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Abstract: This paper provides conditions for the existence of a solution to the second-order non-
linear boundary value problem on the half-line of the form ∆(a(n)∆x(n)) = f (n + 1, x(n + 1),
∆x(n + 1)), n ∈ N∪ {0}, with αx(0) + βa(0)∆x(0) = 0, x(∞) = d, where d, α, β ∈ R, α2 + β2 > 0.
To achieve our goal, we use Schauder’s fixed-point theorem and the perturbation technique for a
Fredholm operator of index 0. Moreover, we construct the necessary condition for the existence of a
solution to the considered problem.
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1. Introduction

In various physical areas, such as hydrodynamics or the unsteady flow of gas through
a semi-infinite porous media, studying radially symmetric solutions leads to the Sturm–
Liouville equation with boundary value conditions of the form x′(0) = 0, x(∞) = C,
C ∈ (0, 1); see for example [1,2]. Let us remind the reader of the classical Sturm–Liouville
boundary value problem on the half-line:

(px′)′(t) + λφ(t) f (t, x(t)) = 0, t ∈ (0, ∞)

α1x(0)− β1 lim
t→0+

p(t)x′(t) = 0

α2 lim
t→∞

x(t) + β2 lim
t→∞

p(t)x′(t) = 0,

(1)

where λ > 0, f : [0, ∞) × R → R is continuous, φ : (0, ∞) → ∞ is continuous, p ∈
C[0, ∞) ∩ C1(0, ∞), p > 0 on (0, ∞),

∫ ∞
0

ds
p(s) < ∞, αi, βi ≥ 0, i = 1, 2, α2β1 + α1β2 +

α1α2
∫ ∞

0
ds

p(s) > 0. Many authors considered the above problem or its simplifications, see,
for instance, [3–7] or slightly different boundary value problems on the half-line [8–11] and
the references therein.

Difference equations represent the discrete counterpart of ordinary differential equa-
tions and are usually studied in connection with the numerical analysis. In this paper we
consider the following discrete boundary value problem on the half-line:{

∆(a(n)∆x(n)) = f (n + 1, x(n + 1), ∆x(n + 1)), n ∈ N∪ {0},
αx(0) + βa(0)∆x(0) = 0, x(∞) = d,

(2)

where x(∞) = limn→∞ x(n), d ∈ R, α, β ∈ R, α2 + β2 > 0. We want to construct sufficient
conditions for the existence of a solution to (2) in dependence on the parameters α, β. First,
we divide our consideration into two cases, when problem (2) is without resonance, which
means that β 6= α ∑∞

l=0
1

a(l) , and with resonance. For the problem without resonance we

use the fixed-point approach, which requires ∑∞
l=0

l
a(l) < ∞ and the growth condition on
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a nonlinear continuous function f . In both cases, with and without resonance, we prove
that ∑∞

l=0
l

a(l) < ∞ is the necessary condition for the existence of a solution to (2). By the
resonant case we mean the following problem:{

∆(a(n)∆x(n)) = f (n + 1, x(n + 1), ∆x(n + 1)), n ∈ N∪ {0},
x(0) + a(0)

(
∑∞

l=0
1

a(l)

)
∆x(0) = 0, x(∞) = d.

This is called resonant, because for d = 0 we can write the above problem in an abstract
form, Lx = Nx, where L is a linear, noninvertible operator, and N is a nonlinear operator.
We notice that the noninvertible operator L is a Fredholm operator of index 0 and to obtain
a solution to the above problem we use the Przeradzki perturbation method, see [12,13].
We construct Landesmann–Lazer type conditions for a bounded and continuous nonlinear
function f . The used perturbation technique allows us to establish sufficient conditions
for the existence of a solution to the above problem not only for d = 0, but for all d ∈ R.
The Przeradzki perturbation method is one of the tools used to deal with boundary value
problems in the resonant case. Another classical approach is Mawhin’s coincidence degree,
see for example [14]. More information about properties of Fredholm operators can be
found in [13,15,16] and the references therein.

Many authors have considered a discrete version of (1) or its generalizations using
different tools, see for example [2,17–21] and the references therein. Lian et al., in [19],
established the sufficient conditions for the existence of one and three solutions of the
following problem:{

−∆2x(n− 1) = f (n, x(n), ∆x(n− 1)), n ∈ N
x0 − a∆x0 = B, ∆x(∞) = C,

with a > 0, B, C ∈ R, using an upper and lower solutions method combined with the
fixed-point approach and the degree theory. The method of upper and lower solutions on
finite intervals with the degree theory was used by Tian et al. in [21] to prove the existence
of three solutions to{

∆2x(n− 1)− p∆x(n− 1)− qx(n− 1) + f (n, x(n), ∆x(n)) = 0, n ∈ N
x(0)− a∆x(l) = B, x(n) is bounded on (0, ∞),

with l ∈ N, B ∈ R, p ≥ q > 0. For α, β ≥ 0, α2 + β2 > 0, p, q > 0, 1 + p > q, Tian and Ge
in [20] searched for positive solutions to the following problem:{

∆2x(n− 1)− p∆x(n− 1)− qx(n− 1) + f (n, x(n)) = 0, n ∈ N
αx(0)− β∆x(0) = 0, x(∞) = 0

via the fixed-point approach in a Fréchet space.
To obtain the main results of this paper we need some auxiliary tools. Let us remind

the reader of some of them.

Theorem 1 ([22], p. 56). Let M be a nonempty, closed, bounded, convex subset of a Banach space,
and suppose T : M→ M is a compact operator. Then, T has a fixed point.

By c0 we denote the Banach space of all sequences convergent to zero, whereas by c
we denote the Banach space of all convergent sequences. We consider the supremum norm
in both spaces.

Proposition 1 ([23], p. 107). A set A ⊂ c0 is relatively compact (with respect to norm topology)
if and only if there is a sequence {λ(n)} ∈ c0 such that |x(n)| ≤ λ(n) for any {x(n)} ∈ A and
for any n ∈ N∪ {0}.
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From Lemma 3.1 in [24] or Lemma 5 in [25] we have:

Lemma 1. If ∑∞
j=0 |gj| < ∞, and one of series ∑∞

k=0 |wk|∑∞
j=k |gj|, ∑∞

k=0 |gk|∑k
j=0 |wj| is con-

vergent, then the second series is convergent and

∞

∑
k=n

wk

∞

∑
j=k

gj =
∞

∑
k=n

gk

k

∑
j=n

wj, n ∈ N∪ {0}.

The plan of the paper is as follows: Section 2 is devoted to the study of Problem (2)
with β 6= α ∑∞

l=0
1

a(l) , and in Section 3 the resonant case is presented.

2. Problem without Resonance

This section begins with the presentation of sufficient conditions for the existence of a
solution to (2) with β 6= α ∑∞

l=0
1

a(l) for all d ∈ R. Assumptions of this case allow us to look
for a solution to (2) via a fixed point of an operator defined on some subset of c.

Theorem 2. Let d ∈ R. Assume that:

(H0)β 6= α ∑∞
l=0

1
a(l) ;

(H1) a(l) > 0, l ∈ N∪ {0};
(H2)∑∞

l=0
l

a(l) < ∞;

(H3) f : N×R×R→ R is a continuous function;

(H4) there exists M >
|dα|∑∞

l=0
1

a(l)∣∣∣α ∑∞
l=0

1
a(l)−β

∣∣∣ such that for any n ∈ N∪ {0}

max
|x−d|≤M,|y|≤2M

| f (n + 1, x, y)| ≤
M−

|dα|∑∞
l=0

1
a(l)∣∣∣α ∑∞

l=0
1

a(l)−β
∣∣∣(

∑∞
l=0

l
a(l)

)[
1 +

|α|∑∞
l=0

1
a(l)∣∣∣α ∑∞

l=0
1

a(l)−β
∣∣∣
] .

Then, problem (2) possesses a solution.

Proof. Let M satisfy assumption (H4). By BM(d) := B(d, M), we denote the closed ball in
c with the origin d = (d, d, d, . . .). In this proof for {x(n)}n∈N∪{0} ∈ c we use the notation
x := {x(n)}n∈N∪{0}.

We define an operator T : BM(d)→ c as follows:

T(x)(n) = d−
∞

∑
l=n

1
a(l)

l−1

∑
i=0

f (i + 1, x(i + 1), ∆x(i + 1))

− α

α ∑∞
l=0

1
a(l) − β

(
∞

∑
l=n

1
a(l)

)[
d−

∞

∑
k=0

1
a(k)

k−1

∑
t=0

f (t + 1, x(t + 1), ∆x(t + 1))

]
(3)

for x = {x(n)}n∈N∪{0} ∈ BM(d) and n ∈ N∪ {0}. First, we prove under assumptions (H2)
and (H4) that the operator T is well defined. Put

Fn := max
|x−d|≤M,|y|≤2M

| f (n + 1, x, y)|, n ∈ N∪ {0};

K :=

M−
|dα|∑∞

l=0
1

a(l)∣∣∣α ∑∞
l=0

1
a(l)−β

∣∣∣(
∑∞

l=0
l

a(l)

)[
1 +

|α|∑∞
l=0

1
a(l)∣∣∣α ∑∞

l=0
1

a(l)−β
∣∣∣
] .



Entropy 2021, 23, 1526 4 of 13

Let x ∈ BM(d) and n ∈ N∪ {0}. Hence,

|x(n)− d| ≤ M, |∆x(n)| ≤ 2M

and ∣∣∣∣∣ ∞

∑
l=0

1
a(l)

l−1

∑
i=0

f (i + 1, x(i + 1), ∆x(i + 1))

∣∣∣∣∣ ≤ ∞

∑
l=0

1
a(l)

l−1

∑
i=0

Fi ≤ K
∞

∑
l=0

l
a(l) . (4)

The above estimation yields Tx ∈ c. Now, we show that every fixed point of T is a solution
to (2). Indeed, let x ∈ BM(d) be a fixed point of T; then:

x(n) = T(x)(n) = d−
∞

∑
l=n

1
a(l)

l−1

∑
i=0

f (i + 1, x(i + 1), ∆x(i + 1))

− α

α ∑∞
l=0

1
a(l) − β

(
∞

∑
l=n

1
a(l)

)[
d−

∞

∑
k=0

1
a(k)

k−1

∑
t=0

f (t + 1, x(t + 1), ∆x(t + 1))

]
(5)

for n ∈ N∪ {0}. Hence,

a(n)∆x(n) =
n−1

∑
i=0

f (i + 1, x(i + 1), ∆x(i + 1))

+
α

α ∑∞
l=0

1
a(l) − β

[
d−

∞

∑
k=0

1
a(k)

k−1

∑
t=0

f (t + 1, x(t + 1), ∆x(t + 1))

]

for n ∈ N∪ {0}. Eventually, we obtain that

∆(a(n)∆x(n)) = f (n + 1, x(n + 1), ∆x(n + 1)) n ∈ N∪ {0}.

Moreover,

x(0) = T(x)(0) =

(
d−

∞

∑
l=0

1
a(l)

l−1

∑
i=0

f (i + 1, x(i + 1), ∆x(i + 1))

)1−
α ∑∞

l=0
1

a(l)

α ∑∞
l=0

1
a(l) − β


=

−β

α ∑∞
l=0

1
a(l) − β

(
d−

∞

∑
l=0

1
a(l)

l−1

∑
i=0

f (i + 1, x(i + 1), ∆x(i + 1))

)

a(0)∆x(0) =
α

α ∑∞
l=0

1
a(l) − β

(
d−

∞

∑
l=0

1
a(l)

l−1

∑
i=0

f (i + 1, x(i + 1), ∆x(i + 1))

)
.

Hence,
αx(0) + βa(0)∆x(0) = 0.

Finally, passing to n→ ∞ in (5) we obtain x(∞) = limn→∞ x(n) = d, which ends the proof
that every fixed point of T is a solution to (2).

Now, we are in a position to check the assumptions of Schauder’s theorem. We show
that T(BM(d)) ⊂ BM(d), T is continuous and T(BM(d)) is a relatively compact subset of c.

Let x ∈ BM(d) and n ∈ N∪ {0}. By the definition of T and (4), we have:

|T(x)(n)− d| ≤
∞

∑
l=0

1
a(l)

l−1

∑
i=0

Fi

1 +
|α|∑∞

l=0
1

a(l)∣∣∣α ∑∞
l=0

1
a(l) − β

∣∣∣
+

|αd|∑∞
l=0

1
a(l)

|α ∑∞
l=0

1
a(l) − β|

≤ K

(
∞

∑
l=0

l
a(l)

)1 +
|α|∑∞

l=0
1

a(l)∣∣∣α ∑∞
l=0

1
a(l) − β

∣∣∣
+

|αd|∑∞
l=0

1
a(l)

|α ∑∞
l=0

1
a(l) − β|

= M
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and

|T(x)(n)− d| ≤ K
∞

∑
l=n

l
a(l) +

(
∞

∑
l=n

1
a(l)

)
|α|

|α ∑∞
l=0

1
a(l) − β|

[
d + K

∞

∑
l=0

l
a(l)

]
.

From the above we obtain that T(BM(d)) ⊂ BM(d) and (T − d)(BM(d)) is a relatively
compact subset of c0; see Proposition 1. To prove that T is a compact operator in c, we have
to prove its continuity. Let ε > 0. From assumption (H2) we obtain the existence of n0 ∈ N
such that

∞

∑
l=n0

l
a(l) ≤

ε

4K

1 +
|α|∑∞

l=0
1

a(l)∣∣∣α ∑∞
l=0

1
a(l) − β

∣∣∣
−1

. (6)

Moreover, there exists η > 0 such that

η ·
(

n0−1

∑
l=0

l
a(l)

)
≤ ε

2
·

1 +
|α|∑∞

l=0
1

a(l)∣∣∣α ∑∞
l=0

1
a(l) − β

∣∣∣
−1

. (7)

From the uniform continuity of function f on {1, . . . , n0− 1}× [d−M, d+ M]× [−2M, 2M]
we obtain the existence of δ > 0 such that for any n ∈ {0, 1, . . . , n0 − 2}, (x1, y1), (x2, y2)∈
[d−M, d + M]× [−2M, 2M] and ||(x1, y1)− (x2, y2)||R2 < 3δ (we use the Euclidean norm
in R2) we have:

| f (n + 1, x1, y1)− f (n + 1, x2, y2)| < η.

Let x, z ∈ BM(d), ||x− z|| < δ and n ∈ N∪ {0}. Notice that for any n ∈ N∪ {0}we obtain:

|x(n)− z(n)| < δ, |∆x(n)− ∆z(n)| < 2δ

and

|T(x)(n)− T(z)(n)| ≤

1 +
|α|∑∞

l=0
1

a(l)∣∣∣α ∑∞
l=0

1
a(l) − β

∣∣∣


·
∞

∑
l=0

1
a(l)

l−1

∑
i=0
| f (i + 1, x(i + 1), ∆x(i + 1))− f (i + 1, z(i + 1), ∆z(i + 1))|

≤

1 +
|α|∑∞

l=0
1

a(l)∣∣∣α ∑∞
l=0

1
a(l) − β

∣∣∣
 · [n0−1

∑
l=0

1
a(l)

l−1

∑
i=0

η +
∞

∑
l=n0

1
a(l)

l−1

∑
i=0

2Fi

]

≤

1 +
|α|∑∞

l=0
1

a(l)∣∣∣α ∑∞
l=0

1
a(l) − β

∣∣∣
 · [η

n0−1

∑
l=0

l
a(l) + 2K

∞

∑
l=n0

l
a(l)

]
.

From (6) and (7) above, we have

||Tx− Tz|| = sup
n∈N∪{0}

|T(x)(n)− T(z)(n)| < ε.

By Schauder’s theorem we obtain that there exists a fixed point x ∈ BM(d) of T, which is a
solution to (2).

Corollary 1. Suppose that the assumptions of Theorem 2 are satisfied with d = 0. Moreover,
assume that

(H5) f (n0 + 1, 0, 0) 6= 0 for some n0 ∈ N∪ {0}.
Then, problem (2) possesses a nontrivial solution.
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Remark 1. Note that (H2) implies that limn→∞ a(n) = ∞. Moreover, if 1
a(n) = O(n−2−ε), for

ε > 0, then (H2) is satisfied.

We will now present examples of classes of functions which satisfy (H4).

Example 1. Let d ∈ R and f : N×R2 → R be a continuous function fulfilling

| f (n + 1, x, y)| ≤ b(n)|x− d|+ c(n)|y|+ e(n) for n ∈ N∪ {0}, x, y ∈ R, (8)

with nonnegative sequences {b(n)}, {c(n)}, {e(n)} such that

sup
n∈N∪{0}

(b(n) + 2c(n)) <

(
∞

∑
l=0

l
a(l)

)−1

·
[

1 +
|α|∑∞

l=0
1

a(l)∣∣∣α ∑∞
l=0

1
a(l)−β

∣∣∣
]−1

, (9)

sup
n∈N∪{0}

|dα|∑∞
l=0

1
a(l)∣∣∣α ∑∞

l=0
1

a(l)−β
∣∣∣ + e(n)

(
∑∞

l=0
l

a(l)

)[
1 +

|α|∑∞
l=0

1
a(l)∣∣∣α ∑∞

l=0
1

a(l)−β
∣∣∣
]

1−
(

∑∞
l=0

l
a(l)

)[
1 +

|α|∑∞
l=0

1
a(l)∣∣∣α ∑∞

l=0
1

a(l)−β
∣∣∣
]
(b(n) + 2c(n))

< +∞. (10)

It is easy to see, that for

M ≥ sup
n∈N∪{0}

|dα|∑∞
l=0

1
a(l)∣∣∣α ∑∞

l=0
1

a(l)−β
∣∣∣ + e(n)

(
∑∞

l=0
l

a(l)

)[
1 +

|α|∑∞
l=0

1
a(l)∣∣∣α ∑∞

l=0
1

a(l)−β
∣∣∣
]

1−
(

∑∞
l=0

l
a(l)

)[
1 +

|α|∑∞
l=0

1
a(l)∣∣∣α ∑∞

l=0
1

a(l)−β
∣∣∣
]
(b(n) + 2c(n))

(11)

assumption (H4) of Theorem 2 is satisfied.
Note that, for any L > 0, condition (10) with b(n) = c(n) = 0 and e(n) = L, n ∈ N∪ {0}

is satisfied. It means that this case includes a class of bounded functions. Moreover, (H4) holds for
a linear function with respect to second and third variables, i.e.,

f (n + 1, x, y) = b(n)(x− d) + c(n)(y) + e(n) for n ∈ N∪ {0}, x, y ∈ R,

where {b(n)}, {c(n)} satisfy (9) and {e(n)} is bounded.

The next example is a simple consequence of Example 1.

Example 2. Let d ∈ R and f : N×R2 → R be a continuous function with a sublinear growth
with respect to second and third variables, i.e.,

| f (n + 1, x, y)| ≤ b(n)|x− d|δ + c(n)|y|γ + e(n) for n ∈ N∪ {0}, x, y ∈ R,

with δ, γ ∈ (0, 1], nonnegative sequences {b(n)}, {c(n)}, {e(n)} fulfill (9), (10). In this case,
assumption (H4) of Theorem 2 is satisfied with M > 1 such that (11).

Let us remind the reader that in the classical approach we assume that ∑∞
l=0

1
a(l) < ∞.

To see that our condition ∑∞
l=0

l
a(l) < ∞ is not too strong we present the following necessary

condition for the existence of a solution to (2). It is worth mentioning that the following
necessary condition is true in both cases when Problem (2) is with and without resonance.

Theorem 3. Let d ∈ R. Suppose that Problem (2) possesses a solution. Moreover, assume that:

(H1) a(l) > 0, l ∈ N∪ {0};
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(H6) there exist n0 ∈ N∪ {0}, K > 0 such that

η := min{ f (n + 1, x, y) : n ≥ n0, |x− d| ≤ K, |y| ≤ 2K} > 0.

Then,
∞

∑
l=0

l
a(l) < ∞.

Proof. If {x(n)}n∈N∪{0} is a nontrivial solution to (2), then there exists n1 ∈ N such that
|x(n)− d| ≤ K for any n ≥ n1. Then |∆x(n)| ≤ 2K for any n ≥ n1 and summing up from
n2 := max{n1, n0} to n− 1 from the equation in (2) we obtain:

a(n)∆x(n)− a(n2)∆x(n2) =
n−1

∑
k=n2

f (k + 1, x(k + 1), ∆x(k + 1))

for n ≥ n2. Hence, we have:

∆x(n) =
a(n2)∆x(n2)+∑n−1

k=n2
f (k+1,x(k+1),∆x(k+1))

a(n) .

Summing up the above from n2 to n− 1 and using (H6), we obtain:

x(n)− x(n2) =
n

∑
l=n2

a(n2)∆x(n2)+∑l−1
k=n2

f (k+1,x(k+1),∆x(k+1))

a(l) ≥
n

∑
l=n2

a(n2)∆x(n2)+η(l−n2)
a(l)

for n > n2. Using the fact that x(+∞) = limn→∞ x(n) = d and letting n→ ∞ in the above,
we have:

d− x(n2) ≥
∞

∑
l=n2

(
ηl+a(n2)∆x(n2)−ηn2

a(l)

)
.

By the positivity of η there exists n3 ∈ N, n3 > n2 such that

ηl + a(n2)∆x(n2)− ηn2 > η
2 l

for l ≥ n3. Hence,

d− x(n2) ≥
n3−1

∑
l=n2

(
ηl+a(n2)∆x(n2)−ηn2

a(l)

)
+ η

2

∞

∑
l=n3

l
a(l)

and
∞

∑
l=0

l
a(l) < ∞.

3. Problem with Resonance

Assuming that ∑∞
l=0

l
a(l) < ∞, the following problem:{

∆(a(n)∆x(n)) = f (n + 1, x(n + 1), ∆x(n + 1)), n ∈ N∪ {0},
x(0) + a(0)

(
∑∞

l=0
1

a(l)

)
∆x(0) = 0, x(∞) = 0

(12)

can be written in the abstract form Lx = Nx, where L : c0 ⊃ dom L → l∞ ×R, l∞ is the
space of bounded sequences,

(Lx)(n) =

(
∆(a(n)∆x(n)), x(0) + a(0)

(
∞

∑
l=0

1
a(l)

)
∆x(0)

)
,
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dom L = {{x(n)} ∈ c0 : {∆(a(n)∆x(n))} ∈ l∞}. It is obvious that ker L = {{x(n)} ∈
c0 : x(n) = −d1 ∑∞

l=n
1

a(l) , n ∈ N ∪ {0}, d1 ∈ R} and im L = {({y(n)}, z) ∈ l∞ ×R : z =

∑∞
l=0

1
a(l) ∑l−1

i=0 y(i), {y(n)} ∈ l∞}. Hence, dim ker L = 1, codim im L = 1 and ind L :=
dim ker L− codim im L = 0, where ind L denotes an index of an operator L. This means
that L is a Fredholm operator of index 0. To establish sufficient conditions for the existence
of a solution to (12) we use the Przeradzki perturbation method with the perturbation of
the first boundary condition x(0) + a(0)

(
∑∞

l=0
1

a(l)

)
∆x(0) = 0. This approach allows us to

work not only for (12), but by the translation to sequence d = (d, d, d . . .) in space c with
the more general problem{

∆(a(n)∆x(n)) = f (n + 1, x(n + 1), ∆x(n + 1)), n ∈ N∪ {0},
x(0) + a(0)

(
∑∞

l=0
1

a(l)

)
∆x(0) = 0, x(∞) = d,

(13)

with d ∈ R. We obtain the following theorem.

Theorem 4. Let d ∈ R. Assume that:

(H1) a(l) > 0, l ∈ N∪ {0};
(H2)∑∞

l=0
l

a(l) < ∞;

(H′3) f : N×R×R→ R is a continuous and bounded function;
(H7) there exists M > 0 such that u( f (n + 1, u, v) − d) > 0 for all n ∈ N ∪ {0}, |u| ≥ M,

v ∈ R;
(H8) there exists n0 ∈ N∪ {0} such that lim

|u|→∞
f (n0 + 1, u, v) 6= d for all v ∈ R.

Then, problem (13) possesses a solution.

Proof. By Lemma 1, (H2) implies that ∑∞
l=0 ∑∞

i=l+1
1

a(i) = ∑∞
l=0

l
a(l) < ∞. Dividing the

equation and the first boundary condition in (13) by ∑∞
l=0 ∑∞

i=l+1
1

a(i) , if necessary, we
assume that

∞

∑
l=0

∞

∑
i=l+1

1
a(i) = 1. (14)

Let k ∈ N. We consider the perturbed problem{
∆(a(n)∆x(n)) = f (n + 1, x(n + 1), ∆x(n + 1)), n ∈ N∪ {0},(

1− 1
k

)
x(0) + a(0)

(
∑∞

l=0
1

a(l)

)
∆x(0) = 0, x(∞) = d

(15)

under (14). Notice that after dividing (15) by ∑∞
l=0 ∑∞

i=l+1
1

a(i) , the nonlinear function f
is still bounded. Hence, there exists L > 0 such that | f (n, x, y)| ≤ L for n ∈ N ∪ {0},
x, y ∈ R. It is clear that problem (15) satisfies assumptions of Theorem 2 with Mk :=
kL
(

∑∞
l=0

l
a(l)

)
+ |d|(k − 1) = kL + |d|(k − 1). Hence, there exists a solution xk to (15).

We prove that {||xk||}k∈N is bounded in c. On the contrary, suppose that {||xk||}k∈N is
unbounded. Passing to subsequence if necessary we assume that ||xk|| → ∞, as k → ∞.
Dividing (15) by ||xk|| we obtain:∆

(
a(n)∆ xk(n)

||xk ||

)
= f (n+1,xk(n+1),∆xk(n+1))

||xk || , n ∈ N∪ {0},(
1− 1

k

)
xk(0)
||xk || + a(0)

(
∑∞

l=0
1

a(l)

)
∆ xk(0)
||xk || = 0, xk(∞) = d

(16)

for any k ∈ N. By the boundedness of f there exists M1 > 0 such that

−M1 ≤ ∆
(

a(n)∆ xk(n)
||xk ||

)
≤ M1
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for any n ∈ N∪ {0}, k ∈ N. Summing the above from 0 to n− 1 we have

−M1n ≤ a(n)∆ xk(n)
||xk || − a(0)∆ xk(0)

||xk || ≤ M1n

and
−M1n− 2a(0) ≤ a(n)∆ xk(n)

||xk || ≤ M1n + 2a(0)

for any n ∈ N∪ {0}, k ∈ N. Then,

−M1n−2a(0)
a(n) ≤ ∆ xk(n)

||xk || ≤
M1n+2a(0)

a(n)

for any n ∈ N∪ {0}, k ∈ N. Summing the above from n to m− 1, (m− 1 > n) we obtain:

m−1

∑
l=n

−M1l−2a(0)
a(l) ≤ xk(m)−xk(n)

||xk || ≤
m−1

∑
l=n

M1l+2a(0)
a(l)

for any n ∈ N∪ {0}, k ∈ N. Passing to m→ ∞ we obtain:

∞

∑
l=n

−M1l−2a(0)
a(l) ≤ d−xk(n)

||xk || ≤
∞

∑
l=n

M1l+2a(0)
a(l)

for any n ∈ N∪ {0}, k ∈ N. This means that
{

xk−d
||xk ||

}
k∈N

is a relatively compact sequence

in c0, where d = (d, d, d, . . .) ∈ c; see Proposition 1. Passing to subsequence if necessary
we assume that there exists x0 ∈ c0 with ||x0|| = 1 such that lim

k→∞
xk−d
||xk || = x0 in c0. Taking

into account that ||xk|| → ∞ and the above we have lim
k→∞

xk

||xk || = x0 in c. Passing to k→ ∞

in (16) we obtain that {
∆
(
a(n)∆x0(n)

)
= 0, n ∈ N∪ {0}

x0(0) + a(0)
(

∑∞
l=0

1
a(l)

)
∆x0(0) = 0.

It is easy to see thatx0(n) =
∑∞

l=n
1

a(l)

∑∞
l=0

1
a(l)

, n ∈ N∪ {0}

 ∨
x0(n) = −

∑∞
l=n

1
a(l)

∑∞
l=0

1
a(l)

, n ∈ N∪ {0}

.

Let us assume that x0(n) =
∑∞

l=n
1

a(l)

∑∞
l=0

1
a(l)

, n ∈ N∪ {0}. Knowing that xk, k ∈ N is a fixed point

of operator (3), we obtain from Theorem 4 that

xk(n)
||xk || =

d
||xk || −

1
||xk ||

∞

∑
l=n

1
a(l)

l−1

∑
i=0

f (i + 1, xk(i + 1), ∆xk(i + 1))

+ k−1
||xk || x

0(n)

[
d−

∞

∑
t=0

1
a(t)

t−1

∑
s=0

f (s + 1, xk(s + 1), ∆xk(s + 1))

]
(17)
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for any n ∈ N∪ {0}, k ∈ N. By the boundedness of f and (H2), Lemma 1 and (14) we have:

1 = lim
k→∞

k−1
||xk ||

(
d−

∞

∑
t=0

1
a(t)

t−1

∑
s=0

f (s + 1, xk(s + 1), ∆xk(s + 1))

)

= lim
k→∞

k−1
||xk ||

(
d−

∞

∑
t=0

f (t + 1, xk(t + 1), ∆xk(t + 1))
∞

∑
s=t+1

1
a(s)

)

= lim
k→∞

k−1
||xk ||

∞

∑
t=0

[(
d− f (t + 1, xk(t + 1), ∆xk(t + 1))

) ∞

∑
s=t+1

1
a(s)

]
. (18)

Hence, there exists k0 such that

∞

∑
t=0

[(
d− f (t + 1, xk(t + 1), ∆xk(t + 1))

) ∞

∑
s=t+1

1
a(s)

]
> 0 (19)

for any k ≥ k0. Using Fatou’s lemma with summable lower bound
{(−L− d)∑∞

s=n+1
1

a(s)}n∈N∪{0}, we obtain that

∞

∑
t=0

lim inf
k→∞

[(
f (t + 1, xk(t + 1), ∆xk(t + 1))− d

) ∞

∑
s=t+1

1
a(s)

]

≤ lim inf
k→∞

∞

∑
t=0

[(
f (t + 1, xk(t + 1), ∆xk(t + 1))− d

) ∞

∑
s=t+1

1
a(s)

]
≤ 0.

We consider two cases.
Case 1. ∑∞

t=0 lim infk→∞

[(
f (t + 1, xk(t + 1), ∆xk(t + 1))− d

)
∑∞

s=t+1
1

a(s)

]
< 0. There

exists t0 ∈ N∪ {0} such that

lim inf
k→∞

(
f (t0 + 1, xk(t0 + 1), ∆xk(t0 + 1))− d

) ∞

∑
s=t0+1

1
a(s) < 0.

Passing to subsequence, if necessary we obtain that

lim
k→∞

f (t0 + 1, xk(t0 + 1), ∆xk(t0 + 1)) < d. (20)

Taking into account that limk→∞
xk

||xk || = x0 in c, we have that limk→∞
xk(t0+1)
||xk || = x0(t0 +

1) > 0. By ||xk|| → ∞ and the above there exists k̂ ∈ N such that 1
2 x0(t0 + 1)||xk|| > M and

xk(t0 + 1) ≥ 1
2 x0(t0 + 1)||xk|| > M

for k ≥ k̂. By (H7) we obtain that

f (t0 + 1, xk(t0 + 1), ∆xk(t0 + 1)) > d

for k ≥ k̂, which contradicts (20). This excludes Case 1.
Case 2. ∑∞

t=0 lim infk→∞

[(
f (t + 1, xk(t + 1), ∆xk(t + 1))− d

)
∑∞

s=t+1
1

a(s)

]
= 0. There

exist t1, t2 ∈ N∪ {0} such that

lim inf
k→∞

f (t1 + 1, xk(t1 + 1), ∆xk(t1 + 1)) < d ∧ lim inf
k→∞

f (t2 + 1, xk(t2 + 1), ∆xk(t2 + 1)) > d (21)

or
lim inf

k→∞
f (t + 1, xk(t + 1), ∆xk(t + 1)) = d, t ∈ N∪ {0}. (22)
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We exclude (21) in the same way as in Case 1. On the other hand, for t = n0, we
have that

xk(n0 + 1) ≥ 1
2 x0(n0 + 1)||xk||

for all large k. Hence, we exclude (22) by (H8).

This means that x0(n) =
∑∞

l=n
1

a(l)

∑∞
l=0

1
a(l)

, n ∈ N∪ {0} is impossible. For x0(n) = −
∑∞

l=n
1

a(l)

∑∞
l=0

1
a(l)

,

n ∈ N ∪ {0} we obtain that xk, k ∈ N is a fixed point of operator (3) from Theorem 2,
and hence

xk(n)
||xk || =

d
||xk || −

1
||xk ||

∞

∑
l=n

1
a(l)

l−1

∑
i=0

f (i + 1, xk(i + 1), ∆xk(i + 1))

− k−1
||xk || x

0(n)

[
d−

∞

∑
t=0

1
a(t)

t−1

∑
s=0

f (s + 1, xk(s + 1), ∆xk(s + 1))

]
(23)

for any n ∈ N∪ {0}, k ∈ N. Hence, we obtain

− 1 = lim
k→∞

k−1
||xk ||

(
d−

∞

∑
t=0

1
a(t)

t−1

∑
s=0

f (s + 1, xk(s + 1), ∆xk(s + 1))

)

= lim
k→∞

k−1
||xk ||

(
d−

∞

∑
t=0

f (t + 1, xk(t + 1), ∆xk(t + 1))
∞

∑
s=t+1

1
a(s)

)

= lim
k→∞

k−1
||xk ||

∞

∑
t=0

[(
d− f (t + 1, xk(t + 1), ∆xk(t + 1))

) ∞

∑
s=t+1

1
a(s)

]
. (24)

Similarly to x0(n) =
∑∞

l=n
1

a(l)

∑∞
l=0

1
a(l)

, n ∈ N∪ {0} we exclude x0(n) = −
∑∞

l=n
1

a(l)

∑∞
l=0

1
a(l)

, n ∈ N∪ {0}.

This contradiction means that {xk}k∈N is a bounded sequence in c. Hence, there exists
M2 > 0 such that

− L ≤ ∆
(

a(n)∆xk(n)
)
≤ L, ||xk|| ≤ M2 (25)

for any n ∈ N∪ {0}, k ∈ N. Summing the above from 0 to n− 1 we obtain:

−Ln ≤ a(n)∆xk(n)− a(0)∆xk(0) ≤ Ln

and
−Ln− 2M2a(0) ≤ a(n)∆xk(n) ≤ Ln + 2a(0)M2

for any n ∈ N∪ {0}, k ∈ N. Then,

−Ln−2M2a(0)
a(n) ≤ ∆xk(n) ≤ Ln+2M2a(0)

a(n)

for any n ∈ N∪ {0}, k ∈ N. Summing the above from n to ∞ we obtain

∞

∑
l=n

−Ll−2M2a(0)
a(l) ≤ d− xk(n) ≤

∞

∑
l=n

Ll+2M2a(0)
a(l)

for any n ∈ N∪ {0}, k ∈ N. This means that
{

xk − d
}

k∈N
is a relatively compact sequence

in c0. Passing to subsequence if necessary we assume that there exists x̂ ∈ c0 such that
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lim
k→∞

xk = x̂ + d in c. Let us denote x := x̂ + d. By the continuity of f and the fact that

x(∞) = d, passing to k→ ∞ in (16) we have that{
∆(a(n)∆x(n)) = f (n + 1, x(n + 1), ∆x(n + 1)), n ∈ N∪ {0}
x(0) + a(0)

(
∑∞

l=0
1

a(l)

)
∆x(0) = 0, x(∞) = d,

which means that x is a solution to (13).

Example 3. Let d ∈ R. Note that a continuous function f : N×R2 → R such that

f (n + 1, x, y) = arctan(x(n2 + y2 + 1)) + d, n ∈ N∪ {0}, y ∈ R, |x| ≥ 1

satisfies assumptions (H′3), (H7), and (H8) of Theorem 4.

4. Conclusions

In this paper, we constructed sufficient conditions for the existence of a solution to
the discrete boundary value problem on the half-line (2) in dependence on parameters
α, β, d ∈ R. For α = 0, d ∈ (0, 1) the considered problem can be interpreted as a discrete
version of some problem from hydrodynamics; see [2]. The fixed-point approach is used
when problem (2) is without resonance. In the resonant case the considered problem can
be solved via the perturbation technique for a Fredholm operator of index 0. We proved
that the constructed assumptions are not too strong by providing the necessary condition
for the existence of a solution to this problem.
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