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Abstract: Quality assessment of stitched images is an important element of many virtual reality and
remote sensing applications where the panoramic images may be used as a background as well as for
navigation purposes. The quality of stitched images may be decreased by several factors, including
geometric distortions, ghosting, blurring, and color distortions. Nevertheless, the specificity of such
distortions is different than those typical for general-purpose image quality assessment. Therefore,
the necessity of the development of new objective image quality metrics for such type of emerging
applications becomes obvious. The method proposed in the paper is based on the combination
of features used in some recently proposed metrics with the results of the local and global image
entropy analysis. The results obtained applying the proposed combined metric have been verified
using the ISIQA database, containing 264 stitched images of 26 scenes together with the respective
subjective Mean Opinion Scores, leading to a significant increase of its correlation with subjective
evaluation results.

Keywords: image quality assessment; stitched images; panoramic images; image analysis; image entropy

1. Introduction

Panoramic images, constructed as a result of image stitching operation conducted for
a series of constituent images with partially overlapping regions, may suffer from various
distortions, including blur, ghosting artifacts, and quite well visible geometric and color
distortions. The presence of such issues decreases the perceived image quality and in some
cases may be unacceptable from an aesthetic point of view. Although modern cameras and
smartphones are usually equipped with software functions making it possible to properly
register the overlapping areas of individual photos to create panoramic images, some
additional requirements should be fulfilled by users during the recording to prevent such
problems. Nevertheless, the growing availability of software and hardware solutions causes
higher popularity of panoramic images which may be useful, e.g., as wide background
images, in virtual reality scenarios, as well as in mobile robotics for the Visual Simultaneous
Localization and Mapping (VSLAM) applications.

Considering the modern applications of image stitching and image registration algo-
rithms, related to the use of cameras mounted on mobile robots, the quality of obtained
panoramic images is very important due to potential errors in vision-based control of their
motion. In the case of decreased image quality, such images might be removed from the
analysis to prevent their influence on the robot’s control. Another interesting direction
of such research in mobile robotics concerns the fusion of images acquired by unmanned
aerial vehicles (UAVs) [1,2].

One of the most relevant factors, influencing the final quality of the panoramic images,
is the appropriate choice of distinctive image features used to match the same regions

Entropy 2021, 23, 1525. https://doi.org/10.3390/e23111525 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-6721-3241
https://orcid.org/0000-0002-9564-3062
https://orcid.org/0000-0003-1092-1279
https://doi.org/10.3390/e23111525
https://doi.org/10.3390/e23111525
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23111525
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23111525?type=check_update&version=1


Entropy 2021, 23, 1525 2 of 13

visible on the “neighboring” constituent images. Nevertheless, some additional post-
processing operations conducted after the assignment, such as blending and interpolation,
may also have a significant impact on the quality of stitched images. Some obvious
examples might be related to different lighting conditions and background changes visible
on the constituent images which may cause some easily noticeable seams. Another factor,
related to geometric distortions, is the influence of lens imperfections and a too low number
of detected keypoints used for further image matching, particularly for constituent images
with overlapping areas less than 15–20% of the image area. Although some corrections,
e.g., calibration, chromatic aberration or vignetting corrections, may be conducted using
both freeware and commercial software for image stitching, even after the final blending
some imperfections may still be visible. Since a synchronous acquisition of constituent
images using multiple cameras may be troublesome in many practical applications, some
problems may also occur for moving objects, particularly leading to motion blur and
ghosting artifacts.

Although during several recent years a great progress has been made in general-
purpose image quality assessment (IQA), the direct application of those methods proposed
by various researches for an automatic objective evaluation of stitched images is trou-
blesome, or even impossible. This situation is caused by significant differences between
the most common types of distortions and those which may be found in stitched images.
Therefore, the development of stitched images quality assessment methods is limited by
the availability of the image databases containing panoramic images subject to different
types of distortions typical for image stitching together with subjective quality scores. Since
the first attempts to such quality metrics have not been verified using such datasets, there
is a need of their additional verification, as well as the analysis of their usefulness in the
combination with some other approaches.

Such experiments are possible with the use of the Indian Institute of Science Stitched
Image Quality Assessment (ISIQA) dataset consisting of 264 stitched images and 6600 hu-
man quality ratings. One of the methods recently proposed for quality assessment of
stitched panoramic images, verified using the ISIQA database, is the Stitched Image Qual-
ity Evaluator (SIQE) proposed by the authors of this dataset [3]. This method utilized
a comparison of 36 features calculated for the constituent and stitched images, namely the
eigenvalues determined for the covariance matrix where the covariances are computed for
each patch for the pair of wavelet coefficients for a bivariate distribution determined from
the Gaussian Mixture Model (GMM) and shape parameters of the Generalized Gaussian
Distribution (GGD). The application of the bivariate statistics for the GMM is useful for
detection of the correlation caused by ghosting artifacts, whereas the shape parameters
of the GGD represent features sensitive to geometric distortions caused by presence of
additional edges as well as blur [3]. A more detailed description of the SIQE metric is
presented in Section 2.2. Nevertheless, the authors of the SIQE method have used only
randomly selected 20% of stitched images for testing whereas 80% of the images have
been used for training. Therefore, the reported relatively high correlation results should be
considered as harder to obtain for the whole database due to the higher number of images
and therefore such overall correlation is significantly decreased [4].

One of the methods for the increase of the correlation of objective metrics with sub-
jective quality evaluation results is the application of the combined metrics, successfully
applied for general-purpose IQA [5,6], multiply distorted images, remote sensing [7], as
well as for the quality evaluation of the 3D printed surfaces [8]. Although such methods
cannot be directly applied for the stitched images, the general idea of the combination of
various metrics is worth investigating, leading to promising results as presented in the
further sections of the paper.

The motivation for the combination of the entropy-based features with some exist-
ing metrics has been related to the observed increase of the local image entropy for the
regions containing some kinds of distortions typical for the stitched images. According to
expectation, an increase of the global image entropy for lower quality images may also be
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observed. Nevertheless, as the image entropy is highly dependent on the image contents,
a more useful approach is the comparison of the entropy-based features calculated for
the constituent and the stitched images in a similar way as for 36 features extracted in
the SIQE framework [3]. Hence, the additional entropy-based features may be added
after the SVR step and combined with the SIQE values, as well as with some additional
features or sub-metrics. The additional use of the variance of the local entropy and two
additional features originating from the MIQM metric [9,10], leading to the extension of
the idea initially verified in the paper [4], makes it possible to increase the correlations with
subjective scores significantly, as presented in the further part of the paper.

2. Materials and Methods
2.1. Overview of Methods for Stitched Image Quality Assessment

Objective image quality assessment methods may be generally divided into full-
reference (FR) and no-reference (NR) methods. The latter group also referred to as “blind”
metrics, seems to be more attractive for many applications since FR metrics require the full
knowledge of the reference (undistorted) images. Since such “pristine” images are often
unavailable, a partial solution for this problem might be the use of the reduced-reference
methods where the knowledge of some characteristic parameters or features of the original
image is necessary.

Nevertheless, the FR quality assessment of the stitched images should be considered
in another way since perfect quality panoramas are usually unavailable, however, there
is still a possibility of some comparisons with constituent images that are typically at the
disposal. Therefore, the stitched image quality assessment may be considered as an indirect
assessment of the quality of the applied stitching method. In view of these assumptions,
these methods cannot be directly classified as “purely” FR or NR IQA algorithms, since they
use the data from additional (constituent) images but do not utilize any direct comparisons
of the distorted panoramas with the “pristine” stitched images.

One of the first interesting approaches to stitched IQA is based on the attempt of using
the well-known Structural Similarity (SSIM) method [11] examined by Qureshi et al. [12].
In this method, the SSIM has been used for comparisons of the high-frequency data, e.g.,
concerning the edges, in overlapping regions of constituent and stitched images, leading
to the HFI_SSIM metric. Additionally low-frequency information is used in this metric to
assess the photometric quality of the panorama image using the spectral angle mapper
(based on the angle between two vectors representing pixels’ colors in the RGB color space)
and intensity magnitude ratio measures.

Color correction and balancing in the image and video stitching has also been in-
vestigated in the paper [13], whereas the mosaicking performance has been examined
by Paalanen et al. [14]. A classification of color correction methods for image stitching
can be made using the framework proposed by Bellavia and Colombo [15] who utilize
well-known Feature Similarity (FSIM) metric [16] together with the improved Color Image
Difference (iCID) measure [17] to assess the quality. Another idea, useful for the analysis of
color inconsistency, has been proposed by Niu et al. [18] and is based on the calculation of
the color contrast similarity and the color value difference.

The application of the local variance of optical flow field energy between the distorted
and reference images has been combined with the intensity and chrominance gradient
calculations in highly-structured patches by Cheung et al. [19], allowing mainly for the
measurements of the geometric and structure errors.

Unfortunately, regardless of their popularity and good results obtained in some other
applications, some data-driven quality assessment methods cannot be successfully applied
for the quality assessment of stitched images due to the necessity of training with the use
of a great number of images [20]. Some recent examples might be Generated Image Quality
Assessment (GIQA) [21] or Face Forensics in the Wild [22] but these methods focus on the
evaluation of generated images with distortions different than typical for stitched images
or face forgery detection being related to classification rather than quality assessment.
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Although similar methods might be successfully applied for the general-purpose IQA, it
should be kept in mind that for the general-purpose IQA several large-scale databases
containing the subjective quality scores are available, differently than for the evaluation of
stitched images limited to the use of the ISIQA dataset [3].

One of the methods partially utilized in this paper has been proposed by Solh and
AlRegib [9,10] who have developed the Multi-view Image Quality Measure (MIQM) consist-
ing of luminance, contrast, spatial motion, and edge-based structure components. A more
detailed description of the application of its simplified version used in our experiments is
provided in the further part of the paper (Section 2.3).

2.2. The SIQE Metric

As mentioned earlier, one of the most interesting approaches to quality assessment
of panoramic stitched images has been recently developed by the inventors of the ISIQA
database [3]. The main assumption of the SIQE framework is the use of 36 features divided
into two sets. The first set is sensitive to structural changes visible as blurring or changes
of edges, whereas the second one captures the distortions caused by variations of the
spatial correlation caused by ghosting artifacts. The image-level features are determined
as the weighted average of the local patch-level features (calculated for 100 × 100 pixels
patches), further used to predict the final quality score using the Support Vector Machine
(SVM) regression.

The detection of ghosting artifacts observed as some additional edges or replications
of some image regions, caused by imprecise aligning of the overlapping regions of con-
stituent images during the stitching procedure, is based on the use of the multi-scale
multi-orientation decomposition. For this purpose, the use of the steerable pyramids has
been proposed by the authors of the paper [3], who have used 2 scales and 6 orientations
to decompose the image into 12 subbands. Then, three groups of features may be deter-
mined for these subbands both for constituent and stitched images. Fitting a GGD model
to subband coefficients their shape coefficients may be determined as the first group of
12 pairs of features. Using the bivariate statistics based on the GMM model, the additional
24 features, representing the covariance values for pairs of wavelet coefficients for the
horizontal and vertical neighborhood, may be calculated for the stitched and constituent
images, accordingly. These features may be expressed as the eigenvalues of the bivariate
distribution [3]. Finally, the differences of all 36 features extracted from the stitched image
and the corresponding constituent images (denoted as f s

1−36 and f c
1−36) are calculated,

being the input for the SVM regression procedure.
Although the Pearson’s Linear Correlation Coefficient (PLCC) for the ISIQA dataset is

equal to 0.8395 with Spearman Rank Order Correlation SROCC = 0.8318 reported in [3],
these results have been obtained for 1000 iterations of randomly chosen train and test sets,
using only 20% of images for testing. Unfortunately, applying this metric for the whole
ISIQA dataset, significantly lower values of the PLCC = 0.7488 and SROCC = 0.7057 may
be achieved [4].

Considering the necessity of the use of a large amount of the ground truth data for
training to avoid overfitting of the trained model, there is a limited possibility of application
of the deep CNN-based methods, as stated by Hou et al. [20]. For this reason, regardless
of the popularity of the deep learning methods, an interesting direction of research seems
to be the development of combined metrics, utilizing the SIQE method and some other
approaches based on handcrafted features.

2.3. The Simplified MIQM Implementation

Although the fundamental element for our research is the SIQE metric, its extension
towards a combined metric requires an implementation of some additional metrics and
calculation of additional features, as well as their further optimization making it possible
to increase the correlation with subjective quality scores.
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Two additional sub-measures have been incorporated from [9] for this study, i.e.,
luminance and contrast index, and edge-based structural index, being the elements of
the MIQM. The first one is focused on recognizing sharp local changes in luminance and
contrast around structured regions. The computation formula was derived and adjusted
in [10] to provide higher weights for structured regions. It is mathematically expressed in
the following way

kx,y(I, J) =
4(σIσJ) · (µIµJ) + C

(σ2
I + σ2

J ) · (µ2
I + µ2

J ) + C
(1)

where (x, y) is the coordinate of the upper left corner of the macroblock. The mean intensity
is denoted as µ, and the standard deviation as σ, respectively. Both σ and µ are computed
for the macroblocks of the dimension s × s. In our study, we have set s to 21, which is
a trade-off between a reasonable computation time and accuracy. The subscript I denotes
the reference image whereas J stands for the distorted image, and C is a constant added to
prevent instability in case of the denominator value being close to zero.

To compute the overall quality index a weighted average of luminance and contrast
index of each macroblock should be used. The weights’ values are obtained based on the
reference image in the following way. First, the texture randomness index at macroblock
(x, y) of the image I has to be computed using the formula [23]

t(x, y) = EI(x, y)× MI(x, y) (2)

where EI is an edge intensity binary image with values equal to 1 where the function recog-
nizes edges, and values 0 elsewhere, with MI being the mean intensity of I. These values
have been computed for the same non-overlapping macroblocks as previously. Finally, the
texture randomness index has been mapped to the object index in the following way

T(x, y) =


K1 +

(
0.5 × K1 ×

log2 t(x,y)
log2 β1

)
β1 ≤ t(x, y) < β2

K2 +
(

0.5 × K2 × 2−(t(x,y)−β2)
)

t(x, y) ≥ β2

K1 otherwise

(3)

where K1 and K2 are the constant parameters that control the weights assigned to the
structured regions and randomly assigned regions, accordingly. If K1 is much larger than
K2, then higher weights are assigned to the structured regions. Parameters β1 and β2
are the edge detector thresholds. Such computed T(x, y) is employed to compute both
sub-measures according to the Formulas (4) and (5).

The luminance and contrast index for M × N macroblocks may be calculated as

K(I, J) =
∑M

x=1 ∑N
y=1 kx,y(I, J)× T(x, y)

∑M
x=1 ∑N

y=1 T(x, y)
(4)

whereas the edge-based structural index for M × N macroblocks is defined as

E(I, J) =
∑M

x=1 ∑N
y=1

(
1 −

∥∥∥ Tx,y(I)−Tx,y(J))
Tx,y(I)

∥∥∥)
M × N

. (5)

The values of K(I, J) and E(I, J) are close to 1 for minimum distortions and conse-
quently values almost 0 for maximum distortions.

In our study, the reference image has been a region of interest (ROI) selected from each
constituent image and the corresponding ROI found in the evaluated stitched image. All
the formulas have been implemented as MATLAB functions. Instead of the third MIQM
term, namely spatial motion index, partially utilizing the local entropy, we have used the
additional global and local entropy-based features, leading to the increase of the proposed
metric’s correlation with subjective MOS values.
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2.4. The Proposed Entropy-Based Approach

The initial experiments, conducted using 264 stitched images obtained for 26 scenes
that are included in the ISIQA dataset (sample images are shown in Figure 1) as well as
some additional stitched images generated using the freeware Hugin software with various
parameters, have demonstrated the potential improvements of existing metrics caused by
their diversity.

Figure 1. Sample constituent and stitched images with various distortions from the ISIQA dataset.
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Assuming the usefulness of the image entropy, reflecting the amount of information
in an image, the first experiments have been made utilizing the global entropy values
calculated for the image X according to the well-known formula:

entX
global = −∑(p · log2(p)) , (6)

where p contains the normalized histogram counts determined for the image X using
256 bins, as well as the local entropy values calculated using the same Formula (6) for the
9 × 9 pixels neighborhood of the specified pixel from the image X.

Therefore, the additional entropy-based features (added after the SVR step and further
combined with the SIQE values) are defined as [4]:

entlocal = entc
local − ents

local , (7)

and
entglobal = entc

global − ents
global , (8)

where the average local entropy values entlocal and the global entropy values entglobal for
constituent (c) and stitched (s) images are subtracted, respectively. Regardless of these
two differential features, their equivalents for the constituent and stitched images may be
independently analyzed as well.

After the experimental verification of the possible combinations, the initially consid-
ered combined metrics, referred to as EntSIQE, have been defined in two variants based on
the weighted sum and weighted product [4]:

EntSIQE1 = α · SIQE + β · entglobal + γ · ents
local , (9)

and
EntSIQE2 = (SIQE)α ·

(
entglobal

)β
·
(
ents

local
)γ , (10)

where the parameters α, β, and γ may be optimized (independently for each of the above
formulas) to provide the highest correlation with the MOS values for the specified database,
e.g., the ISIQA database as used in this paper. Since the use of the averaged entlocal features,
calculated only for the stitched images, has provided better results than the use of the
differences for the constituent and stitched images, only the entglobal features have been
calculated as the difference of features for the constituent and stitched images.

The additional extension of these metrics with the use of two indexes, originating from
the MIQM approach (Equations (4) and (5)), described in Section 2.3, may be conducted
in the same way, leading to the finally proposed metrics referred to as EntSIQE+

1 and
EntSIQE+

2 . Nevertheless, applying the Formulas (4) and (5), two vectors containing the
similarity indexes between the ROIs extracted from the stitched image and each corre-
sponding constituent image may be obtained. Therefore, for the images from the ISIQA
database, depending on the number of constituent images (four in two sets and five in
the other cases), 8 or 10 values may be obtained in aggregate. Considering the use of the
maximum, minimum, average and median values for K(I, J) and E(I, J) indexes, the best
results have been obtained using the median values.

The additional useful feature, leading to a further increase of the correlation of the
proposed metric with subjective scores is the variance of the local entropy that may be
calculated subtracting the averaged variances determined for the constituent and stitched
images according to:

varent = var(entc
local)− var(ents

local) . (11)
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Hence, the final formulas may be expressed as:

EntSIQE+
1 = a1 · (SIQE)w1 + a2 ·

(
entglobal

)w2
+ a3 ·

(
ents

local
)w3

+a4 · (varent)
w4 + a5 · (med(K(I, J)))w5 + a6 · (med(E(I, J)))w6

, (12)

and

EntSIQE+
2 = (SIQE)w1 ·

(
entglobal

)w2 ·
(
ents

local
)w3

·(varent)
w4 · (med(K(I, J)))w5 · (med(E(I, J)))w6

. (13)

It is worth to note that the necessity of the use of additional weighting exponents
in Formula (12) in comparison to the Formula (9) is caused by different dynamic ranges
of individual features used in the proposed metrics. Nevertheless, the application based
on the weighted product might be a better choice due to the use of only six weighting
coefficients (w1–w6).

3. Results and Discussion

To verify the correlation between the objective and subjective quality scores for the
264 images from the ISIQA database, three correlation metrics being the most typical in the
IQA research, have been used.

Pearson’s Linear Correlation Coefficient (PLCC) between the objective metric Q the
Mean Opinion Score (MOS) values, illustrating the prediction accuracy of the image quality,
is defined as the ratio of the covariance to the product of the standard deviations:

r =
cov(Q, MOS)

σQ · σMOS
. (14)

It should be noted that in many IQA related papers, the additional nonlinear regression
is applied, usually with the use of the logistic function, according to the recommendations
of the Video Quality Experts Group (VQEG). Nevertheless, in the case of the combined
metrics, it does not lead to meaningful changes of the correlation coefficients (differences
are typically below 0.003) due to the nonlinear combination of various features. This has
also been verified experimentally both for the original SIQE metric as well as for all the
proposed combinations.

To verify the prediction monotonicity, two rank-order correlations may be applied.
Spearman’s Rank Order Correlation Coefficient (SROCC) is given as:

ρ = 1 −
6 · ∑ d2

i
n · (n2 − 1)

, (15)

where di stands for the difference between the ranks of corresponding images in two sets
sorted according to objective (Q) and subjective (MOS) quality scores and n denotes the
number of images. The second one is Kendall Rank Order Correlation Coefficient (KROCC)
expressed as:

τ = 2 · nc − nd
n · (n − 1)

, (16)

where nc and nd are the number of concordant and discordant, respectively, that are
considered as the pairs of images ordered in the same way and reversely.

The calculations of all parameters as well as the optimizations have been conducted
in MATLAB environment. For the optimization of exponential parameters wi as well as the
multipliers ai the derivative-free method without constraints based on the Nelder–Mead
simplex method has been used in the version implemented in MATLAB’s fminsearch
function with additional verification of the local minima.
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The obtained results for the original SIQE metric as well as for the initially considered
and finally proposed combined metrics are presented in Tables 1 and 2 as well as on the
scatter plots shown in Figure 2. Since some comparisons of the original SIQE with the older
metrics (i.a. NIQE, BRISQUE, DIVIINE or HFI_SSIM [12]), presented in the paper [3], have
demonstrated its significantly better performance with correlation’s increase by over 0.2
for the same ISIQA dataset, the analysis in this paper is limited to the comparison to the
state-of-the-art SIQE metric to increase the clarity of presented results.

As can be easily noticed much more linear relation between the proposed objective
metrics and MOS values can be observed in comparison to the original SIQE metric.
Analyzing the number and location of outliers, most of them are located closer to the linear
trend visible on the scatter plots for the proposed metrics. The values of the parameters
obtained for the proposed combined metrics are presented in Table 3.

Table 1. Correlations with subjective scores obtained for the ISIQA database for the initially consid-
ered metrics and their parameters [4].

Metric
Parameters Correlation with MOS

α β γ PLCC SROCC KROCC

SIQE - - - 0.7488 0.7057 0.5308
EntSIQE1 0.3592 0.7938 2.3176 0.8012 0.7920 0.5971
EntSIQE2 0.8597 −0.0036 0.4579 0.8101 0.7945 0.5990

Table 2. Correlations with subjective scores obtained for the ISIQA database using the proposed
combined metrics and during the ablation study assuming the removal of one of the elementary
metrics or features.

Metric
Correlation with MOS

PLCC SROCC KROCC

EntSIQE+
1 (proposed) 0.8338 0.8338 0.6418

EntSIQE+
1 with a1 = 0 0.2869 0.2859 0.1833

EntSIQE+
1 with a2 = 0 0.8319 0.8326 0.6401

EntSIQE+
1 with a3 = 0 0.8283 0.8267 0.6341

EntSIQE+
1 with a4 = 0 0.8288 0.8264 0.6334

EntSIQE+
1 with a5 = 0 0.8326 0.8335 0.6417

EntSIQE+
1 with a6 = 0 0.8295 0.8250 0.6312

EntSIQE+
2 (proposed) 0.8337 0.8341 0.6432

EntSIQE+
2 with w1 = 0 0.2652 0.2870 0.1885

EntSIQE+
2 with w2 = 0 0.8336 0.8336 0.6424

EntSIQE+
2 with w3 = 0 0.8128 0.8037 0.6130

EntSIQE+
2 with w4 = 0 0.8282 0.8225 0.6296

EntSIQE+
2 with w5 = 0 0.8333 0.8311 0.6399

EntSIQE+
2 with w6 = 0 0.8273 0.8249 0.6309

Table 3. Parameters obtained for the ISIQA database for the newly proposed metrics.

Metric Parameters

w1 w2 w3 w4 w5 w6

EntSIQE+
1 0.9010 1.8909 1.534 × 10−4 1.4566 9.359 × 10−5 2.438 × 10−4

EntSIQE+
2 1.1574 −0.0037 0.5554 0.0262 0.1271 1.1078

a1 a2 a3 a4 a5 a6

EntSIQE+
1 1.391 × 10−5 1.582 × 10−4 3.1237 2.079 × 10−4 0.9362 1.6689
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Figure 2. Scatter plots for SIQE (red points), two variants of the EntSIQE metric (blue and black points), and the proposed
two variants of the EntSIQE+ metric (green and violet points).

Analyzing the obtained results, a significant increase of the correlation with subjective
scores may be observed for the proposed approach. Since the values of the parameters
used for all six metrics or features are not close to zero (for the EntSIQE+

1 metric there is
no pair of parameters ai and wi being close to zero), a removal of any of the parts of the
combined metric would decrease the correlation of the combined metric with the MOS
values. To illustrate this, the results of the ablation study (with independent optimization)
are presented in Table 2 for the six versions of the 5-element combined metrics (with



Entropy 2021, 23, 1525 11 of 13

removed one of the components). As it may be easily noticed, in both cases the most
relevant element is undoubtedly the original SIQE metric. Nevertheless, only a slightly
lower correlation with subjective scores may be achieved without the use of the global
entropy or median values of (K(I, J)) calculated according to Formula (4).

4. Conclusions

The extensions of the recently proposed SIQE metric towards the combined metric
proposed in the paper make it possible to achieve considerably higher correlation of the
designed objective metrics with subjective quality scores of the stitched images delivered
in the ISIQA database. The obtained results are promising and confirm the usefulness of
the combined metrics also for the automatic quality assessment of the stitched panoramic
images. As shown in the ablation study, the application of the additional entropy-based
features utilizing the local image entropy and its variance is one of the crucial elements
increasing the correlation with the MOS values, since their removal causes the most
significant decrease of the PLCC, SROCC and KROCC values, obviously with the exception
of the original SIQE metric.

One of the potential directions of further research might be the application of the
proposed approach for quality assessment of parallax-tolerant image stitching methods [24]
as well as the validation of the proposed approach for some other types of images and
video sequences, containing similar types of distortions, also using some other combina-
tion models.
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The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
FR IQA Full-Reference Image Quality Assessment
FSIM Feature Similarity
GIQA Generated Image Quality Assessment
GGD Generalized Gaussian Distribution
GMM Gaussian Mixture Model
iCID improved Color Image Difference
ISIQA Indian Institute of Science Stitched Image Quality Assessment (dataset)
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KROCC Kendall Rank Order Correlation Coefficient
MIQM Multi-view Image Quality Measure
MOS Mean Opinion Scores
NR IQA No-Reference Image Quality Assessment
PLCC Pearson’s Linear Correlation Coefficient
ROI region of interest
SIQE Stitched Image Quality Evaluation
SROCC Spearman Rank Order Correlation Coefficient
SVM Support Vector Machine
UAV Unmanned Aerial Vehicle
VQEG Video Quality Experts Group
VSLAM Visual Simultaneous Localization and Mapping
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