a(l—l) for all d € R. Assumptions of this case allow us to look
for a solution to (2) via a fixed point of an operator defined on some subset of c.

Theorem 2. Let d € R. Assume that:
Ho)B # a Y2 ﬁ ;

(
(Hy)a ()>0 I e NU{0};
(H2) X720 a(z) < 00
(H3) f : N x R x R — R is a continuous function;
(Hy) there exists M > ‘Zmo”’ such that for any n € NU {0}
Xly=0 7
M— lda] 272 %
P
max [f(n+1,xy)| < ’a Fo iy ﬁ‘ :
|x—d|<M,|y|<2M (Z L) 1+ | |):1 oﬂ
1=0 a(l) “"Zz =0 a(ly ﬁ‘

Then, problem (2) possesses a solution.

Proof. Let M satisfy assumption (Hy). By By(d) := B(d, M), we denote the closed ball in
¢ with the origind = (d,d, d, ...). In this proof for {x(n )}nGNU{O} € ¢ we use the notation
x := {x(n) }nenugoy- B

We define an operator T: By;(d) — c as follows:

0 -1
T(x)(n) :d—IZﬁZ]‘(H—l x(i+1),Mx(i+1))
=n i=0
0 0 k-1
- *x 1) 4d= 1 1, 1),A 1 3
"‘Zfooa(ln_5<l§1a(l)> k;)a(k)t;)f(t‘F x(t+1),Ax(t+1)) ®)

for x = {x(n)}nenugoy € Bm(d) and n € NU {0}. First, we prove under assumptions (Ha)
and (Hy) that the operator T is well defined. Put

E, := |x—d|?1v?,\);|§2M [f(n+1,x,y)|, neNuU{0};
i T
K:= ‘“Z’ o 5ty ﬁ‘ .
JENS) e
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Let x € Bp(d) and n € NU {0}. Hence,
|x(n) —d| <M, |Ax(n)| <2M

and

ﬁ. )

i%i (i+1,x(+1),Ax(i+1))

SIENNEL

The above estimation yields Tx € c. Now, we show that every fixed point of T is a solution
to (2). Indeed, let x € By(d) be a fixed point of T; then:

\\Mg

x(n) =T(x)(n)=d-)_ u(lil) Yo fli+1x(i+1),Ax(i+1))
I=n i=0
0 0 k—1
- (Y ) |a-Y L 1,x(t+1), Ax(t+1 5
“Zfio@_/}(lgu(l))l k;)a(k)t;)f(“r x(t+1),Ax(t+1)) ()
forn € NU{0}. Hence,
a(n)Ax(n Z;lfz—l—lx(z—i—l) Ax(i+1))
i=0
00 k—1
& _y L
tsz 0% 5 [d kgoa(k) t;;)f(t+1,x(t+1),Ax(t+1))
for n € NU {0}. Eventually, we obtain that
Ala(n)Ax(n)) = f(n+1,x(n+1),Ax(n+1)) n e NU{0}.
Moreover,
x(0) = T(x)(0) = <d— i Ll_lf(i+1 x(i+1) Ax(i+1))> 1- “ L0 i
=5 ’ ’ a0 2 — P

- oo_ﬁl_ﬁ<d— ia%z) f(i+1,x(i+1),Ax(i+1))>

Y2y a0 1=0 i=0
« © q -1
a(0)Ax(0) = d—) — i+1,x(i+1),Ax(i+1)) ).
(0)Ax(0) aZ?"—oa(ll)—ﬁ< L iy LA (i 1), 0 >>>
Hence,

ax(0) + Ba(0)Ax(0) = 0.

Finally, passing to n — oo in (5) we obtain x(c0) = lim,_, x(11) = d, which ends the proof
that every fixed point of T is a solution to (2).
Now, we are in a position to check the assumptions of Schauder’s theorem. We show
that T(Bp(d)) C Ba(d), T is continuous and T(By(d)) is a relatively compact subset of c.
Let x € By(d) and n € NU {0}. By the definition of T and (4), we have:

L
|T(x)(n)fd|<2 ZF{l || 372 oa )] |ad| Y72 Oi

‘ ay s Oa @ X0 7y — Bl

SK(il) - \“\Zl 0 7 “d|2?310a(11) Y
= al) ‘0421 0 =% ﬁ‘ | « Y20 77y — Bl
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and

M8

T(x)(n) —d| <K

WMg

I 1 |a |
. B S
*0 ( ) e XiZo 7y — Bl E) ]
From the above we obtain that T(EM(d)) C Bpy(d) and (T —d)(Bp(d)) is a relatively

compact subset of ¢y; see Proposition 1. To prove that T is a compact operator in ¢, we have
to prove its continuity. Let e > 0. From assumption (H;) we obtain the existence of g € N

such that »
[e¢] o Zoo L
Z % < iK 14+ % (6)
I=no ’“El 0 a() ;B‘
Moreover, there exists 7 > 0 such that
-1
! 2l T o
I € 1=0 a(
n~<2a@>§2- 14— )
=0 € X0 2y - B

From the uniform continuity of function f on{1,...,n9—1} x [d — M, d + M] x [-2M,2M]
we obtain the existence of § > 0 such that forany n € {0,1,...,n9 — 2}, (x1,y1), (x2,y2)€
[d—M,d+ M] x [-2M,2M] and ||(x1,y1) — (x2,y2)||gz < 36 (we use the Euclidean norm
in R?) we have:

[f(n+1,x0,51) = f(n+1,x2,y2)| <71
Letx,z € By(d), ||x —z|| < dand n € NU {0}. Notice that for any n € NU {0} we obtain:
|x(n) —z(n)| <6, |Ax(n)—Az(n)| <25
and
IWIZE"’O%

[ T(x)(n) = T(z)(n)| < e ——
’“21 =0 a(I) 5‘

1+

i%i (i+1,x(i4+1),Ax(i+1)) — f(i+1,2z(i +1),Az(i +1))|
1= i=0

[ |’X|Zz:0ﬁ 1 o —

< T 1() '[2(12 +2 221-*
L ’“leom_ﬁ‘_ = =0 —110
eS| e

< L i S Y
i ’0621:0@7,3‘ I=nyg

From (6) and (7) above, we have

[|ITx = Tz|| = sup |T(x)(n)—T(z)(n)| <e.
neNU{0}

By Schauder’s theorem we obtain that there exists a fixed point x € By(d) of T, which is a
solution to (2). O

Corollary 1. Suppose that the assumptions of Theorem 2 are satisfied with d = 0. Moreover,
assume that

(Hs) f(ng+1,0,0) # 0 for some ny € NU{0}.
Then, problem (2) possesses a nontrivial solution.
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Remark 1. Note that (Hy) implies that lim, . a(n) = co. Moreover, yfa(l—n) = 0(n=27¢), for
e > 0, then (Hy) is satisfied.

We will now present examples of classes of functions which satisfy (Hy).
Example 1. Letd € Rand f : N x R? — R be a continuous function fulfilling
O+ 1,x,y) <b(m)lx—d| +c(m)lyl +e(n) forne NU{O}, v,y e R, (§)

with nonnegative sequences {b(n)}, {c(n)}, {e(n)} such that

-1 -1
> |l 20 a0y
sup (b(n)+2c(n)) < (Z a(ll)> - [1 + ‘Zmlol(i))} , )
neNU{0} 1=0 20z P
\da| T2 o ] | |Z}’°oa
———te(n o ) |1+ 7——
" ‘Ile Ou /3’ ( )(Zz_o a(l)) ‘tx):; Oa ﬁ‘ < 4oo (10)
neNU{0} o 1 || T2 a1y .
1- (Zz:() @) 1+ 5 ] (b(n) +2¢(n))

It is easy to see, that for

\da\Z, —07 ) 1
‘tle 0%7/3’ ( )(Zl 0 a(l) )
M > sup

N ‘ |Z a
neNU{o} 4 (Zz:o u(lfl)> [1 " m

|| T2 2y
1 + co 1 o
2 X0 5t #|

(11)
(b(n) +2¢(n))

assumption (Hy) of Theorem 2 is satisfied.

Note that, for any L > 0, condition (10) with b(n) = c(n) =0ande(n) = L,n € NU {0}
is satisfied. It means that this case includes a class of bounded functions. Moreover, (Hy) holds for
a linear function with respect to second and third variables, i.e.,

f(n+1,x,y)=b(n)(x—d)+c(n)(y)+e(n) forne NU{0}, x,y € R,
where {b(n)}, {c(n)} satisfy (9) and {e(n)} is bounded.
The next example is a simple consequence of Example 1.

Example 2. Let d € Rand f : N x R? — R be a continuous function with a sublinear growth
with respect to second and third variables, i.e.,

f(n+1,2,)| <b(n)|x —d’ +c(n)ly|" +e(n) forneNU{0}, x,y €R,

with 6,7 € (0,1], nonnegative sequences {b(n)}, {c(n)}, {e(n)} fulfill (9), (10). In this case,
assumption (Hy) of Theorem 2 is satisfied with M > 1 such that (11).

Let us remind the reader that in the classical approach we assume that } ;2 a(lil) < 00,

To see that our condition } ;2 - ( y <0 is not too strong we present the following necessary

condition for the existence of a solution to (2). It is worth mentioning that the following
necessary condition is true in both cases when Problem (2) is with and without resonance.

Theorem 3. Let d € R. Suppose that Problem (2) possesses a solution. Moreover, assume that:
(Hy)a(l) > 0,1 e NU{0},
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(Hg) there exist ng € NU {0}, K > 0 such that
n:=min{f(n+1,xy):n>ny, |x—d| <K, |y| <2K} >0.

Then,

L <

Proof. If {x(n)},enuqoy is @ nontrivial solution to (2), then there exists n; € N such that
|x(n) —d| < K forany n > nj. Then |Ax(n)| < 2K for any n > n; and summing up from
ny := max{ny,ng} to n — 1 from the equation in (2) we obtain:

a(n)Ax(n) —a(ny)Ax(ny) Z:l flk+1,x(k+1),Ax(k+1))

k= np
for n > n,. Hence, we have:

a(np)Ax(n2)+ X7, f(kt1x(k+1),Ax(k+1))

Ax(n) = u(n)

Summing up the above from 7, to n — 1 and using (Hg), we obtain:

- a(ny)Ax(n L f(k4+1,x(k4+1),Ax(k+1))
x(n) — x(ny) = 3 DA Ty S UATEDAGE) b stmiartugyon(-m)
l:nz I= )

for n > ny. Using the fact that x(400) = lim,_, x(1) = d and letting n — oo in the above,
we have:

d—x 112 > Z (171+u ny) Ax (np)— ;7112)'
By the positivity of # there exists n3 € N, n3 > 1, such that
nl +a(ny)Ax(ny) — qny > Ll

for | > n3. Hence,

7’13—1 <]
d—x(np) > lz (’IlJrﬂ(nz)aA(Jlf)(nz)*’iﬂz) _'_glz a(lil)
=ny =n3
and .
Yty <
1=0
O

3. Problem with Resonance

Assuming that Y% -+ y < oo the following problem:

{A(a(n)Ax(n)) =f(n+1,x(n+1),Ax(n+1)), neNuU{0}, 12)

x(0) +a(0) (T2 717 )Ax(0) =0, x(0) =0

can be written in the abstract form Lx = Nx, where L : ¢cg D domL — [ X R, [ is the
space of bounded sequences,

(Lx)(n) = <A(a(n)Ax(n)),x(0) +a(0) <i a(ll)> Ax(O)),



Entropy 2021, 23, 1526

8 of 13

domL = {{x(n)} € CQ : {A(a(n)Ax(n))} € lo}. It is obvious that ker L = {{x(n)} €
co:x(n) =—d Y52 n 7l ,nGNU{O} di € RtandimL = {({y(n)},z) €lo xR :z =
Y200 o) Yioay(), {y( )} € lw}. Hence, dimkerL = 1, codimimL = 1 and ind L :=
dim ker L — codimim L = 0, where ind L denotes an index of an operator L. This means
that L is a Fredholm operator of index 0. To establish sufficient conditions for the existence
of a solution to (12) we use the Przeradzki perturbation method with the perturbation of

the first boundary condition x(0) + a(0) (Z‘z’io a(lT)) Ax(0) = 0. This approach allows us to

work not only for (12), but by the translation to sequence d = (d,d,d...) in space c with
the more general problem

{A(a(n)Ax(n)) =f(n+1,x(n+1),Ax(n+1)), neNuU{0}, 13

%(0) +a(0) (T2 7 ) Ax(0) = 0, x(e0) =4,
with d € R. We obtain the following theorem.

Theorem 4. Let d € R. Assume that:
(Hy)a(l) > 0,1 e NU{0},

(H2)

(H) f: N xR xR — Ris a continuous and bounded function;

(Hy) there exists M > 0 such that u(f(n+1,u,v) —d) > 0 foralln € NU{0}, |u| > M,
veR;

(Hg) there exists ng € NU {0} such that ‘ llim f(no+1,u,v) #dforallv e R.
u|—oo

Then, problem (13) possesses a solution.

!

Proof. By Lemma 1, (Hz) implies that Y2, 72, 4 a( l) =Y am < o Dividing the

equation and the first boundary condition in (13) by Y7232, 4 ( 5 . if necessary, we
assume that

Y f; - (14)
1=0i=I

Let k € N. We consider the perturbed problem

{A(a(n)Ax( n))=f(n+1,x(n+1) Ax(n+l)) n € NU{0}, (15)

(1-4)x(© +a(0) (T2 oy ) Ax( x(e0) = d

under (14). Notice that after dividing (15) by }.;2 Y72, 4 a( I the nonlinear function f

is still bounded. Hence, there exists L > 0 such that |f(n,x,y)| < L for n € NU {0},
x,y € R It is clear that problem (15) satisfies assumptions of Theorem 2 with My :=

kL (Zl 0 a ) + |d|(k — 1) = kL + |d|(k — 1). Hence, there exists a solution x* to (15).

We prove that {1|1x¥||}xen is bounded in c. On the contrary, suppose that {||x¥||}ren is
unbounded. Passing to subsequence if necessary we assume that ||x*|| — oo, as k — co.
Dividing (15) by ||x*|| we obtain:

{A(&Z(ﬂ)Axkx(;qH)) _ f(n+l,xk(n+1),Axk(n+l)), neNU {0},

B4

_1 xim) o 1 & . k .
(1 k) ] +a(0)(2120 “(l))Allxkll =0, xf(c0)=d

for any k € N. By the boundedness of f there exists M; > 0 such that

(16)

—M; < A(ﬂ(”)AXk(f)) < M;

Il
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for any n € NU {0}, k € N. Summing the above from 0 to n — 1 we have

My < a(m)AE — g0)A29) < Myn

[Ix]]

and

~Min —2a(0) < a(n)ATrx(,:ﬁ < Myn +2a(0)

forany n € NU {0}, k € N. Then,

—Min—2a(0) x*(n) Myn+2a(0)
am - AT S T A

for any n € NU {0}, k € N. Summing the above from n tom — 1, (m — 1 > n) we obtain:

T, e < et < 5 s

I=n

forany n € NU {0}, k € N. Passing to m — oo we obtain:

°° Mll 2u(0 < d=t(n) o v Mil+2a(0)
L ST S L Thm

for any n € NU {0}, k € N. This means that { kaH } - is a relatively compact sequence

in cg, whered = (d,d,d,...) € c; see Proposition 1. Passing to subsequence if necessary
. . Lk . .
we assume that there exists x? € ¢y with ||x%|| = 1 such that hm x=d — x0in ¢p. Taking

oo |I¥]
into account that ||x*|| — co and the above we have hm | I’EH xO in c. Passing to k — oo
in (16) we obtain that

{A(a(n)AxO(n)) =0, neNuU{0}

20(0) + a(0) (z;"; %)Ax (0) = 0.

It is easy to see that

Y, o e
W) = =y eNu{oy | v [ 0m) = —=20 1”,neNu{o} .
Y20 7 Zl:om

Y,
Let us assume that x(n) = - u(l)

= ,n € NU{0}. Knowing that x¥, k € N is a fixed point
1=0 ﬂ(l)
of operator (3), we obtain from Theorem 4 that

00 -1
*m) 4 1 1 : ki ki
Il = T~ o Ly LS+ 4D A0 D)
00 t—1
+ ) |d = oy X fs + 1,5 +1), x5 (s + 1)) (17)
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forany n € NU {0}, k € N. By the boundedness of f and (H;), Lemma 1 and (14) we have:

—

1= lim |]|(x_kh< Zi)i (s +1,xK( s+1),Axk(s+1))>
[ =0 s—0

e k1 = k o1

= lim (5 (d ;Zof(H—l k(t4+1),Ax (t+1))S:§t+l1 a(s))

o kel v B k k o 1

= lim &5 tZ—Ol(d F(E+1,25(E+1), Ax (t+1))) S:§t+l ﬂ(s)l. (18)

Hence, there exists ky such that
Z[(d—f(t+1,xk(t+1),Axk(t+1))) y ﬂ(ls)] >0 (19)
t=0 s=t+1

for any k > k. Using Fatou’s lemma with summable lower bound
{(-L-a)Z, 1 a(lT)}neNu{O}r we obtain that

k = 1
Zhnl)g}f (f(t+1,x (t+1), Axk(t+1)) ) :2 )]
<1111<fr_1>g1f2 ( (t+1,x5(t+1), AxF (14 1)) d) Z (L

We consider two cases.
Case 1. T2 g liminfy o[ (£(t+1,2%(+ 1), AxK(E+ 1)) =) T2 41 55| < 0. There
exists ) € NU {0} such that

liggf(f(to—f—l,xk(to+1),Axk(t0+1))—d) Y. <o

s=to+1
Passing to subsequence, if necessary we obtain that
lim £t + 1,x5(tg +1), AxF(tg + 1)) < d. (20)
Taking into account that limy_, ¢ ﬁ = x%in ¢, we have that lim;_, xk‘(‘t}%l) = O(tg +

1) > 0. By ||x¥|| — oo and the above there exists k € N such that 1x0(tg +1)||x*|| > M and
H(to +1) = 320 + 1|2 > M
for k > k. By (Hy) we obtain that
Fto+1,x5(tg +1), AxF (kg +1)) > d

for k > k, which contradicts (20). This excludes Case 1.
Case 2. ¥ o lim infy_, o0 [(f(t F 1,0k (1), AxK(E+ 1)) — d) B a(lT)} = 0. There
exist t1,t, € NU {0} such that

liminf f(t +1, Kt 4+1), 065t +1)) <d A liminf f(t +1, Kty +1), 865ty +1)) > d (21)
—»00 —»00

or
liminf £(t + LMt +1),Ax5(t+1)) =d, teNuU{0}. (22)
—00
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We exclude (21) in the same way as in Case 1. On the other hand, for t = nj, we
have that
(19 +1) = 3x%(ng +1)]["]]

for all large k. Hence, we exclude (22) by (Hg).
1

Zoin a(l) ):oin
This means that x°(n) = ; a(ll) ,n € NU {0} is impossible. For x°(n) = — Lo a(1[) ,
1=0 2(1) RG]

n € NU {0} we obtain that ¥, k € N is a fixed point of operator (3) from Theorem 2,
and hence

) _ 4 T X G+ 1,5+ 1), A%+ 1))

Z

k— Yy k
= [d ; ol ; fls+1,x5(s +1), Ax"(s + 1)) (23)
for any n € NU {0}, k € N. Hence, we obtain
©o t—1
: k— k k
—1= klggo \kaI (d— ; a(lT) ;f(s—i-l,x (s+1),Ax (s+1)))
—hm‘ ( Z FlE+1,25(t4+1), AxF(t+1)) Y. a(ls)>
k=00 t=0 s=t+1
_ v B k k - 1.
= lim 55 tg[(d Flt+1,x5(t+1),Ax (t+1))) Sgl ”(5)1' (24)
)3 1 ):oo 1
Similarly to x%(n) = :” 1) neNU {0} we exclude x°(n) = — Z:n ”(11) ,n e NU{0}.
1=0 a(l) Zl:om

This contradiction means that {x};cy is a bounded sequence in c. Hence, there exists
M5 > 0 such that

L< A(a(n)Axk(n)) <L ¢ <M (25)
for any n € NU {0}, k € N. Summing the above from 0 to n — 1 we obtain:
—Ln < a(n)Ax*(n) — a(0)Ax*(0) < Ln

and
—Ln —2Mya(0) < a(n)Ax*(n) < Ln +2a(0)M,
forany n € NU {0}, k € N. Then,

—Ln;,’(Zil\/)Iza(O) < Axk(n) < Lt’l-‘rié\ﬁ)zu((])

for any n € NU {0}, k € N. Summing the above from 7 to co we obtain

o —LI—2M,a(0) ok o LI+2M,a(0)

forany n € NU {0}, k € N. This means that {xk - d}k N is a relatively compact sequence
€
in cg. Passing to subsequence if necessary we assume that there exists £ € ¢y such that
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lim x* = £ 4+ d in c. Let us denote X := £ + d. By the continuity of f and the fact that

k—o0
X(c0) = d, passing to k — oo in (16) we have that

{A(a(n)Ax(n)) =f(n+1,x(n+1),Ax(n+1)), neNU{0}
7(0) +a(0) (T2 717 )AT(0) =0, T(e0) =4,

which means that X is a solution to (13). [

Example 3. Let d € R. Note that a continuous function f : N x R? — R such that
f(n+1,x,y) =arctan(x(n®> +y*> +1)) +d, neNU{0}, yeR, || >1

satisfies assumptions (H}), (Hz), and (Hg) of Theorem 4.

4. Conclusions

In this paper, we constructed sufficient conditions for the existence of a solution to
the discrete boundary value problem on the half-line (2) in dependence on parameters
a,B,d € R.Fora =0,d € (0,1) the considered problem can be interpreted as a discrete
version of some problem from hydrodynamics; see [2]. The fixed-point approach is used
when problem (2) is without resonance. In the resonant case the considered problem can
be solved via the perturbation technique for a Fredholm operator of index 0. We proved
that the constructed assumptions are not too strong by providing the necessary condition
for the existence of a solution to this problem.
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