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Abstract: Gene network associated with Alzheimer’s disease (AD) is constructed from multiple data
sources by considering gene co-expression and other factors. The AD gene network is divided into
modules by Cluster one, Markov Clustering (MCL), Community Clustering (Glay) and Molecular
Complex Detection (MCODE). Then these division methods are evaluated by network structure en-
tropy, and optimal division method, MCODE. Through functional enrichment analysis, the functional
module is identified. Furthermore, we use network topology properties to predict essential genes.
In addition, the logical regression algorithm under Bayesian framework is used to predict essential
genes of AD. Based on network pharmacology, four kinds of AD’s herb-active compounds-active
compound targets network and AD common core network are visualized, then the better herbs and
herb compounds of AD are selected through enrichment analysis.

Keywords: Alzheimer’s disease; network pharmacology; network entropy; network topology;
Bayesian algorithm; logical regression algorithm

1. Introduction

Alzheimer’s disease (AD) is a chronic age-associated neurodegenerative disorder, and
there are no definitive treatments or prophylactic agents. Its pathological features include
senile plaque, nerve fiber tangles, and massive loss of neurons [1]. As its pathogenesis is
not clear, clinical drugs used commonly can only relieve symptoms within a certain period
of time but cannot improve the disease fundamentally.

Network pharmacology is associated with drug targets and human disease genes.
On the basis of understanding the “drug-target gene-disease gene” network, the effects
of different drugs on different target proteins are evaluated by using network analysis
methods [2,3].

Many different computational methods have been employed for the different application
fields. Gianni D’Angelo and Francesco Palmieri proposed a novel autoencoder-based deep
neural network architecture, where multiple autoencoders are embedded with convolutional
and recurrent neural networks to elicit relevant knowledge about the relations existing among
the basic features (spatial-features) and their evolution over time [4]. Gianni D’Angelo and
Francesco Palmieri described the use of Genetic Programming for the diagnosis and modeling
of aerospace structural defects. The resulting approach aims at extracting such knowledge by
providing a mathematical model of the considered defects, which can be used for recognizing
other similar ones [5]. Zhang et al. proposed a Bayesian regression approach to explain
similarities of disease phenotypes by using diffusion kernels of one or several protein-protein
interaction (PPI) networks [6]. Chen et al. proposed two improved Markov random field
(MRF) algorithms, which can automatically assign weights to different data sources, using
Gibbs sampling processes [7,8]. Chen et al. proposed a fast and high-performance multiple
data integration algorithm [9] for identifying human disease genes, the logistic regression
based algorithm is extended to the multiple data integration case, where the parameters
(weights) of different data sources can be tuned automatically.
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In this paper, AD genes are collected from multiple databases, and the gene network
of AD is constructed by considering some factors such as gene co-expression and metabolic
relationship. The gene network is divided into modules by Cluster one [10], MCL [11],
Glay [11] and MCODE [11,12]. Then these division methods are evaluated by network
structure entropy, and the optimal division method, MCODE. Through functional enrich-
ment analysis, the functional modules are identified. Furthermore, essential genes can
be predicted by the analysis of network topology characteristics of these functional mod-
ules. In addition, the integrated algorithm (logical regression algorithm under Bayesian
framework) is used to predict AD’s essential genes. The final predicted essential genes are
obtained by analyzing these two results above.

AD is located in the brain, but it is closely associated to the kidneys, liver, heart, spleen,
and other viscera, according to traditional Chinese medicine [13,14]. Compound herbs
have the characteristics of multi-components and multi-targets. In this study, we screen out
the effective herb compounds for the treatment of AD by identifying the essential genes of
AD, the herb-active compound-active target genes network, and the common core network
of AD [15,16].

2. Materials and Methods
2.1. Data Preparation
Data Sources

Some common herbs for treating AD are KXS (Kaixinsan), DYSYS (Dangguishaoyaosan),
YGS (Yigansan) and YQTYT (Yiqitongyutang). The compounds of these four herbs are ob-
tained [17,18] (see Supplementary Table S1). Their active targets were obtained from the Tradi-
tional Chinese Medicine Systems Pharmacology (TCMSP) Database [19]. The AD-associated
genes were collected from the database of National Center for Biotechnology Information
(NCBI) database [20], Online Mendelian Inheritance in Man (OMIM) database [21], and
Therapeutic Target Database (TTD) [22]. The PPI dataset is derived from the database of
IntAct Molecular Interaction Database (IntAct) [23]. The human gene expression profiles are
obtained from the Gene Expression Omnibus (GEO) database [24]. The pathway datasets are
obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [25]. The
human protein complexes are from the database of Comprehensive Resource of Mammalian
protein complexes (CORUM) database [26].

2.2. Methods
2.2.1. Prediction of Essential Genes based on Modular Network
Network Module Partition Method

According to the distribution of network nodes in the module, the module division
method can be divided into overlapping modules and non-overlapping modules. The
common algorithms, MCODE, MCL, Glay, and cluster one, are used to divide the network.
The first three algorithms are non-overlapping algorithms, while the last one is an overlap-
ping algorithm. In this paper, the above four-module partition methods are used to divide
AD networks.

Entropy

Recently, “Shannon entropy” has been introduced to measure some properties of
networks, also known as “network entropy”. Its value can effectively assess the stability
of the network. The smaller numerical value of network entropy, the more stable the
network [27]. Network structure entropy is used as the evaluation method. Let N and ki
denote the number of nodes, the degree of the i-th node, respectively. The entropy of a
network [28] is defined as follows:

E = −
N

∑
i=1

Ii ln Ii where Ii =
ki

∑N
i=1 ki

(1)
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Prediction of Functional Gene Modules

The correlation between AD original network and divided module network is dis-
cussed based on gene function enrichment analysis and association indices [29,30]. Jaccard
association index is often used to evaluate the functional correlation between each module
and the original network [29]. In addition, Fuxman Bass Juan et al. survey many association
indices, such as Simpson, Geometric, Cosine, PCC (Pearson Correlation Coefficient) [31].
Zhu and Qiao et al. further extend the PCC association index to measure the correlation
between each module and the function of the original network [32], as shown in Table 1.

Table 1. Correlation index.

Correlation Index Formula Meaning

Jaccard JOC = |O ∩ Ci |
|O∪ Ci |

The range of values is
[0, 1], and the closer it is

to 1, the stronger the
correlation.

Simpson SOC = |O ∩ Ci |
|min(O,Ci)|

Geometric GOC = |O ∩ Ci |2
|O|·|Ci |

Cosine COC = |O ∩ Ci |√
|O|·|Ci |

PCC PCCOC = |O ∩ Ci |·n−|O|·|Ci |√
|O|·|Ci |·(n−|O|)·(n−|Ci |)

Where, O represents the set of the original network pathways; Ci represents the set of the i-th module pathways
after partition.

Screening of Essential Genes

Research on the essential genes can help us to understand the biology of the dis-
ease. Various tools have been developed to predict and judge the essential genes in the
network [33]. In this paper, the network topology attributes of functional modules are
analyzed by 11 indexes of Cyto-Hubba [33], such as degree centrality (DC), betweenness
centrality (BC), closeness centrality (CC), density of maximum neighborhood component
(DMNC), maximum neighborhood component (MNC), bottleneck (BN), edge percolated
component (EPC), maximum clique centrality (MCC), edge clustering coefficient (ECC),
radiality and clustering coefficient.

2.2.2. Integrated Algorithm for Predicting Essential Genes

Chen et al. proposed a fast and high-performance multiple data integration algorithm
for identifying human disease genes [9]. The disease gene identification problem was
first expressed as a two-classification problem, and the feature vectors of each gene were
extracted from the integrated network. Combined with the binary logistic regression model,
maximum likelihood estimation and Bayesian idea, the model parameters are estimated,
and the posterior probability of each gene was calculated. The final decision score was
obtained by calculating the percentage of individual posterior probability.

Acquisition of Priori Probability of Genes

Suppose the integrated network contains genes g1 . . . gn+m, in which g1 . . . gn are the
unknown ones and gn+1 . . . gn+m are the known ones in the OMIM database. Similar to the
method used in references [8,9], for i = 1 . . . n, if gi belongs to the protein complex, then let
its prior probability be:

Pi =
A
B

(2)

where A denotes the number of AD genes in the complex and B denotes the number of all
disease genes in the complex. If gi does not belong to the protein complex, then let its prior
probability be:

Pi =
C
D

(3)

where C is the number of all known genes of AD and D is the total number of human genes.
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Then, generate a random number following the standard uniform distribution U(0, 1).
If the numerical value of the random number is larger than Pi, then assign 0 as the prior
label for gi. Otherwise, assign 1 as the prior label for gi. The prior probability of AD genes
in the OMIM database are P̂n+i = 1, i = 1 . . . m.

Binary Label Assignment

Assign binary labels according to the prior probability calculated in 2.2.2.1, if
P̂i = 1, i = 1 . . . n + m, then the binary label is x̂ = 1. If P̂i = 0, i = 1 . . . n + m, then
the binary label is x̂ = 0.

Obtain Feature Vectors according to the Integrated Network and Binary Labels

Only considering direct neighbors to construct feature vectors limits the capability
of the method to use other topological attributes in a biological network. Therefore, the
number of second order neighbors (indirectly connected) are employed to construct the
feature vector [9] as:

ϕi =
(
1, ϕi1, ϕi0, ϕ′i1, ϕ′i0

)T (4)

where, ϕi1 and ϕi0 are the number of direct neighbors of gi that are connected to vertices
with labels 1 and 0, ϕ′i1 and ϕ′i0 are the numbers of the second-order neighbors of gi that are
connected to vertices with labels 1 and 0. All feature vectors of individual genes together
form a feature matrix as:

F1 =


1 ϕ11 ϕ10 ϕ′11 ϕ′10
1 ϕ21 ϕ20 ϕ′21 ϕ′20
...

...
...

...
...

1 ϕN1 ϕN0 ϕ′N1 ϕ′N0


N×5

(5)

Estimate Parameters and Calculate the Posterior Probability

Given a prior configuration X̂ for all vertices, a maximum likelihood estimation (MLE)
method can be used to estimate the parameter vector ω.

Parameter vector can be written as:

ω = (ω0, ω1, ω2, ω3, ω4)
T . (6)

The likelihood function can be written as:

L(ω; x1, x2 · · · xN) =
N

∏
i=1

P(xi

∣∣∣∣∣ϕi, f ). (7)

The logistic sigmoid function can be written as: P(xi = 1
∣∣∣ϕi, f ) = e f (ϕi)

e f (ϕi)+1

P(xi = 0
∣∣∣ϕi, f ) = 1

e f (ϕi)+1

. (8)

Among them, the linear function

f (ϕi) = ωT ϕi. (9)

The log likelihood function of (7) can be written as:

ln L(ω; x1, x2 · · · xN) =
N

∑
i=1

ln P(xi

∣∣∣∣∣ϕi, f ). (10)
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From (8) and (10), we get

ln L(ω; x1, x2 · · · xN) =
N

∑
i=1

[
xiω

T ϕi − ln(1 + eωT ϕi )
]
. (11)

Then, a unique global optimal solution can be found by solving a convex optimization
problem. The parameter vector ω is obtained by calculating the maximum value of (11).
Then calculate the posterior probability of each gene from (8) and (9).

Get Decision Score

Considering that a gene has a higher decision score than most genes, it is more likely
to be associated with the disease. Therefore, the final decision score is obtained by using
the percentage value of the posterior probability [9]. The decision score is calculated
as follows:

qi =

∣∣{j
∣∣Pi ≥ Pj

}∣∣
n

(12)

where Pi is the posterior probabilities of each gene and qi is the top percentage value of Pi
among all those posterior probabilities.

3. Results and Discussion
3.1. Network Construction
3.1.1. Herb-Active Compound-Target Network

In Supplementary Table S2, 14 kinds of herb compound targets are described. Figure 1
shows the network of four herb-active compounds-target genes. In each sub-image, from
the inside to the outside, there are herbs, active compounds, ingredients of the active
compound and associated target genes. These active compounds and their ingredients
are represented by the same color. In Figure 1a, the blue circle stands for herb KXS.
The red triangle, green triangle, and yellow triangle stand for KXS’ active compounds
Poria Cocos(Schw.) Wolf. (PCW), Panax Ginseng C. A. Mey. (PGCAM), Acoritataninowii
Rhizoma (AR), respectively. The red hexagon, green hexagon, and yellow hexagon stand
for ingredients of PCW, ingredients of PGCAM, ingredients of AR, respectively. Blue
diamond stands for target genes associated with these ingredients. In Figure 1b, blue
circle stands for herb DGSYS. Red triangle, purple triangle, navy blue triangle, wathet blue
triangle, green triangle, yellow triangle stand for DGSYS’ active compounds Chuanxiong
Rhizoma (CXR), Paeoniae Radix Alba (PRA), Angelicae Sinensis Radix (ASR), PCW, Alisma
Orientale(Sam.) Juz. (AOJ), Atractylodes Macrocephala Koidz. (AMK), respectively. Red
hexagon, purple hexagon, navy blue hexagon, wathet blue hexagon, green hexagon, yellow
hexagon stand for ingredients of CXR, ingredients of PRA, ingredients of ASR, ingredients
of PCW, ingredients of AOJ, and ingredients of AMK, respectively. Blue diamond stands
for target genes. In Figure 1C, blue circle stands for herb YGS. Red triangle, purple
triangle, navy blue triangle, wathet blue triangle, green triangle, and yellow triangle
stands for YGS’ active compounds AMK, CXR, ASR, PCW, Radix Bupleuri (RB), Uncariae
Ramulus Cumuncis (URC), respectively. Red hexagon, purple hexagon, navy blue hexagon,
wathet blue hexagon, green hexagon, and yellow hexagon stand for ingredients of AMK,
ingredients of CXR, ingredients of ASR, ingredients of PCW, ingredients of RB, ingredients
of URC, respectively. Blue diamond stand for target genes. In Figure 1d, blue circle stands
for herb YQTYT. Red triangle, purple triangle, navy blue triangle, wathet blue triangle,
green triangle, yellow triangle, and orange triangle stands for YQTYT’ active compounds
Hedysarum Multijugum Maxim. (HMM), CXR, ASR, PGCAM, Radix Salviae (RS), Radix
Paeoniae Rubra (RPR), Codonopsis Radix (CR), respectively. Red hexagon, purple hexagon,
navy blue hexagon, wathet blue hexagon, green hexagon, yellow hexagon, and orange
hexagon stand for ingredients of HMM, ingredients of CXR, ingredients of ASR, ingredients
of PGCAM, ingredients of RS, ingredients of RPR, ingredients of CR, respectively. Blue
diamond stands for target genes.
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Figure 1. (a) KXS-compounds-target genes network. (b) DYSYS-compounds-target genes network.
(c) YGS-compounds-target genes network. (d) YQTYT-compounds-target genes network. Blue circle
stands for herbs; triangles stand for active compounds; hexagons stand for ingredients; blue diamond
stands for target genes.

3.1.2. AD Gene Network Construction

First, we collect AD-associated genes from NCBI database, OMIM database, and TTD
database, and eliminated data duplications. Then 859 AD-associated genes are obtained.
A disease gene network was constructed using the STRING database (input the above
genes and select Homo sapiens, Figure 2a), which consists of 746 genes and 10,920 edges.
In addition, another PPI network is obtained from the IntAct database. Then, an initial
integrated network, which includes 4210 genes and 21,664 edges, is generated by merging
the above interaction networks.
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1 

(a)

（b）

Figure 2. (a) The AD disease gene network includes 746 genes and 10,920 edges. (b) The integrated network includes 2017
genes and 85,152 edges.
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Similar to the method used in reference [9], considering the expression status of
13,416 human gene products and containing 79 human tissues in the GEO database
(GSE1133), the PCC value between genes is calculated. A pair of genes are linked by
an edge if the PCC value is larger than 0.5. Therefore, the gene co-expression network
is constructed. Then, we select those genes and edges that appeared in two biological
networks (an initial integrated network and a gene co-expression network). The informa-
tion of AD pathway is added to the integrated network. Pathway datasets are obtained
from the database of KEGG and another AD network generated based on three mini
metabolic networks [34]. A pair of genes are linked by an edge if they co-exist in any
pathway or network. Finally, a multi-database integrated network includes 2017 genes, and
85,152 edges is obtained (Figure 2b). In Figure 2, nodes stand for AD-associated genes from
multiple databases, edge of a pair of nodes stand for interaction between nodes.

3.2. Prediction of Essential Genes based on Modular Network
3.2.1. Module Partition

The integrated network is divided into modules by Cluster one, MCL, Glay and
MCODE. The gene network modules under different division methods are obtained, the
corresponding network entropy is calculated (Table 2).

Table 2. Division results.

Division Methods Number of Modules Entropy Value

MCODE 18 6.05
MCL 89 6.19
Glay 17 6.20

Cluster one 89 6.22

The AD network is divided into 18 modules by MCODE method, its network entropy
is 6.05, which is the lowest. Therefore, MCODE is the optional division method. The score
of each module based on MCODE method is defined as the product of the density of the
subgraph and the number of vertices (genes) in the sub-graph (DC× |V|), which reflects
the density of each node in the modules [12]. The number of genes and score of each
module are shown in Table 3 (ignoring a single gene).

Table 3. MCODE obtains the division and score of each module.

Module The Number of Genes Module Score Module The Number of Genes Module Score

1 400 400.000 10 6 3.200
2 38 6.585 11 3 3.000
3 7 5.667 12 3 3.000
4 5 4.500 13 3 3.000
5 5 4.000 14 3 3.000
6 10 3.778 15 3 3.000
7 15 3.571 16 3 3.000
8 4 3337 17 20 2.947
9 7 3.333 18 4 2.667

3.2.2. Calculation of Association Indices

In order to explore the correlation between the original network and the divided
module network in biological function, KEGG enrichment analysis is carried out on
the original AD network and module networks. The final results show that there are
146 pathways involved in the original AD network. These modules, divided by MCODE
method, cover 136 pathways with a coverage rate of 93.16%. It shows that these divided
modules can express most of the functions of the original AD network.
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We count pathway numbers of each module by enrichment analysis, intersection
numbers of pathway numbers between original network and each module, union numbers
of pathway numbers between original network and each module, the gene proportion of
each module in original network, shown in Table 4. Some modules (12, 14 and 18) are
enriched to 0 pathways, so they are ignored. Module 1 contains 400 genes, accounting for
20.04% of the total number of genes, and it can be enriched to 132 pathways, 128 of them
are consistent with the original network pathways.

Table 4. Pathway results of each module.

Module The Number
of Pathways Intersection Union Gene

Proportion Module The Number
of Pathways Intersection Union Gene

Proportion

1 132 128 150 20.04% 9 2 0 146 0.35%
2 29 29 146 1.90% 10 5 5 148 0.30%
3 2 2 146 0.35% 11 1 0 146 0.15%
4 6 5 147 0.25% 13 2 0 147 0.15%
5 1 1 146 0.25% 15 2 0 148 0.15%
6 7 6 147 0.50% 16 1 1 146 0.15%
7 9 4 147 0.75% 17 2 2 146 1.00%
8 2 2 151 0.20%

Some association indices (Jaccard, Simpson, Geometry, Cosine and PCC), are calcu-
lated shown in Figure 3. Module 1 is key module in the AD gene network.
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3.2.3. Prediction of Essential Genes

Essential genes can perform their function to a greater extent than other genes in
the disease gene network. Module 1 is most representative in AD division modules by
MCODE. We use 11 network ranking indexes in Cyto-Hubba to sort the genes in module 1
and select the top 100 genes in each index. Those genes that appear more than six times in
the top 100 genes are selected as essential genes of AD. Table 5 shows the repetition times
of the genes in module 1 by 11 algorithms.
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Table 5. Essential genes of AD.

Gene Repetitions Gene Repetitions Gene Repetitions Gene Repetitions

ABCA1 10 NFKB 10 WNT9A 10 WNT3 9
ACHE 10 NMDAR 10 WNT9B 10 WNT4 9
CASP6 10 PKC 10 XBP1 10 APBB1 8
CHAT 10 PP2A 10 ADAM10 9 APH1B 7
CTFA 10 PRPC 10 APP 9 APOE 7
CYLD 10 PSD95 10 BACE1 9 BECN1 7
DAG1 10 SIRT1 10 CHRM5 9 CALM1 7
DR6 10 SPS 10 GRIN1 9 CAPN2 7
EETS 10 UCHL1 10 IDE 9 CDK5 7

EPHB2 10 UQCRB 10 LRP1 9 CHRM1 7
FYN 10 VLDLR 10 MAPT 9 CHRM3 7

GRIN3A 10 WNT1 10 PSEN1 9 CYCS 7
HPETE 10 WNT3A 10 PSEN2 9 DVL2 7
HSPG 10 WNT5A 10 RELA 9 GNAQ 7
IKKA 10 WNT5B 10 TNF 9 GRIN2A 7
IKKB 10 WNT6 10 WNT10B 9 GRIN2B 7

INSP3R 10 WNT7A 10 WNT11 9 GRM5 7
LDLR 10 WNT7B 10 WNT16 9 GSK3B 7

LILRB2 10 WNT8A 10 WNT2 9 HRAS 7
MAPK 10 WNT8B 10 WNT2B 9 IKBKB 7

These genes contain many known AD disease genes: APP, ACHE, ADAM10, APOE,
CHRM1, CHRM3, PSEN1, PSEN2 and so on. In addition, CHAT, DR6, NFKB, BACE1, IDE,
PP2A, GSK3B appear in the metabolic network of AD [34] (Table 5), which shows that module
1 is a key module and can be used to predict essential genes instead of the original network.

3.3. Integrated Algorithm for Predicting Essential Genes

The posterior probability of candidate genes in AD disease network are calculated by
an integrated algorithm. Table 6 shows the relevant information of the top 30 candidate
genes (2017 candidate genes in total).

Table 6. Information of the top 30 candidate genes by integrated algorithm.

Gene Posterior Probability Score Gene Posterior Probability Score

APP 0.9998 1 GRIN1 0.9927 0.992481
ADAM10 0.9991 0.999499 CDK5R1 0.9926 0.99198
MAPK1 0.9989 0.998997 CDK5 0.9919 0.991479
MAPT 0.9986 0.998496 MAP2K1 0.9918 0.990977
RELA 0.9956 0.997995 AKT2 0.9915 0.990476
ACHE 0.9955 0.997494 MTOR 0.9915 0.990476

MAPK10 0.9952 0.996992 GRIN2C 0.9913 0.989474
APOE 0.995 0.996491 SIRT1 0.9913 0.989474
KIF5A 0.9945 0.99599 CALM1 0.9912 0.988471
NFKB1 0.9944 0.995489 CACNA1D 0.9911 0.98797

GRIN2A 0.994 0.994987 ITPR1 0.9911 0.98797
GNAQ 0.9937 0.994486 ATP2A2 0.991 0.986967
HRAS 0.9935 0.993985 CASP7 0.991 0.986967

GRIN2B 0.9933 0.993484 DVL1 0.991 0.986967
APBB1 0.9929 0.992982 INS 0.991 0.986967

Table 6 shows that the known AD genes APP, ADAM10, ACHE and APOE are in the
prediction results. Further, the receiver operating characteristic (ROC) analysis is employed
as the evaluation criteria to confirm the performance advantage of Integrated algorithm by
varying a threshold for determining positives. The first positive control genes are those
known AD disease genes from the pathway of KEGG (hsa05010: Alzheimer’s disease),
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the negative control genes are selected from leukemia genes and diabetes genes that do
not associate with AD genes in an integrated network. The relationship between the true
positive rate (TPR) and the false positive rate (FPR) is shown with a blue line in Figure 4;
the area under the ROC curve (AUC) is 0.984. The second positive control genes are those
disease genes from the AD network generated based on three mini metabolic networks [34],
the negative control genes are selected from leukemia genes and diabetes genes that do not
associate with AD genes in an integrated network, the relationship between TPR and FPR
is shown with a green line in Figure 4, the AUC is 0.916. These results demonstrate that
Integrated algorithm can identify essential genes of AD.
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3.4. Screening of Essential Genes of AD

The essential genes are obtained by using the modular network algorithm and inte-
grated algorithm. The common genes between the above two algorithms as final essential
genes of AD (Table 7).
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Table 7. Predicted essential genes for AD.

Gene Gene Gene Gene Gene

ACHE DVL2 ITPR1 NOX1 WNT11
ADAM10 EPHB2 KLC1 NOX4 WNT16

APBB1 GNAQ LILRB2 NRAS WNT2
APH1B GRIN1 LRP1 PPP3R1 WNT2B
APOE GRIN2A MAP2K1 PSEN1 WNT3
APP GRIN2B MAP2K2 PTGS2 WNT3A

BACE1 GSK3B MAPK1 RELA WNT4
CALM1 HRAS MAPK10 SIRT1 WNT5A
CDK5 IDE MAPK3 UCHL1 WNT5B

CHRM1 IKBKB MAPK9 UQCRB WNT6
CHRM3 IL1A MAPT WNT1 WNT7A

CYCS IL1B NOS2 WNT10B XBP1

3.5. Herb-Active Compounds-Target Genes-Essential Genes Network

There are many similar genes between the target genes of the herb compound and
the essential genes of AD (Table 8), which indicates that herbs may act on compound
targets to regulate disease-related proteins indirectly, whereas herbs can act on these
AD proteins directly. AD’s herb (KXS, DYSYS, YGS, YQTYT)-active compound-active
compound targets-AD gene network and similar genes are visualized (Figure 5).

Table 8. Information of similar genes.

Herb Similar Genes

KXS ACHE, CHRM1, CHRM3, GSK3B, IKBKB, IL1B, NOS2, PTGS2, RELA

DGYSY ACHE, CHRM1, CHRM3, GRIN1, GRIN2A, GRIN2B, GSK3B, IKBKB,
IL1B, MAPK1, MAPK10, NOS2, PTGS2, RELA

YGS ACHE, BACE1, CHRM1, CHRM3, GRIN1, GRIN2A, GRIN2B,
GSK3B, IKBKB, IL1A, IL1B, MAPK1, MAPK10, NOS2, PTGS2, RELA

YQTYT ACHE, APP, CHRM1, CHRM3, CYCS, GRIN1, GRIN2B, GSK3B,
IKBKB, IL1A, IL1B, MAPK1, MAPK10, NOS2, PTGS2, RELA, SIRT1,

3.6. Enrichment Analysis of Herb Compound Target

The Gene Ontology (GO) enrichment analysis (including Biological Process (BP), Cell
Component (CC), Molecular Function (MF)) and KEGG pathway enrichment analysis are
described in Supplementary Tables S3–S6, these similar genes can be enriched into AD-
associated pathways, which indicates that these similar genes are significantly associated
with a response to AD.

We count the number of similar genes between the target genes of the herb compound
and essential genes of AD, the number of GO enrichment analysis items and the number of
KEGG pathway enrichment analysis items, as shown in Figure 6.
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(c) YGS-compounds-target genes-AD gene network. (d) YQTYT-compounds-target genes-AD gene network. Blue diamond
stands for target genes of herb compounds. Green circles stand for similar genes between target genes of herb compounds
and essential genes of AD. Blue rectangles stand for genes of AD.
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We can see from Figure 6 that YQTYT achieves the best performance in GO enrichment
analysis items and KEGG pathway enrichment analysis items, while the number of similar
genes between YQTYT and essential genes of AD is 17, which indicates that YQTYT is the
best herb in four kinds of AD herbs, and YQTYT may have a better therapeutic effect on AD.

Furthermore, we count the number of similar genes between the target genes of
YQTYT compound and genes of AD pathway in the KEGG (hsa05010: Alzheimer’s disease),
compound HMM has the largest number of similar genes, followed by compound RS
(Figure 7), so HMM and RS are both contributive to the treatment of AD.
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4. Conclusions

Currently, herbs have an effect on some diseases such as AD, nephropathy. Herbs
are more systematic and holistic. However, some studies are still applying the traditional
research idea, “one drug-one target-one illness”, which ignores the multi-target and multi-
component characteristic of herbs. In this paper, the gene network of AD is constructed
by considering some factors such as gene co-expression and metabolic relationship. The
modular network algorithm, the logical regression algorithm under Bayesian framework
and maximum likelihood estimation, which simplify the gene network and find essential
genes highly associated with the AD. By using the idea of network pharmacology, YQTYT
is the best herb in four kinds of AD herbs, and YQTYT may have a better therapeutic effect
on AD. In addition, HMM and RS are selected as the better herb compounds for AD based
on gene function enrichment analysis. Which means the herb compounds may play a major
role in the treatment of AD.

Therefore, network pharmacology, network science, machine learning and statistical
strategy are expected to find multi-target herb and herb components for the treatment of
AD. Theoretical knowledge is provided for the follow-up study of herbs in the treatment of
AD, and a feasible scheme is provided for the study of “drug-target-disease”.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/e23101365/s1, Table S1: Herb compounds; Table S2: Information of herb compound target
genes; Table S3-1: KEGG Enrichment analysis of similar genes between target genes of KXS compound
and essential genes of AD, Table S3-2: GO Enrichment analysis (BP) of similar genes between target
genes of KXS compound and essential genes of AD, Table S3-3: GO Enrichment analysis (CC) of
similar genes between target genes of KXS compound and essential genes of AD, Table S3-4: GO
Enrichment analysis (MF) of similar genes between target genes of KXS compound and essential
genes of AD; Table S4-1: KEGG Enrichment analysis of similar genes between target genes of DGSYS
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compound and essential genes of AD, Table S4-2: GO Enrichment analysis (BP) of similar genes
between target genes of DGSYS compound and essential genes of AD, Table S4-3: GO Enrichment
analysis (CC) of similar genes between target genes of DGSYS compound and essential genes of AD,
Table S4-4: GO Enrichment analysis (MF) of similar genes between target genes of DGSYS compound
and essential genes of AD; Table S5-1: KEGG Enrichment analysis of similar genes between target
genes of YGS compound and essential genes of AD, Table S5-2: GO Enrichment analysis (BP) of
similar genes between target genes of YGS compound and essential genes of AD, Table S5-3: GO
Enrichment analysis (CC) of similar genes between target genes of YGS compound and essential
genes of AD, Table S5-4: GO Enrichment analysis (MF) of similar genes between target genes of
YGS compound and essential genes of AD; Table S6-1: KEGG Enrichment analysis of similar genes
between target genes of YQTYT compound and essential genes of AD, Table S6-2: GO Enrichment
analysis (BP) of similar genes between target genes of YQTYT compound and essential genes of AD,
Table S6-3: GO Enrichment analysis (CC) of similar genes between target genes of YQTYT compound
and essential genes of AD, Table S6-4: GO Enrichment analysis (MF) of similar genes between target
genes of YQTYT compound and essential genes of AD.
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Abbreviations

AD Alzheimer’s disease
MCL Markov Clustering
MCODE Molecular Complex Detection
Glay Community Clustering
PPI protein-protein interaction
PCC Pearson Correlation Coefficient
TCMSP Traditional Chinese Medicine Systems Pharmacology
NCBI National Center for Biotechnology Information
OMIM Online Mendelian Inheritance in Man
TTD Therapeutic Target Database
IntAct IntAct Molecular Interaction Database
GEO Gene Expression Omnibus
KEGG Kyoto Encyclopedia of Genes and Genomes
CORUM Comprehensive Resource of Mammalian protein complexes
KXS Kaixinsan (herb)
DGSYS Dangguishaoyaosan (herb)
YGS Yigansan (herb)
YQTYT Yiqitongyutang (herb)
PGCAM Panax Ginseng C. A. Mey. (compound of KXS and YQTYT)
AR Acoritataninowii Rhizoma (compound of KXS)
PCW Poria Cocos(Schw.) Wolf. (compound of KXS, DGSYS and YGS)
ASR Angelicae Sinensis Radix (compound of DGSYS, YGS and YQTYT)
PRA Paeoniae Radix Alba (compound of DGSYS)
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CXR Chuanxiong Rhizoma (compound of DGSYS, YGS and YQTYT)
AMK Atractylodes Macrocephala Koidz. (compound of DGSYS and YGS)
AOJ Alisma Orientale (Sam.) Juz. (compound of DGSYS)
RB Radix Bupleuri (compound of YGS)
URC Uncariae Ramulus Cumuncis (compound of YGS)
RS Radix Salviae (compound of YQTYT)
CR Codonopsis Radix (compound of YQTYT)
RPR Radix Paeoniae Rubra (compound of YQTYT)
HMM Hedysarum Multijugum Maxim. (compound of YQTYT)
ROC Receiver Operating Characteristic
AUC Area Under Curve
TPR True Positive Rate
FPR False Positive Rate
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