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Abstract: This paper is devoted to study the existence of solutions and their regularity in the
p(t)–Laplacian Dirichlet problem on a bounded time scale. First, we prove a lemma of du Bois–
Reymond type in time-scale settings. Then, using direct variational methods and the mountain
pass methodology, we present several sufficient conditions for the existence of solutions to the
Dirichlet problem.
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1. Introduction

Variational methods and critical point theory have been very successful in obtaining
existence and multiplicity results for nonlinear ordinary or partial differential equations,
as well as for nonlinear difference equations submitted to various boundary conditions.
See, for example, [1–5] and their references.

The aim of this paper is to use those methodologies for the study of the Dirichlet
problem for a dynamic equation on a bounded time scale T involving the p(t)–Laplacian,{

−∆p(t)u(t) := − ∆
∆t

(
|∆wu(t)|p(t)−2∆wu(t)

)
= f

(
t, uσ(t)

)
, t ∈ T

u(a) = u(b) = 0
. (1)

In this equation, ∆w denotes a weak derivative operator defined in terms of the ∆–
integral on a time scale (see Section 2 for precise definitions), p : T→ (1, ∞) is a measurable
and essentially bounded function with an essential lower bound larger than one, and f is a
∆–Carathéodory function.

A partial motivation is the paper of Xian-Ling Fan and Qi-Hu Zhang [6] dealing
with a similar problem in the case of a partial differential equation. Such equations are
known to describe mathematical models of various phenomena arising in the study of
elastic mechanics [7] or image restoration [8]. Early variational approaches on Dirichlet
problems with p–Laplacian are quoted in [9], extensions to p(x)–Laplacian are given
in [6,10], and some generalizations (anisotropic problems) are described in the paper [4].
Since the research was conducted in discrete and continuous settings separately, it seems
interesting to demonstrate that a sort of unification is also possible with the use of a time-
scale notion considered with some type of measure that has not been vastly exploited
but which appears indispensable. For boundary value problems on time scales, one can
consult [11]. Since we take the definition of the ∆–measure from [11], it is necessary to
provide additional proof regarding the absolutely continuity of functions defined over
subsets containing the maximum of the bounded time scale T.
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The underlying Lebesgue and Sobolev spaces with variable exponents, where the
variational approach takes place, are defined in Section 2, where their required properties
are proved. The first paper on the variable exponent Lebesgue and Sobolev spaces Lp(x)(Ω)
and Wm,p(x)(Ω), Ω ⊂ Rn is due to Kováčik and Rákosník [12] and was developed in [13].
Some earlier papers on the Lebesgue and Sobolev spaces on time scales are [11,14], and we
refer to [15] for further basic information on the variable exponent Lebesgue and Sobolev
spaces on time scales.

The variational treatment of problem (1) requires proving a so-called du Bois–Reymond
Lemma in this new frame to make the link between the critical points of the action functional
and the solutions of the boundary value problem. This is done in Section 3 (Lemma 3). It also
requires a careful study of the differentiability and other properties of the action functional. This
is the object of Section 4.

We are now ready to apply in Section 5 the direct method of the calculus of variations
to prove the existence of a solution to problem (1) when F(t, u) :=

∫ t
0 f (s, u)∆s is bounded

above by an expression of the form c1|u|+ c2
|u|β

β + c3, where the ci are positive constants,
c2 is sufficiently small and β ∈ (1, ess infT p] (Theorem 2). This is the essence of Theorem 2.

When F(t, u) grows faster than ess supT p at infinity, the action functional need not
have a minimum, but the simplest of the minimax method, namely the mountain pass
lemma, may be used to prove the existence of a nontrivial solution to problem (1) when
f (t, 0) = 0 and f (t, u) is sufficiently ‘flat’ in u near u = 0. This is done in Theorem 4, where
the growth of F for large u is governed by a suitable Ambrosetti–Rabinowitz condition and
f (t, u)→ 0 when u→ 0 faster than |u|ess supT p−1.

2. Variable Exponent Lebesgue and Sobolev Spaces on Time Scales

In this section, we recall some basic facts concerning functions defined on time scales
(see [11,14,16,17]) and discuss the variable exponent Lebesgue and Sobolev spaces on time
scales (see [15]).

Let T be a bounded time scale. We define

a = inf{s ∈ T}, b = sup{s ∈ T}. (2)

Since T is bounded, a, b ∈ T. Define the forward jump operator σ : T→ T by

σ(t) =
{

inf{s ∈ T : s > t} for t ∈ T \ {b}
b for t = b

. (3)

If σ(t) > t, then the point t ∈ T is said to be right-scattered. If σ(t) = t, then t ∈ T is
called a right-dense point. The backward jump operator $ : T→ T is as follows:

$(t) =
{

sup{s ∈ T : s < t} for t ∈ T \ {a}
a for t = a

. (4)

If $(t) < t, then we say that the point t ∈ T is left-scattered. If $(t) = t, the point t ∈ T
is called left-dense.

Let RT = {t ∈ T : t < σ(t)} and u : T → R. We define the step interpolation
û : [a, b]→ R as

û(t) =
{

u(t) for t ∈ T
u(s) for t ∈ (s, σ(s)), s ∈ RT

. (5)

The function û extends u to [a, b], and it enables us to establish equivalence between
Lebesgue ∆–integrable and integrable functions. Function u : T → R is ∆−measurable
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(∆−integrable) if û : [a, b]→ R is measurable (integrable) on [a, b] in the Lebesgue sense.
We say that u ∈ L1(T) if ∫

T
u(t)∆t =

∫
[a,b]

û(t)dt < ∞.

L1(T) is a Banach space with the norm

‖u‖L1(T) =
∫
T

u(t)∆t.

A subset A ⊂ T is ∆−measurable if its characteristic function χA : T → R is ∆–
measurable. We define the notion of ∆−measure µ∆(A) of A ⊂ T by

µ∆(A) =
∫
T

χA(t)∆t =
∫
[a,b]

χ̂A(t)dt,

where χ̂A : [a, b] → R is the extension (see (5)) of the characteristic function χA : T→ R.
The subset A ⊂ T is called ∆−null set if µ∆(A) = 0.

For each t0 ∈ T \ {b}, the single-point set {t0} is ∆−measurable and µ∆({t0}) =
σ(t0)− t0. For every right-scattered point t0 ∈ T, it holds that σ(t0) > t0. This implies that
µ∆({t0}) > 0 for every t0 ∈ RT. In particular, if T is a discrete time scale, then µ∆({t}) > 0
for all t ∈ T \ {b}. Moreover, we know that µ∆({b}) =

∫
{b} 1∆t =

∫
[a,b] 1χ̂{b}(t)dt =

µL({b}) = 0, where b is given in (2) (see [11]) and µL denotes the classical Lebesgue
measure. Hence, all subsets of the time scale T containing b are of a finite ∆−measure, and
this is the main difference from the approach given in [14].

Let u : T → R. The continuity of u is defined in the usual manner. A function u is
rd-continuous if it is continuous at every right-dense point and if the left-sided limit exists
in every left-dense point. Denote by Crd(T) (respectively C(T)) the set of rd–continuous
(respectively continuous) functions u : T→ R. With the norm

‖u‖T = sup
t∈T
|u(t)|,

these spaces are Banach spaces.
We denote uσ(t) = u(σ(t)) for t ∈ T, where σ is defined in (3). If u ∈ C(T), then

uσ ∈ Crd(T). Moreover, one has

‖uσ‖T ≤ ‖u‖T. (6)

Let us denote Tκ = T \ ($(supT), supT], where $ : T → T is defined in (4). In this
way, we remove from the time scale T its left-scattered maximum, when necessary. Alter-
natively, it can be written as

Tκ =

{
T if b is not an isolated point,
T \ {b} if b is an isolated point.

We recall that u : T→ R is ∆−differentiable at t ∈ Tκ if there exists a finite number
f ∆(t) with the property that given any ε > 0, there is a neighborhood U ⊂ T of t such that

|uσ(t)− u(s)− u∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|

for all s ∈ U. If u is ∆–differentiable at every t ∈ Tκ , then u is said to be ∆–differentiable.
Moreover, if u is ∆–differentiable at t, then u is continuous at t, and so, if u is ∆–differentiable
then u ∈ C(T). Denote by C1

rd(T) the set of functions u ∈ C(T), which are ∆−differentiable
on Tκ , and their ∆−derivatives are rd–continuous on Tκ with the norm

‖u‖1
T = ‖u‖T + ‖u∆‖Tκ .
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The space C1
rd(T) is a Banach space.

We say that v : Tκ → R is ∆−weak derivative of u if∫
T
(u · ϕ∆)(s)∆s = −

∫
T
(v · ϕσ)(s)∆s

for every ϕ ∈ C1
0,rd(T), where C1

0,rd(T) = {u ∈ C1
rd(T) : u(a) = u(b) = 0}. We denote

v = ∆wu.
Given a function u : T→ R, we consider an auxiliary function which extends u to the

real interval [a, b], u : [a, b]→ R defined as

u(t) =

{
u(t) for t ∈ T
u(s) + u(σ(s))−u(s)

µ(s) (t− s) for t ∈ (s, σ(s)), s ∈ RT
. (7)

Lemma 1. The following statements are equivalent

(i) u maps every ∆−null subset of T into a null set;
(ii) u maps every null subset of [a, b] into a null set.

Proof. From [17], we know that conditions (i) and (ii) are equivalent in the case when
the point b defined in (2) does not contain ∆−null subsets of time scale T. Therefore,
since we adopted the approach to the ∆−measure from [11], it is sufficient to show that
µL(u({b})) = µL(u({b})). Indeed, we obtain u(b) = u(b). Consequently, u({b}) is a null
set if and only if u({b}) is a null set.

A partition of T is a finite ordered subset P = {x0, x1, ..., xn−1, xn} ⊂ T, where
a = x0 < x1 < ... < xn−1 < xn = b, with a, b as in (2). For u : T → R and a partition
P = {x0, x1, ..., xn−1, xn} ⊂ T, we define

V(P, u) =
n

∑
k=1
|u(xk)− u(xk−1)|.

The total variation of u on T is given by Vb
a = sup{V(P, u) : P partition of T}, Vb

a ∈
[0, ∞]. If Vb

a ∈ R, we say that u is a function of bounded variation on T.
A direct consequence of the definition of u is the following result.

Proposition 1. Ref. [17]. Let u : T→ R and u : [a, b]→ R be the extension of u to [a, b] defined
in (7). Then, u is of bounded variation on T if and only if u is of bounded variation on [a, b].

A function u : T→ R is said to be absolutely continuous if for every ε > 0 there exists
a δ > 0 such that if {[ak, bk] ∩T}n

k=1, with ak, bk ∈ T, is a finite pairwise disjoint family of
subintervals of T satisfying ∑n

k=1(bk − ak) < δ, then ∑n
k=1 |u(bk)− u(ak)| < ε. We denote

by AC(T) the set of all absolutely continous functions over T.
The following results establish a criterion for absolute continuity on the time scale T.

Proposition 2. Ref. [17]. A function u : T→ R is absolutely continuous on T if the following
conditions hold true

(i) u is continuous and of bounded variation on T;
(ii) u maps every ∆–null subset of T into a null set.

Proposition 3. Ref. [17]. Function u : T→ R is absolutely continuous on T if and only if the
extension function u defined in (7) is absolutely continuous on [a, b].

Now, we can formulate the Fundamental Theorem of Calculus.
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Proposition 4. Ref. [17]. A function u : T→ R is absolutely continuous on T if and only if the
following conditions are satisfied

(i) u is ∆–differentiable ∆–a.e. on T and u∆ ∈ L1(T);
(ii) The equality u(t) = u(a) +

∫ t
a u∆(s)∆s holds for every t ∈ T.

We call f : T×Rn → Rn a ∆–Carathéodory function if:

(i) y 7→ f (s, y) is continuous for ∆−a.a. s ∈ T;
(ii) s 7→ f (s, y) ∆−measurable for all y ∈ Rn.

We call f an L1–Carathéodory function if f is ∆–Carathéodory function and

(iii) for each d > 0 there exists a nonnegative fd ∈ L1(T) such that ‖y‖Rn ≤ d implies
| f (s, y)| ≤ fd(s) for ∆−a.a. s ∈ T.

Consider a measurable function p : T→ (1, ∞) and assume that it is bounded, i.e.,

1 < p− := ess inf
t∈T

p(t) ≤ ess sup
t∈T

p(t) =: p+ < ∞,

and we write p ∈ L∞
+(T).

By M(T), we denote the set of all equivalence classes of real ∆–measurable functions
defined on T being equal ∆–a.e. on T. The variable exponent Lebesgue space Lp(t)(T)
consists of all measurable functions u ∈ M(T) for which the ρp(·)–modular

ρp(·)(u) =
∫
T
|u(t)|p(t)∆t (8)

is finite, i.e.,

Lp(t)(T) =
{

u ∈ M(T) :
∫
T
|u(t)|p(t)∆t < ∞

}
.

The Luxemburg-type norm on this space is defined as

‖u‖Lp(t)(T) = inf
{

λ > 0 : ρp(t)
( u

λ

)
≤ 1

}
.

Equipped with this norm, Lp(t)(T) is separable and reflexive if p ∈ L∞
+(T).

For estimates, one can use the following inequalities.

Proposition 5. Ref. [15]. Let v, w ∈ Lp(t)(T). Then, for ∆−a.a. t ∈ T,

(a) |v(t) + w(t)|p(t) ≤ 2p+−1
(
|v(t)|p(t) + |w(t)|p(t)

)
;

(b) |v(t)− w(t)|p(t) ≤ 2p+−1
(
|v(t)|p(t) + |w(t)|p(t)

)
.

Proposition 6. Ref. [15]. Let u ∈ Lp(t)(T), u 6= θ. Then,

(a) ‖u‖Lp(t)(T) < 1 (= 1, > 1)⇔ ρ(u) < 1 (= 1, > 1);

(b) If ‖u‖Lp(t)(T) > 1, then ‖u‖p−

Lp(t)(T)
≤ ρp(t)(u) ≤ ‖u‖

p+

Lp(t)(T)
;

(c) If ‖u‖Lp(t)(T) < 1, then ‖u‖p+

Lp(t)(T)
≤ ρp(t)(u) ≤ ‖u‖

p−

Lp(t)(T)
.

Proposition 7. There exist functions f1, f2 : [0, ∞) → [0, ∞), which are continuous, strongly
increasing, f1(0) = f2(0) = 0 and lim

t→∞
f1(t) = lim

t→∞
f2(t) = ∞ such that, for all u ∈ Lp(t)(T),

f1(‖u‖Lp(t)(T))‖u‖Lp(t)(T) ≤ ρp(·)(u) ≤ f2(‖u‖Lp(t)(T))‖u‖Lp(t)(T).
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Note that these inequalities imply the equivalence of convergence in norm and in
modular.

Proposition 8. Ref. [15]. Let u ∈ Lp(t)(T) and uk ∈ Lp(t)(T) for k ∈ N. Then,

lim
k→∞
‖uk − u‖ρ = 0 if and only if lim

k→∞
ρp(·)((uk − u)) = 0.

Lemma 2. Ref. [15]. Let (uk)k∈N ⊂ Lp(t)(T) be a sequence convergent to a certain function u ∈
Lp(t)(T). Then, there exists a subsequence

(
ukl

)
l∈N ⊂ Lp(t)(T) such that liml→∞ ukl

(t) = u(t)
for ∆−a.a. t ∈ T and there exists a function g ∈ Lp(t)(T) such that |ukl

(t)| ≤ g(t) for l ∈ N and
∆−a.a. t ∈ T.

Proposition 9. Ref. [15]. If p1, p2 ∈ L∞
+(T) and p1(t) ≤ p2(t) for ∆−a.a. t ∈ T, then the

embedding Lp2(t)(T) ↪→ Lp1(t)(T) is continuous.

Let p, q ∈ L∞
+(T) and p, q be conjugative on the time scale T, e.g.,

1
p(t)

+
1

q(t)
= 1 (9)

for ∆−a.a t ∈ T. The space Lq(t)(T) is defined as

Lq(t)(T) =
{

u ∈ M(T) :
∫
T

1
q(t)
|u(t)|q(t)∆t < ∞

}
.

Proposition 10. Ref. [15]. For every u ∈ Lp(t)(T) and v ∈ Lq(t)(T), the following Hölder
inequality holds: ∫

T
|u(t)v(t)|∆t ≤

(
1

p−
+

1
q−

)
‖u‖Lp(t)(T)‖v‖Lq(t)(T). (10)

We define the variable exponent Sobolev space on time scales by

W1,p(t)(T) =
{

u ∈ Lp(t)(T) : ∆wu ∈ Lp(t)(T)
}

equipped with the norm

‖u‖W1,p(t)(T) = ‖u‖Lp(t)(T) + ‖∆
wu‖Lp(t)(T).

Then,
(

W1,p(t)(T), ‖ · ‖W1,p(t)(T)

)
is separable and reflexive if p ∈ L∞

+(T).

We denote by C∞
rd(T) (respectively C∞(T)) the set of continuous functions over T

which are of n times rd-continuously (respectively continuously) ∆–differentiable on Tκ

for any n ∈ N. We define W1,p(t)
0 (T) as the closure of C∞

0,rd(T) in W1,p(t)(T), where

C∞
0,rd(T) = {u ∈ C∞

rd(T) : u(a) = u(b) = 0}.

Remark 1. In general, C∞
0 (Ω), Ω ⊂ Rn, may not be dense in W1,p(x)(Ω). It is true under some

additional assumption upon p (see [7,18]). However, it is known that if p− ≥ n then, C∞
0 (Ω) is

dense in W1,p(x)(Ω) and

W1,p(x)
0 (Ω) = W1,p(x)(Ω) ∩W1,1

0 (Ω).
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In the classical one-dimensional situation of W1,p(t)(I) with I = (a, b), each element u has a
continuous representative u (see (7)) in its equivalence class for equality ∆−a.a., and W1,p(t)

0 (I)
can be characterized as the set of u ∈W1,p(t)(I) such that u(a) = 0 = u(b).

Recall that there exists C > 0, such that ‖u‖Lp(t)(T) ≤ C‖∆wu‖Lp(t)(T) for u ∈W1,p(t)
0 (T).

Consequently, one can consider the space W1,p(t)
0 (T) with the following equivalent norm

‖u‖
W1,p(t)

0 (T)
= ‖∆wu‖Lp(t)(T). (11)

It is known that the following continuous embeddings hold

C(T) ↪→ Crd(T) ↪→ Lp+(T) ↪→ Lp(t)(T) ↪→ Lp−(T) (12)

and

W1,p+(T) ↪→W1,p(t)(T) ↪→W1,p−(T).

Moreover, we recall that the following embeddings

W1,p(t)(T) ↪→ C(T), and W1,p(t)(T) ↪→ Lp+(T) (13)

are compact.
Since any element of W1,p−(T) is absolutely continuous (see [14]), we know that

the same holds for any u ∈ W1,p(t)(T), which implies that any element of W1,p(t)(T) is
∆–differentiable ∆–a.e. on T. If u ∈ W1,p(t)

0 (T), then u is continuous, which implies that
uσ ∈ Crd(T) and (6) holds. Consequently, by (12) and (13), there are A, C, C1 > 0 such that

‖uσ‖Lp(t)(T) ≤ C‖uσ‖Lp+ (T) ≤ C1‖uσ‖T ≤ C1‖u‖T ≤ C1 A‖u‖X . (14)

3. Du Bois−Reymond Type Lemma

In this section, we will prove a du Bois–Reymond type lemma for nondifferen-
tiable functions.

By (9), we estimate∫
T

1
q(t)

(
|u(t)|p(t)−1

)q(t)
∆t ≤ 1

q−

∫
T
|u(t)|p(t)∆t < ∞ (15)

for any u ∈ Lp(t)(T). Consequently,

|u(t)|p(t)−2u(t) ∈ Lq(t)(T) (16)

for u ∈ Lp(t)(T), where q is the function given in (9). By (10) and (15), for any u, v ∈
Lp(t)(T), ∫

T
|u(t)|p(t)−2u(t)v(t)∆t

is well defined.

Lemma 3. If h ∈ Lq(t)(T) and ∫
T

h(t)v∆(t)∆t = 0
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for every v ∈W1,p(t)
0 (T), then

h(t) = const.

for ∆−a.a. t ∈ T.

Proof. Let us define

v(t) =
∫ t

a
|h(s)− c|q(s)−2(h(s)− c)∆s

for t ∈ T, where c ∈ R is such that v(b) = 0. Then, v(a) = 0. Moreover,

v∆(t) = |h(t)− c|q(t)−2(h(t)− c) (17)

for ∆–a.a. t ∈ T and v∆ ∈ Lp(t)(T). By (17), we have∫
T
|h(t)− c|q(t)∆t =

∫
T
(h(t)− c)|h(t)− c|q(t)−2(h(t)− c)∆ t

=
∫
T
(h(t)− c)v∆(t)∆ t

=
∫
T

h(t)v∆(t)∆t− c
∫
T

v∆∆t = 0.

Since ρq(·) is a modular, we have h(t) = c for ∆−a.a. t ∈ T and the lemma follows.

The following lemma plays a key role in the next section.

Lemma 4. Let h1 ∈ L1(T), h2 ∈ Lp(t)(T) and∫
T

(
h1(t)vσ(t) + |h2(t)|p(t)−2h2(t)v∆(t)

)
∆t = 0 (18)

for every v ∈W1,p(t)
0 (T). Then,

h1(t) =
∆
∆t

(
|h2(t)|p(t)−2h2(t)

)
for ∆−a.a. t ∈ T.

Proof. Let

H(t) =
∫ t

a
h1(s)∆s

for t ∈ T. Integrating by parts and using the boundary conditions,

∫
T

h1(t)vσ(t)∆t =
∫
T

H∆(t)vσ(t)∆t = H(t)v(t)
∣∣∣∣b
a
−
∫
T

v∆(t)H(t)∆t

= −
∫
T

v∆(t)H(t)∆t (19)

for every v ∈W1,p(t)
0 (T). By (18) and (19), we obtain

0 =
∫
T

(
h1(t)vσ(t) + |h2(t)|p(t)−2h2(t)v∆(t)

)
∆ t

= −
∫
T

v∆(t)H(t)∆t +
∫
T
|h2(t)|p(t)−2h2(t)v∆(t)∆ t

=
∫
T

v∆(t)
(
|h2(t)|p(t)−2h2(t)− H(t)

)
∆t
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for every v ∈ W1,p(t)
0 (T). Now, combining (16) with (12) and Lemma 3, we obtain that

there exists c ∈ R, such that

|h2(t)|p(t)−2h2(t) = H(t) + c

and
∆
∆t

(
|h2(t)|p(t)−2h2(t)

)
=

∆
∆t

(H(t) + c) = h1(t)

for ∆−a.a. t ∈ T.

Corollary 1. If h ∈ L1(T) and ∫
T

h(t)vσ(t)∆t = 0

for every v ∈W1,p(t)
0 , then h(t) = 0 for ∆−a.a. t ∈ T.

Proof. It suffices to take h2(t) = 0 for ∆−a.a. t ∈ T in Lemma 4.

4. The p(t)–Laplacian Dirichlet Problem

Let X := W1,p(t)
0 (T). The following assumptions upon f and p are made:

(P) p ∈ L∞
+(T);

(F) f : T×R→ R is a L1−Carathéodory function over T×R.

Let us consider the following problem:{
−∆p(t)u(t) := − ∆

∆t

(
|∆wu(t)|p(t)−2∆wu(t)

)
= f

(
t, uσ(t)

)
, t ∈ T

u(a) = u(b) = 0
, (20)

where u ∈ X, a and b are defined in (2) and σ is a forward jump operator given in (3).

We say that u ∈ X is a weak solution to (20) if∫
T
|∆wu(t)|p(t)−2∆wu(t)∆wv(t)∆t =

∫
T

f
(
t, uσ(t)

)
vσ(t)∆t (21)

for every v ∈ X.

We define the functional ϕ : X → R by

ϕ(u) =
∫
T

1
p(t)
|∆wu(t)|p(t)∆t−

∫
T

F
(
t, uσ(t)

)
∆t, (22)

where
F(t, x) =

∫ x

0
f (t, s)ds (23)

for ∆−a.a. t ∈ T and x ∈ R. Moreover, let us denote

ϕ1(u) =
∫
T

1
p(t)
|∆wu(t)|p(t)∆t (24)

and
ϕ2(u) =

∫
T

F
(
t, uσ(t)

)
∆t (25)

for u ∈ X.
Observe that if f satisfies Assumption (F), then also F is an L1–Carathéodory function

over T×R and thus, t 7→ F(t, uσ(t)) belongs to L1(T). Consequently, ϕ2 is well defined,
which implies that ϕ is well defined.
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Lemma 5. The functional ϕ1 defined in (24) is continuously differentiable on X at any u ∈ X and

ϕ′1(u)(v) =
∫
T
|∆wu(t)|p(t)−2∆wu(t)∆wv(t)∆t

for all v ∈ X.

Proof. Let us define

ϕ̃1(λ, t) =
1

p(t)
|∆wu(t) + λ∆wv(t)|p(t)

=
1

p(t)

[
(∆wu(t) + λ∆wv(t))2

] p(t)
2

and
Ψ1(λ) =

∫
T

ϕ̃1(λ, t)∆t = ϕ1(u + λv),

where u, v ∈ X are fixed, t ∈ T and λ ∈ [−1, 1]. Consequently,

ϕ′1(u)(v) = Ψ′1(0) =
∫
T

ϕ̃′1λ(λ, t)|λ=0∆t =
∫
T
|∆wu(t)|p(t)−2∆wu(t)∆wv(t)∆t.

Let us define

u1(t) = |∆wu(t)|p(t)−1

for t ∈ T. By (16), u1 ∈ Lq(t)(T). By Hölder inequality (10) and (11), we obtain

|ϕ′1(u)(v)| ≤
(

1
p−

+
1

q−

)
‖u1‖Lq(t)(T)‖v‖X .

Consequently, ϕ′1(u) ∈ X∗ and functional ϕ1 is Gâteaux differentiable over X.
We shall show that the derivative is continuous. Consider ξp(·) : Lp(t)(T)→ Lq(t)(T)

given by

ξp(t)(u) = |u|p(t)−2u

for u ∈ Lp(t)(T). By (15), ξp(·) is well defined.
Let un → u in Lp(t)(T) and (vn) be a subsequence of (un). Let

(
vnl

)
and g be given as

in Lemma 2. Then, from Lemma 2 and Proposition 5, one has∣∣∣ξp(t)(vnl )− ξp(t)(u)
∣∣∣q(t) ≤ 2q+−1

{(
|vnl (t)|

p(t)−1
)q(t)

+
(
|u(t)|p(t)−1

)q(t)
}

≤ 2q+−1
{
|vnl (t)|

p(t) + |u(t)|p(t)
}

≤ 2q+(g(t))p(t).

Since vnl (t) → u(t) for ∆−a.a. t ∈ T, it follows from Lebesgue Dominated Conver-
gence Theorem that∫

T

∣∣∣ξp(t)(vnl )− ξp(t)(u)
∣∣∣q(t)∆t→ 0, as l → ∞,

but then, since any subsequence (ξp(t)(vn)) has a subsequence (ξp(t)(vnl )) convergent to
the same limit, ∫

T

∣∣∣ξp(t)(un)− ξp(t)(u)
∣∣∣q(t)∆t→ 0, as n→ ∞.
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Consequently, using Proposition 8 and Hölder inequality (10),

∣∣ϕ′1(un)(v)− ϕ′1(u)(v)
∣∣ ≤ ( 1

p−
+

1
q−

)∥∥∥ξp(t)(∆
wun)− ξp(t)(∆

wu)
∥∥∥

Lq(t)
‖v‖X

and

lim
n→∞

∥∥ϕ′1(un)− ϕ′1(u)
∥∥

X∗ = 0.

Lemma 6. The functional ϕ2 defined in (25) is continuously differentiable on X at any u ∈ X and

ϕ′2(u)(v) =
∫
T

f
(
t, uσ(t)

)
vσ(t)∆t

for all v ∈ X.

Proof. Let us define
ϕ̃2(λ, t) = F

(
t, uσ(t) + λvσ(t)

)
and

Ψ2(λ) =
∫
T

ϕ̃2(λ, t)∆t = ϕ2(u + λv),

where u, v ∈ X are fixed, t ∈ T and λ ∈ [−1, 1]. Thus, we get

ϕ′2(u)(v) = Ψ′2(0) =
∫
T

ϕ̃′2λ(λ, t)|λ=0∆t =
∫
T

f (t, uσ(t))vσ(t)∆t.

By (14) and since t 7→ f (t, uσ(t)) belongs to L1(T), we have

|ϕ′2(u)(v)| ≤ ‖v‖T
∫
T
| f
(
t, uσ(t)

)
|∆t ≤ A‖v‖X

∫
T
| f
(
t, uσ(t)

)
|∆t < ∞.

Therefore, ϕ′2(u) ∈ X∗ and functional ϕ2 is Gâteaux differentiable over X.

If un → u in X, then, by (14) , un → u in C(T) and there exists d > 0 such that
|un(t)| ≤ d for n ∈ N, which implies that |uσ

n(t)| ≤ d for n ∈ N and ∆−a.a. t ∈ T. Since
f is L1−Carathéodory function, there is fd ∈ L1(T) such that, for n ∈ N and for ∆−a.a.
t ∈ T, we have | f (t, uσ

n(t))| ≤ fd(t).
Let un → u in X. Then, from (14), uσ

n → uσ in Lp(t)(T). Now, as in the second part
of the proof of Lemma 5, using Lemma 2, one can show that f (t, uσ

n(t))→ f (t, uσ(t)) for
∆–a.a. t ∈ T, as n→ ∞. Applying the Lebesgue Dominated Convergence Theorem, ϕ2 is
continuously differentiable.

Remark 2. From Lemmas 5 and 6, a critical point of functional ϕ defined in (22) is also a weak
solution to (20). Now, taking

h1(t) := − f (t, uσ(t)) and h2(t) := ∆wu(t) for t ∈ T

in Lemma 4, we obtain that a possible solution to (21) is a solution to problem (20).
Moreover, from Lemma 4, the function

t 7→ |∆wu(t)|p(t)−2∆wu(t)

is absolutely continuous on T. Consequently, a weak solution to problem (20) is a classical solution.

We now provide some properties of the operator ϕ1 that will be needed in next Sec-
tions.



Entropy 2021, 23, 1352 12 of 21

It is easy to verify that the following holds : if p0 ∈ (1, ∞), then〈
|x|p0−2x− |y|p0−2y, x− y

〉
≥
∣∣∣|x|p0−1 − |y|p0−1

∣∣∣||x| − |y|| (26)

for all x, y ∈ Rn.

Lemma 7. The mapping ϕ′1 : X → X∗ is coercive and strictly monotone.

Proof. Observe that, from (26), ϕ′1 is strictly monotone. Moreover, by Proposition 6, one
has

lim
‖u‖X→∞

ϕ′1(u)(u)
‖u‖X

= lim
‖u‖X→∞

ρp(·)(∆wu)
‖u‖X

≥ lim
‖u‖X→∞

‖∆wu‖p−

Lp(t)(T)
‖u‖X

= ∞.

Consequently, ϕ′1 is coercive.

Lemma 8. The operator ϕ′1 : X → X∗ is demicontinuous.

Proof. Since ϕ′1 is continuous, one can easily see that ϕ′1 is hemicontinuous, i.e., for all
u, v, w ∈ X, the mapping h → ϕ′1(u + hv)(w) is continuous on [0, 1]. Now, the statement
follows from the fact that for a monotone operator, demicontinuity and hemicontinuity are
equivalent.

Lemma 9. The mapping ϕ′1 : X → X∗ is bounded.

Proof. We need to show that ϕ′1 maps bounded sets in X into bounded sets in X∗. Let
u, v ∈ X and let us define

u1(t) = |∆wu(t)|p(t)−1

for t ∈ T. By (16), we have ρq(·)(u1) = ρp(·)(∆wu) < ∞. Consequently, u1 ∈ Lq(t)(T).
By (14) and Hölder inequality (10), we estimate

ϕ′1(u)(v) ≤
(

1
p−

+
1

q−

)
‖v‖X‖u1‖Lq(t)(T). (27)

By Lemma 7, we know that there exists function f1 : [0, ∞)→ [0, ∞), such that

f1

(
‖u1‖Lq(t)(T)

)
‖u1‖Lq(t)(T) ≤ ρq(·)(u1). (28)

By (27) and (28), we obtain

ϕ′1(u)(v) ≤ K1

(
1

p− + 1
q−

)
‖v‖Xρq(·)(u1)

= K1

(
1

p− + 1
q−

)
‖v‖Xρp(·)(∆wu),

(29)

where K1 =
(

f1

(
‖u1‖Lq(t)(T)

))−1
. From Lemma 7, there is f2 : [0, ∞)→ [0, ∞), such that

ρp(·)(∆
wu) ≤ f2

(
‖∆wu‖Lp(t)(T)

)
‖∆wu‖Lp(t)(T) = f2(‖u‖X)‖u‖X . (30)

By (29) and (30), we estimate

ϕ′1(u)(v) ≤ K2

(
1

p−
+

1
q−

)
‖v‖X‖u‖X ,
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where K2 = K1 f2(‖u‖X) and consequently

‖ϕ′1(u)‖X∗ = sup
‖v‖X=1

∣∣(ϕ′1u)(v)
∣∣ ≤ K2

(
1

p−
+

1
q−

)
‖u‖X ,

which implies that the operator ϕ′1 is bounded.

Lemma 10. If un ⇀ u in X and

lim
n→∞

(
ϕ′1(un)− ϕ′1(u)

)
(un − u) = 0, (31)

then un → u in X.

Proof. Assume that un ⇀ u in X and (31) is satisfied. Let

T1 = {t ∈ T : 1 < p(t) < 2}

and

T2 = {t ∈ T : p(t) ≥ 2}.

Since the following inequalities hold(
|α|p0−2α− |β|p0−2β

)
(α− β) ≥ 22−p0 |α− β|p0 , p0 ≥ 2(

|α|p0−2α− |β|p0−2β
)
(α− β) ≥ (p0 − 1)|α− β|2

(
1 + |α|2 + |β|2

) p0−2
2 ,

1 < p0 < 2

(32)

for any α, β ∈ R (see [19]), we get(
ϕ′1(un)− ϕ′1(u)

)
(un − u)

=
∫
T

(
|∆wun(t)|p(t)−2∆wun(t)− |∆wu(t)|p(t)−2∆wu(t)

)
(∆wun(t)− ∆wu(t))∆ t

=
∫
T1

(
|∆wun(t)|p(t)−2∆wun(t)− |∆wu(t)|p(t)−2∆wu(t)

)
(∆wun(t)− ∆wu(t))∆ t

+
∫
T2

(
|∆wun(t)|p(t)−2∆wun(t)− |∆wu(t)|p(t)−2∆wu(t)

)
(∆wun(t)− ∆wu(t))∆ t

= I1 + I2.

From (32), for ∆–a.a. t ∈ T, we obtain

I1 ≥ (p− − 1)
∫
T

|∆wu(t)− ∆ww(t)|2

(1 + |∆wu(t)|2 + |∆ww(t)|2)
2

p(t)−2

∆t ≥ 0

and

I2 ≥ 22−p+
∫
T
|∆wun(t)− ∆wu(t)|p(t)∆t ≥ 0.

Consequently, from (31), ∆wun converges in measure to ∆wu. Let us consider a
subsequence of (∆wun) and denote it also by (∆wun), ∆wun → ∆wu for ∆–a.a. t ∈ T. By the
Fatou Lemma,

lim inf
n→∞

∫
T

1
p(t)
|∆wun(t)|p(t)∆t ≥

∫
T

1
p(t)
|∆wu(t)|p(t)∆t. (33)
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Since un ⇀ u and from (31), we have

lim
n→∞

(
ϕ′1(un)− ϕ′1(u)

)
(un − u) =

(
ϕ′1(un)

)
(un − u) = 0. (34)

Moreover,

ϕ′1(un)(un − u) ≥
∫
T
|∆wun(t)|p(t)∆t−

∫
T
|∆wun(t)|p(t)−1|∆wu(t)|∆t.

Now, from the Young inequality, one has

|∆wun(t)|p(t)−1|∆wu(t)| ≤ p(t)−1
p(t) |∆

wun(t)|p(t) + 1
p(t) |∆

wu(t)|p(t).

Therefore,

ϕ′1(un)(un − u) ≥
∫
T

1
p(t) |∆

wun|p(t)∆t−
∫
T

1
p(t) |∆

wu|p(t)∆t. (35)

From (31), (33)–(35), we obtain

lim
n→∞

∫
T

1
p(t)
|∆wun(t)|p(t)∆t =

∫
T

1
p(t)
|∆wu(t)|p(t)∆t.

Consequently, functions 1
p(t) |∆

wun(t)|p(t) have equi-absolutely continuous integrals
(see ([20], Theorem 3, p. 153)). Moreover, from Proposition 5,

1
p(t)
|∆wun(t)− ∆wu(t)|p(t) ≤ C

(
1

p(t)
|∆wun(t)|p(t) +

1
p(t)
|∆wu(t)|p(t)

)
.

Hence, functions 1
p(t) |∆

wun(t)−∆wu(t)|p(t) have equi-absolutely continuous integrals
and from ([20], Theorem 3, p. 153), one obtains

lim
n→∞

∫
T

1
p(t)
|∆wun(t)− ∆wu(t)|p(t)∆t = 0,

which implies that

lim
n→∞

∫
T
|∆wun(t)− ∆wu(t)|p(t)∆t = 0.

Consequently, ∆wun → ∆wu in Lp(t)(T), which means that un → u in X.

Now, observe that using the Minty–Browder Theorem [21] (Theorem 3.3.1, p.161) (see
Lemmas 7–9), we obtain that ϕ′1 has an inverse mapping (ϕ′1)

−1 : X∗ → X. The follow-
ing holds.

Lemma 11. The operator ϕ′1 is a homeomorphism.

Proof. It suffices to show that (ϕ′1)
−1 is continuous. Let zn, z ∈ X∗, zn → z. Then, there are

un, u ∈ X, such that ϕ′1(un) = zn and ϕ′1(u) = z. Since ϕ′1 is continuous, (un) is bounded
in X. Without loss of generality, let un ⇀ v. Then, we have

lim
n→∞

(
ϕ′1(un)− ϕ′1(u)

)
(un − v) = lim

n→∞
(zn)(un − v) = 0.

From Lemma 10, un → v in X. Consequently, un → u in X.
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5. Existence of a Solution Using the Direct Method

The direct method of the calculus of variations has a long and interesting history
described in the introduction of [2] and is expressed as follows in a functional setting.

Theorem 1. Ref. [22], p.455. Let X be a reflexive Banach space and ϕ : X → R be a weakly
lower semi-continuous and weakly coercive functional. Then, there exists x0 ∈ X, such that
ϕ(x0) = minx∈X ϕ(x).

Now, we give sufficient conditions for the existence of critical point of functional ϕ
defined in (22). Consequently, by (21) and Remark 2, we prove the existence of weak
solutions to the Dirichlet problem (20).

Theorem 2. If there exist β ∈ (1, p−], c1, c3 ≥ 0 and

c2 <
β

p+µ∆(T)Aβ
(36)

with A given in (14), such that function F satisfies

F(t, x) ≤ c1|x|+
c2

β
|x|β + c3 (37)

for ∆−a.a. t ∈ T and x ∈ R, then problem (20) has a weak solution.

Proof. Our goal is to apply Theorem 1 for functional ϕ defined in (22). First, we shall show
the coerciveness of ϕ. By (14), (11), (36), (37) and Theorem 6, if ‖u‖X → ∞, one has

ϕ(u) =
∫
T

1
p(t)
|∆wu(t)|p(t)∆t−

∫
T

F(t, uσ(t))∆ t

≥ 1
p+

ρp(·)(∆
wu)− c1

∫
T
|uσ(t)|∆t− c2

β

∫
T
|uσ(t)|β∆t− c3

∫
T

1∆ t

≥ 1
p+
‖∆wu‖p−

Lp(t)(T)
− c1‖u‖Tµ∆(T)−

c2

β
‖u‖β

Tµ∆(T)− c3µ∆(T)

≥ 1
p+
‖u‖p−

X −
c2 Aβ

β
‖u‖β

Xµ∆(T)− c1 A‖u‖Xµ∆(T)− c3µ∆(T)→ ∞,

where ρp(·) is the modular defined in (8). Hence ϕ is weakly coercive over X.
By Lemma 5, we see that functional ϕ1 defined in (24) is continuous. Since s 7→ 1

p(t) sp(t)

is convex on [0, ∞) for ∆−a.a. t ∈ T, ϕ1 is convex. Consequently, ϕ1 is weakly lower semi–
continuous.

Observe that the following holds

if un ⇀ u in X, then uσ
n → uσ in Lp(t)(T). (38)

Indeed, if un ⇀ u in X, then (un)n∈N is bounded in X and, from (14), bounded in
C(T). Denote by (vn)n∈N a subsequence of (un)n∈N. Then, since the embedding in (13) is
compact, (vn)n∈N has a strongly convergent subsequence. By the uniqueness of weak limit,
(vn)n∈N converges to u. Consequently, since every subsequennce (vn)n∈N of (un)n∈N has
a subsequence which tends to u, (un)n∈N converges to u strongly in C(T) and, from (14),
uσ

n → uσ in Lp(t)(T).
Now, using (38), Lemma 2 and proceeding similarly as in the proof of Lemma 6, one

can show that F(t, uσ
n(t))→ F(t, uσ(t)) for ∆−a.a. t ∈ T and conclude that functional ϕ2

defined in (25) is strongly continuous over X.
Consequently, ϕ is weakly lower semi-continuous over X. From Theorem 1, ϕ has a

minimum point and the problem (20) has a weak solution.
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Corollary 2. If there exist β ∈ (1, p−) and c1, c2, c3 ≥ 0 such that function F satisfies condition (37),
then problem (20) has a weak solution.

Proof. The proof is analogous to the proof of Theorem 2 with one exception. If β 6= p−,
then to show that ϕ is weakly coercive, no inequality of the type (36) is needed.

Remark 3. Assume that the following condition holds

(F)’ f : T×R→ R is a ∆–Carathéodory function over T×R.

Then, (F)’ together with (37) and Proposition 9 guarantee that Lemmas 5 and 6 hold.

Example 1. Notice that condition (37) is satisfied if

F(t, x) =
c2

β
|x|β + G(t, x)

where

G(t, x) =
∫ x

0
g(t, s)ds

and g(t, x) ≤ c1 for ∆−a.a. t ∈ T, x ∈ R. In particular, problem (20) with f given by

f (t, x) = c2|x|β−1 + g(t)

has a weak solution for every bounded function g ∈ L1(T).

6. Existence of a Nontrivial Solution Using the Mountain Pass Theorem

The existence conditions of Theorem 2 are satisfied when F(t, x) does not grow too
fast when x → ∞. We now use another tool of the variational calculus, namely a minimax
instead of a minimum characterization of a critical point of the functional, to prove the
existence of a nontrivial solution of problem (20) when f (t, x) tends fast enough to 0 when
x → 0 (insuring the existence of the trivial solution) and fast enough to infinity when
x → ∞.

We say that C1–functional ϕ : X → R satisfies the Palais–Smale condition, denoted
(PS), if any sequence (un)n∈N in X, such that (ϕ(un))n∈N is bounded and ϕ′(un) → 0 as
n→ ∞, admits a convergent subsequence.

Lemma 12. If there exist M > 0 and τ > p+, such that

0 < τF(t, x) ≤ x f (t, x) (39)

for ∆− a.a. t ∈ T and |x| ≥ M, then functional ϕ defined in (22) satisfies the (PS) condition.

Proof. Assume that (un)n∈N is a sequence such that un ∈ X for n ∈ N, (ϕ(un))n∈N is
bounded and ‖ϕ′(un)‖X∗ → 0 as n→ ∞.

First, we shall show that (un)n∈N is bounded. Let ε > 0. Since ‖ϕ′(un)‖X∗ → 0, we
obtain that there exists n0 ∈ N, such that ‖ϕ′(un)‖X∗ < ε for n ≥ n0. Thus, we have

ϕ′(un)(un) ≥ −ε‖un‖X (40)

for n ≥ n0. Moreover,

ϕ′(un)(un) =
∫
T
|∆wun(t)|p(t)∆t−

∫
T

f (t, uσ
n(t))u

σ
n(t)∆ t

= ρp(·)(∆
wun)−

∫
T

f (t, uσ
n(t))u

σ
n(t)∆t



Entropy 2021, 23, 1352 17 of 21

for n ∈ N, where ρp(·) is the modular defined in (8). Since f is the L1–Carathéodory function
over T×R, integrals∫

TMn

F
(
t, uσ

n(t)
)
∆t and

∫
TMn

f
(
t, uσ

n(t)
)
uσ

n(t)∆t,

where TMn = {t ∈ T : |uσ
n(t)| < M} are bounded. Moreover, by (39), we have∫

T\TMn

( f (t, uσ
n(t))u

σ
n(t)− τF(t, uσ

n(t)))∆t > 0. (41)

Since (ϕ(un))n∈N is bounded, by (40) and (41), we obtain

C1 + ε‖un‖X ≥ τϕ(un)− (ϕ′un)(un)

= τ
∫ 1

p(t) |∆
wun(t)|p(t)∆t− τ

∫
T F(t, uσ

n(t))∆t

−ρp(·)(∆wun) +
∫
T f (t, uσ

n(t))uσ
n(t)∆t

≥ τ
p+
∫
|∆wun(t)|p(t)∆t− τ

∫
T F(t, uσ

n(t))∆t

−ρp(·)(∆wun) +
∫
T f (t, uσ

n(t))uσ
n(t)∆t

= τ
p+ ρp(·)(∆wun)− τ

∫
T F(t, uσ

n(t))∆t

−ρp(·)(∆wun) +
∫
T f (t, uσ

n(t))uσ
n(t)∆t

=
(

τ
p+ − 1

)
ρp(·)(∆wun)

+
∫
T( f (t, uσ

n(t))uσ
n(t)− τF(t, uσ

n(t)))∆t

(42)

with C1 ∈ R and n ≥ n0. By (11), (41) and Proposition 6, we have(
τ

p+ − 1
)

ρp(·)(∆wun) +
∫
T( f (t, uσ

n(t))uσ
n(t)− τF(t, uσ

n(t)))∆ t

≥
(

τ
p+ − 1

)
min

{
‖un‖p+

X , ‖un‖p−
X

}
+ C2

(43)

with C2 ∈ R and n ≥ n0. By (42) and (43), the following assertion holds

C1 + ε‖un‖X ≥
(

τ

p+
− 1
)

min
{
‖un‖p+

X , ‖un‖p−
X

}
+ C2

with C1, C2 ∈ R. Hence, we obtain(
τ

p+
− 1
)

min
{
‖un‖p+

X , ‖un‖p−
X

}
− ε‖un‖X ≤ C3

with C3 ∈ R. Since τ > p+, (‖un‖X)n∈N is bounded.
Now, without loss of generality, we assume that un ⇀ u in X. Using the same

arguments as in the proof of Theorem 2, one can show that for ϕ′2 : X → X∗ we have:
un ⇀ u implies ϕ′2(un)→ ϕ′2(u). Since

ϕ′(un) = ϕ′1(un)− ϕ′2(un)→ 0 as n→ ∞,

we obtain that ϕ′1(un) → ϕ′2(u). Hence, using Lemma 11, un → u in X. Consequently, ϕ
satisfies (PS) condition.
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The existence of nontrivial solutions to problem (20) will be shown using the Moun-
tain Pass Theorem of Ambrosetti and Rabinowitz [23], which we recall here in the follow-
ing form.

Theorem 3. Ref. [24] (p.7). Let X be a Banach space and let ϕ : X → R be a C1–functional
satisfying (PS) condition. Suppose that ϕ(0) = 0 and

(i) there are constants α0, r0 > 0, such that ϕ
∣∣
‖e‖X=r0

≥ α0;

(ii) there is an element e0 ∈ X, such that ‖e0‖X > r0 and ϕ(e0) ≤ 0.

Then functional ϕ has a critical point with critical value c0 ≥ α0 characterized by

c0 = inf
γ∈Γ

max
u∈γ([0,1])

ϕ(u),

where Γ = {γ ∈ C([0, 1], X) : γ(0) = θX and γ(1) = e0}.

Theorem 4. If condition (39) is satisfied and

lim
u→0

f (t, u)
|u|p+−1

= 0 (44)

uniformly with respect to u for ∆−a.a. t ∈ T, then problem (20) has a nontrivial weak solution.

Proof. First, observe that ϕ is unbounded from below, i.e., for any ξ > 0, there is an
element e ∈ X with ‖e‖X ≥ ξ, such that ϕ(e) < 0. Let us denote

TαM = {t ∈ T : |αuσ(t)| ≥ M}

for α ≥ 1 and u ∈ X. We will show that if u ∈ X is such that µ∆(T1M) > 0, then
ϕ(αu)→ −∞ as α→ ∞. For α ≥ 1, we see that T1M ⊂ TαM and hence, µ∆(TαM) > 0.

By (39), we have
f (t, u)
F(t, u)

≥ τ

u
(45)

for u ≥ M and
f (t, u)
F(t, u)

≤ τ

u
(46)

for u ≤ −M and with τ > p+. Integrating both sides of (45), we obtain

F(t, u) ≥ F(t, M)

Mτ
uτ

for ∆–a.a. t ∈ T and u ≥ M. Similarly, by (46), we have

F(t, u) ≥ F(t,−M)

Mτ
(−u)τ

for ∆–a.a. t ∈ T and u ≤ −M. Consequently, there exists function ω ∈ L1(T), such that

F(t, u) ≥ ω(t)|u|τ (47)

for ∆–a.a. t ∈ T and |u| ≥ M.
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Let u0 ∈ X. For α > 1, we have

ϕ(αu0) =
∫
T

1
p(t)
|α∆wu0|p(t)∆t−

∫
T

F(t, αuσ
0 (t))∆t

≤ αp+

p−
ρp(·)(∆

wu0)−
∫
{t∈T:|αuσ

0 (t)|<M}
F(t, αuσ

0 (t))∆t (48)

−
∫
{t∈T:|αuσ

0 (t)|≥M}
F(t, αuσ

0 (t))∆t,

where ρp(·) is the modular defined in (8). By (47), we obtain

F(t, αuσ
0 (t)) ≥ ω(t)ατ |u0(t)|τ

for t ∈ T, such that |αuσ
0 (t)| ≥ M. Thus,∫

{t∈T:|αuσ
0 (t)|≥M} F

(
t, αuσ

0 (t)
)
∆t ≥ ατ

∫
{t∈T:|αuσ

0 (t)|≥M} ω(t)|u0(t)|τ∆t

= ατK1(u0)
(49)

with K1(u0) > 0. Moreover, by assumption (F1), we have∫
{t∈T:|uσ

0 (t)|<M}
|F(t, αuσ

0 (t))|∆t ≤ K2 (50)

with K2 > 0. By (49), (49) and (50), we estimate

ϕ(αu0) ≤
αp+

p−
ρp(·)(∆

wu0)−
∫
{t∈T:|αuσ

0 (t)|<M}
F(t, αuσ

0 (t))∆ t

−
∫
{t∈T:|αuσ

0 (t)|≥M}
F(t, αuσ

0 (t))∆ t

≤ αp+

p−
ρp(·)(∆

wu0)− ατK1(u0) + K2.

It implies that ϕ(αu0)→ −∞ as α→ ∞, since τ > p+ and u0 is fixed.
Now, we shall show that there exist constants α0, r0 > 0 such that ϕ

∣∣
‖u‖X=r0

≥ α0.
By (23) and (44), for every ε > 0 there exists δ > 0, such that

F(t, u) ≤ ε

p+
|u|p+ (51)

for ∆−a.a. t ∈ T and |u| < δ. Let ε0 ∈
(

0, 1
Ap+µ∆(T)

)
. Then, by (6) and (51), there is δ1 > 0,

such that∫
{t∈T:|uσ(t)|<δ1}

F(t, uσ(t))∆t ≤ ε0

p+

∫
T
|uσ(t)|p+∆t ≤ ε0

p+
‖uσ‖p+

T µ∆(T)

≤ ε0

p+
Ap+‖u‖p+

X µ∆(T) (52)

with A defined in (14).
Let δ0 < min{δ1, A} and ‖u‖X = r0 ∈ (0, δ0

A ]. Then,

‖u‖X ≤
δ0

A
≤ 1. (53)
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By (14),

‖uσ‖T ≤ ‖u‖T ≤ A‖u‖X ≤ A
δ0

A
= δ0. (54)

Combining (52) with (54), we conclude that∫
T

F(t, uσ(t))∆t =
∫
{t∈T:|uσ(t)|<δ1}

F(t, uσ(t))∆t ≤ ε0

p+
Ap+‖u‖p+

X µ∆(T)

and therefore, from (53) and Proposition 6, one has

ϕ(u) =
∫
T

1
p(t)
|∆wu(t)|p(t)∆t−

∫
T

F(t, uσ(t))∆t

≥ 1
p+

∫
T
|∆wu(t)|p(t)∆t− ε0

p+
Ap+µ∆(T)‖u‖

p+
X

=
1

p+
ρp(·)(∆

wu)− ε0

p+
Ap+µ∆(T)‖u‖

p+
X

≥ 1
p+
‖u‖p+

X −
ε0

p+
Ap+µ∆(T)‖u‖

p+
X

=
1

p+
(

1− ε0 Ap+µ∆(T)
)
‖u‖p+

X .

Consequently, we obtain that there exists α0 > 0, such that ϕ
∣∣
‖u‖X=r0

≥ α0 > 0. Since
ϕ(θX) = 0, the statement follows from Theorem 3.

Example 2. Consider problem (20) with the function f defined as

f (t, x) = h(t)xα

for t ∈ T, x ∈ R, where h ∈ L1(T), α is an odd number and α > p+. One can easily check
that Assumption (44) holds. Moreover, for τ := α + 1 and M > 0, Assumption (39) is
satisfied.

7. Conclusions

Using direct variational methods and the mountain pass theorem, we have obtained
several sufficient conditions for the existence of solutions to the p(t)–Laplacian Dirichlet
problem on a bounded time scale. Some results regarding the regularity of solutions have
also been included in this paper. We have shown that a sort of unification in discrete and
continuous settings is possible with the use of a time-scale notion.

Author Contributions: Conceptualization, J.M., E.S. and K.S.-D.; methodology, J.M., E.S. and K.S.-D.;
formal analysis, J.M., E.S. and K.S.-D.; investigation, J.M., E.S. and K.S.-D.; writing—original draft
preparation, J.M., E.S. and K.S.-D.; writing—review and editing, J.M., E.S. and K.S.-D.; supervision,
J.M. and K.S.-D.; funding acquisition, K.S.-D. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Entropy 2021, 23, 1352 21 of 21

References
1. Jabri, Y. The Mountain Pass Theorem. Variants, Generalizations and Some Applications; Cambridge University Press: Cambridge, UK,

2003.
2. Mawhin, J. Problèmes de Dirichlet Variationnels non Linéaires (Polish Translation): Metody Wariacyjne dla Nieliniowych Problemów

Dirichleta; Séminaire de mathématiques supérieures, 104. Presses Univ. Montréal, Montréal, 1987; WNT: Warszawa, Poland, 1994.
3. Mawhin, J.; Willem, M. Critical Point Theory and Hamiltonian Systems; Springer: New York, NY, USA, 1989.
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