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Abstract: We present the multifractal analysis of coherent states in kicked top model by expanding
them in the basis of Floquet operator eigenstates. We demonstrate the manifestation of phase
space structures in the multifractal properties of coherent states. In the classical limit, the classical
dynamical map can be constructed, allowing us to explore the corresponding phase space portraits
and to calculate the Lyapunov exponent. By tuning the kicking strength, the system undergoes
a transition from regularity to chaos. We show that the variation of multifractal dimensions of
coherent states with kicking strength is able to capture the structural changes of the phase space. The
onset of chaos is clearly identified by the phase-space-averaged multifractal dimensions, which are
well described by random matrix theory in a strongly chaotic regime. We further investigate the
probability distribution of expansion coefficients, and show that the deviation between the numerical
results and the prediction of random matrix theory behaves as a reliable detector of quantum chaos.

Keywords: quantum chaos; multifractal analysis; kicked top; coherent states

1. Introduction

Quantum chaos plays a crucial role in many fields of physics, such as quantum
statistics [1–5], quantum information science [6–13], and high-energy physics [14–16]. In
particular, chaos of interacting quantum systems, dubbed as many-body quantum chaos,
has attracted significant attention in recent years [17–23]. However, in contrast to classical
chaos, which is well defined as the hypersensitivity to the initial condition [24–26], the
definition of the quantum chaos in a time-dependent domain is still lacking, due to the fact
that there is no quantum analog of classical trajectories in general quantum theory. In this
regard, studies of OTOC (out-of-time ordered correlator) are highly relevant (see Section 3).
Therefore, the questions of how the chaotic dynamics manifests itself in quantum systems
and how to diagnose the quantum chaos immediately and naturally arise.

There are several ways to detect quantum chaos, which probe the effects of chaos on
quantum systems from different aspects, the most popular one being the level spacing
statistics [27–34]. The BGS conjecture [28] allows us to identify a given quantum system
as chaotic system when its level spacing statistics is identical to the prediction of random
matrix theory (RMT) [35]. Besides the level spacing statistics, the statistics of eigenvectors of
quantum Hamiltonian can also be used as a benchmark to verify quantum chaos [32,36–41].
For quantum chaotic systems, their eigenfunction statistics is also well described by RMT.

A drawback of the above-mentioned quantum chaos indicators is that they only
reveal the overall behaviors and cannot probe local properties of quantum chaotic systems.
Since a generic system usually has a structured phase space with coexistence of regular
and chaotic regions rather than a featureless fully developed chaotic region, it is highly
desirable to investigate such quantities that enable us to analyze the local chaotic behaviors
of a quantum system. With the help of coherent states (or localized wave packets), the
local chaotic behaviors of quantum systems have been extensively explored in a variety
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of works [42–49]. Here, by considering the kicked top model, we are interested in how to
reveal the phase space structures and the degree of chaos by means of multifractality of
coherent states.

As a general phenomenon in nature, multifractality characterizes a wide range of com-
plex phenomena from turbulence [50] to the chemistry [51] and financial markets [52].
It has been proven that the multifractal analysis also acts as a powerful tool to un-
derstand disorder induced metal-insulator transition in both single- and many-particle
Hamiltonians [53–58]. The multifractality is also presented in the ground state of quan-
tum many-body systems and determines the physics of ground state quantum phase
transition [59–62]. In addition, multifractal analysis of quantum states of random ma-
trix models [63–67], chaotic quantum many-body systems [68,69], and open quantum
systems [70] have been studied. In the present work, the fractal properties of the co-
herent states are examined in order to identify both the local and global signatures of
quantum chaos.

We perform multifractal analysis of coherent states by expanding them on the basis
of the eigenstates of the Floquet operator. To quantify the character of multifractality, we
consider the so-called multifractal dimensions Dq, which characterize the structure of a
quantum state in Hilbert space. For fully chaotic states, Dq = 1; for localized states, Dq = 0
with q ≥ 0; and for the multifractal states, 0 < Dq < 1 is a function of q [58,69]. In the kicked
top model, we show that the multifractal properties of coherent states strongly depend on
the chaotic behavior of its classical counterpart. We find that the multifractal dimensions
exhibit a similar transition as observed in phase-space portraits and Lyapunov exponents
when the system varies from regular to mixed-phase and globally chaotic dynamics. In
particular, we demonstrate that the structure of classical mixed phase space can be clearly
distinguished by the properties of multifractal dimensions. We also show that coherent
states within the strong chaotic regime become ergodic as the system size goes to infinity,
as expected from RMT predictions. On the contrary, coherent states in a regular regime still
behave as multifractal states even in the thermodynamic limit. By exploring the probability
distribution of the expansion coefficients, we demonstrate why the multifratal dimensions
of coherent states are not zero in the regular regime and why RMT predictions on the
behavior of multifractal dimensions are reliable in the fully chaotic regime.

The remainder of this article is organized as follows. In Section 2, we introduce the
kicked top model, derive the stroboscopic evolution of the angular momentum for both
quantum and classical cases, and analyze the classical and quantum chaotic behaviors. In
Section 3, we present our numerical results in detail for the multifractal analysis of coherent
states and discuss the manifestation of phase space features and onset of chaos in behavior
of multifractal dimensions. Finally, we make some concluding remarks and summarize
our results in Section 4.

2. Kicked-Top Model

As a paradigmatic model for both theoretical [7–11,71–78] and experimental [79–82]
studies of quantum chaos, the kicked top model consists of a larger spin with total angular
momentum j whose dynamics is captured by the following Hamiltonian (throughout this
work, h̄ = 1) [10,71]:

H = αJx +
κ

2j
J2
z

n=+∞

∑
n=−∞

δ(t− n), (1)

where Ja(a = x, y, z) are the components of the angular momentum operator J. The first
term in the Hamiltonian represents the free precession of the spin around the x axis at a rate
α, while the periodic δ kicks with strength κ, the second term in Equation (1), periodically
generates an impulsive rotation about the z axis by an angle (κ/2j)J2

z , with n being the
number of kicks. Here, the time period between two successive kicks has been set to
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unity. The time evolution operator corresponding to above Hamiltonian is the Floquet
operator [71]

F = exp
(
−i

κ

2j
J2
z

)
exp(−iαJx). (2)

In the numerical calculation, the Floquet operator should be expressed in a certain
representation. To this end, we employ the Dicke states {|j, m〉; (m = −j,−j + 1, . . . , j)},
that satisfy J2|j, m〉 = j(j + 1)|j, m〉 and jz|j, m〉 = m|j, m〉. Then, the matrix elements of the
Floquet operator are given by

〈j, m|F |j, m′〉 = exp
[
−i

κ

2j
m2
]

d(j)
mm′(α), (3)

where

d(j)
mm′ = 〈j, m|e−iαJx |j, m′〉 =

kx=j

∑
kx=−j

e−iαkx 〈j, m|j, kx〉〈j, kx|j, m′〉, (4)

is the so-called Winger d-function [72], with |j, kx〉 being the eigenstates of Jx, so that
Jx|j, kx〉 = kx|j, kx〉 and −j ≤ kx ≤ j. As the magnitude of spin operator is a conserved
quantity, the matrix dimension is equal to 2j + 1. Moreover, as the Floquet operator in
Equation (2) also conserves parity Π = eiπ(Jx+j), its matrix space can be further split into
even- and odd-parity subspaces with dimensions Deven = j + 1 and Dodd = j, respectively.

For an arbitrary initial state |ψ0〉, the evolved state after the nth kick is given by

|ψn〉 = Fn|ψ0〉. (5)

The expectated values of the angular momentum operators are, therefore, evolved as fol-
lows

〈Ja(n)〉 = 〈ψn|Ja|ψn〉 = 〈ψ0|F †,n Ja(0)Fn|ψ0〉, (6)

where Ja(n)(a = x, y, z) denotes the ath components of the spin operator J at t = n. Hence,
the stroboscopic evolution of the spin operators can be written as

Ja(n + 1) = F † Ja(n)F . (7)

By using the operator identity,

eλABe−λA = B + λ[A, B] +
λ2

2
[A, [A, B]] + . . . (8)

the explicit form of the quantum iterated map reads [71,72,78]

Jx(n + 1) =
1
2
{Jx(n) + i[Jy(n) cos α− Jz(n) sin α)}

× exp
[

i
κ

2j
{

2[Jy(n) sin α + Jz(n) cos α] + 1
}]

+ H.c. (9)

Jy(n + 1) =
1
2i
{Jx(n) + i[Jy(n) cos α− Jz(n) sin α)}

× exp
[

i
κ

2j
{

2[Jy(n) sin α + Jz(n) cos α] + 1
}]

+ H.c. (10)

Jz(n + 1) =Jy(n) sin α + Jz cos α. (11)

2.1. Classical Kicked Top

The classical counterpart of the kicked top model can be obtained in the limit j→ ∞.
To show this, we first introduce the scaled spin operators Sa = Ja/j, which behave as
classical variables due to the vanishing commutators between them as j → ∞. Then,
by factorizing the mean values of the products of the angular momentum operators as
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〈Ja Jb〉/j2 = SaSb [9,78,83], it is straightforward to find that the stroboscopic map of the
classical angular momentum can be written as [10]Sx(n + 1)

Sy(n + 1)
Sz(n + 1)

 =M

Sx(n)
Sy(n)
Sz(n)

 =

cos Ξn − cos α sin Ξn sin α sin Ξn
sin Ξn cos α cos Ξn − sin α cos Ξn

0 sin α cos α

Sx(n)
Sy(n)
Sz(n)

, (12)

where Ξn = κ[Sy(n) sin α+ Sz(n) cos α]. As the classical angular momentum S = (Sx, Sy, Sz)
is a unit vector, it can be parametrized in terms of the azimuthal angle θ and polar angle φ
as S = (cos φ sin θ, sin φ sin θ, cos θ). Hence, the classical phase space is a two dimensional
space with variables φ = arctan(Sy/Sx) and θ = arccos(Sz).

It is known that the classical kicked top model is integrable at κ = 0 and shows
increasingly chaotic behavior with increasing κ. To visualize how the value of κ affects
the dynamics of the classical kicked top model, the phase-space portraits for different κ
values with α = 4π/7 are plotted in Figure 1a. The phase space is largely dominated by
the regular orbits at small values of κ, as shown in the first two columns of Figure 1a. The
phase space becomes mixed with regular regions coexisting with the chaotic sea as κ is
increased; see the third column of Figure 1a. For κ increasing further, the phase space is
fully covered by chaotic trajectories, and there is no visible regular island in the last column
of Figure 1a.

Figure 1. Row (a): Phase-space portraits of the classical kicked top. The classical variables (φ, θ) are
plotted for 289 random initial conditions, each evolved for 300 kicks. Row (b): Color scaled plots of
the largest Lyapunov exponent of the classical kicked top for different initial conditions. The largest
Lyapunov exponents are calculated on a grid with 200× 200 initial conditions, each evolved for
5000 kicks. The different columns correspond to (from left to right): κ = 0.4, 1.7, 3 and κ = 7. Other
parameter: α = 4π/7. All quantities are dimensionless.

To quantify the chaotic features observed in Figure 1a, we investigate the behavior of
the largest Lyapunov exponent of the classical map in Equation (12). The largest Lyapunov
exponent measures the rate of divergence between two infinitesimally close orbits of a
dynamical system [78,84,85]. The largest Lyapunov exponent, therefore, estimates the level
of chaos. For the classical map in Equation (12), the largest Lyapunov exponent is defined
as [86]

λ+ = lim
n→∞

1
n

ln
[
||δS(n)||
||δS(0)||

]
, (13)



Entropy 2021, 23, 1347 5 of 19

where the Oseledets ergodic theorem [87] guarantees the existence of the limit. Here, the
3-dimensional vector δS(n) is the tangent vector associated with S(n) and satisfies the
following tangent map

δS(n + 1) = T [S(n)]δS(n) =
[

∂S(n + 1)
∂S(n)

]
δS(n), (14)

with initial condition δS(0). Then, the largest Lyapunov exponent of the classical kicked
top can be calculated as [78,88]

λ+ = ln
[

lim
n→∞

(µ+)
1/n
]
, (15)

where µ+ denotes the largest eigenvalue of the matrix ∏n
`=1 T [S(`)]. In the limit of strong

chaotic dynamics κ → ∞, it has been found that the largest Lyapunov exponent has the
following approximate expression [88]

λ∞
+ = ln(κ sin α)− 1, (16)

where sin α > 0. It has been shown that the classical map in Equation (12) has no fully
developed chaos for the cases of α = kπ with k = 0, 1, 2, . . . [89]. This is due to the fact
that the angle θ either keeps fixed at arccos[Sz(0)] or oscillates between arccos[Sz(0)] and
π− arccos[Sz(0)] in these cases. On the other hand, the cases of α = (2k + 1)π/2 allow the
strongest chaotic dynamics for classical kicked top.

In the row (b) of Figure 1, the largest Lyapunov exponents for different initial points
in the φ− θ plane corresponding to the same values of κ used in row (a) are plotted. By
comparing Figure 1a,b, we found that the largest Lyapunov exponents demonstrated
remarkable resemblance with the corresponding classical phase portraits. The dominated
regular orbits at small κ in the phase space leads to the tiny values of the largest Lyapunov
exponents, as seen in the first two columns of Figure 1b. However, the fully chaotic phase
space at κ = 7 is clearly manifested by larger values of the largest Lyapunov exponent,
which shows a uniform distribution in the phase space (see the last column in Figure 1b).
In particular, the regular regions in the mixed phase space are identified by λ+ = 0, as
depicted in the third column of Figure 1b.

To further reveal the effect of the kicking strength on the overall degree of chaos in the
classical kicked top, we consider the phase-space-averaged largest Lyapunov exponent λ̄+,
which is defined as

λ̄+ =
1

4π

∫
dSλ+, (17)

where dS = sin θdθdφ is the area element (or Haar measure) in the phase space [90]. It
is interesting to note that λ̄+ can be considered as the rescaled Kolmogorov–Sinai (KS)
entropy hKS [91,92], as according to the Pesin formula [93], hKS of the kicked top model is
equal to the sum of the largest Lyapunov exponents, so that hKS =

∫
dSλ+.

We plot λ̄+ as a function of κ for different values of α in Figure 2a. From this figure,
we see that λ̄+ exhibits a rapid growth with increasing κ when κ > κc, regardless of the
value of α. Here, κc is defined as a threshold at which λ̄+|κ=κc = 0.002. This implies the
onset of chaos in the classical kicked top for κ > κc. We further observe that with change of
α there is a variation in the value of κc. Figure 2b depicts λ̄+ as a function of α and κ. We
make several observations from Figure 2b. First, the behavior of λ̄+ shows a symmetry
with respect to α = π. This is because for the classical map in Equation (12), α→ α + π is
equivalent to the transformation Sx → −Sx, Sy → −Sy and Sz → −Sz, which keeps the
largest Lyapunov exponent unchanged [90]. Second, as the classical kicked top is integrable
at α = 0, π, 2π, we have λ̄+ = 0 for these values of α, regardless of κ. Finally, for 0 < α < π,
even though the sharp growth behavior of λ̄+ with increasing κ for κ > κc is independent
of α, there is a strong dependence of κc on α, as we have already seen in Figure 2a. The
white dot-dashed curve in Figure 2b shows how α affects the value of κc. By confining to
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the range 0 < α < π, we see that κc is firstly increased with increasing α and it reaches its
maximal value at α = π/2, and then starts to decrease as α increases further. The maximal
value of κc at α = π/2 results from the additional symmetry of the system [71], which
leads to the onset of chaos occurring later than in the cases with other values of α. Without
loss of general qualitative behavior, in the remainder of this work, we fixed α = 4π/7.

Figure 2. (a): Phase-space-averaged largest Lyapunov exponent λ̄+ as a function of κ for several
values of α. (b): λ̄+ as a function of κ and α. The averaged largest Lyapunov exponents are calculated
by averaging λ+ over 40000 different initial conditions, each evolved for 5000 kicks. In (b), the
white dot-dashed curve corresponds to the values of κc at which λ̄+ = 0.002. All quantities are
dimensionless.

2.2. Quantum Chaos of the Kicked-Top Model

The classical chaotic features discussed above are associated with quantum chaotic
behavior in quantum kicked top model. The quantum character of chaos can be detected
in several ways, such as the statistical properties of eigenvalues and eigenvectors [30–32],
the dynamical features of entanglement entropy [8,11,94–97], the decay in fidelity [98], the
correlation hole in survival probability [99], and, in particular, the dynamics of the out-
of-time-ordered correlator (OTOC) [11,96,100–103]. Among them, one of the most widely
used is energy-level statistics of the quantum Hamiltonian. It is known that integrable
systems allow level crossings, which give rise to Poisson distribution of the nearest level
spacings [27]. On the other hand, based on the work of Wigner [104], Bohigas, Giannoni,
and Schmit conjecture predicts that the energy levels in chaotic systems should exhibit level
repulsion and that the distribution of the nearest level spacings follows the Wigner–Dyson
distribution [28]. Here, we would like to point out that the explanation of the BGS conjecture
has been first investigated through a two-point spectral correlation function [31,105], and
then extended to n-point correlations with n > 2 [106–108] .

The spectral statistics for a periodically driven quantum system can be analyzed
through the quasienergies (or eigenphases) of the Floquet operator [109]. The quasienergy
spectrum of the kicked top model is obtained from the eigenphases of the Floquet operator
F in Equation (2), and are defined as

F|νi〉 = eiνi |νi〉, (18)

where νi denotes the ith eigenphase of F with corresponding eigenstate |νi〉. As {νi} are
2π periodic, we restrict them within the principal range [−π, π).

Numerically, the spectral analysis is performed as follows. Firstly, we diagonalize F
on the basis of {|j, m〉}m=j

m=−j and only consider the quasienergies for the Floquet eigenstates
with even parity. Then, by arranging {νi} in ascending order, we define the gap between
two consecutive levels as di = νi+1 − νi. Finally, we calculate the distribution P(s) of the
normalized level spacings si = di/〈d〉 [31], where 〈d〉 denotes the mean spacing. The
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dependence of P(s) on κ is shown in Figure 3a–d. Obviously, with increasing κ, the
level spacing distribution P(s) undergoes a transition from Poisson statistics PP(s) = e−s

to Wigner–Dyson statistics PWD(s) = (π/2)s exp(−πs2/4). This is consistent with the
classical dynamics observed in Figure 1.

Figure 3. Level spacing distributions of the kicked top model for (a) κ = 0.4, (b) κ = 1.7, (c) κ = 3,
and (d) κ = 7. The Poisson distribution is plotted as a blue solid curve, and the red dot-dashed
curve denotes the Wigner–Dyson statistics. (e) The level repulsion exponent β as a function of
κ. (f) Averaged level spacing ratio 〈r〉 as a function of κ. The upper (bottom) red dashed line
indicates 〈r〉COE ≈ 0.527 (〈r〉P ≈ 0.386). Other parameters: j = 1000 and α = 4π/7. All quantities
are dimensionless.

To estimate the degree of chaos in Floquet spectrum of the kicked top model, we fit
P(s) to the so-called Brody distribution defined as [30]

PB(s) = bβ(β + 1)sβ exp[−bβsβ+1], (19)

where the factor bβ can be calculated as

bβ =

[
Γ
(

β + 2
β + 1

)]β+1
, (20)

where Γ(x) is the gamma function. The parameter β, which measures the degree of
repulsion between levels, is the level repulsion exponent and varies in the range 0 ≤ β ≤ 1.
For β = 0, the Brody distribution reduces to Poisson distribution, while it becomes Wigner–
Dyson distribution at β = 1. Therefore, the larger β is, the stronger the chaotic spectrum is.
Figure 3e plots β as a function of κ with j = 1000 and α = 4π/7. The behavior of β nicely
agrees with spectral analysis: for κ . 2, we have β ≈ 0, implying the Poisson distribution
of P(s), while β approaches unity when κ & 5, suggesting that the quasienergy levels have
the strongest repulsion and that P(s) is the Wigner–Dyson distribution. It is worth pointing
out that the transition region defined as 0 < β < 1 corresponds to the classical mixed-
phase space with regular regions embedded in the chaotic sea. (see, e.g., the third column
in Figure 1). More details about the spectral statistics in the transition region between
integrability and chaos can be found in [110] and references therein. We only mention that
here the Berry–Robnik level spacing distribution [111] is not yet manifested, as we are not
yet in sufficiently deep semiclassical regime and observe Brody distribution instead.
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Besides the level spacing distribution, the mean ratio of consecutive level spacing is
another widely used detector of quantum chaos. Given the level spacing {di}, the mean
ratio of level spacing is defined as [33,34]

〈r〉 = 1
N
N
∑
i=1

ri, ri = min
(

1
δi

, δi

)
, (21)

where N is the total number of ri and δi = di+1/di. It has been demonstrated that the
averaged ratio of level spacing, 〈r〉, acts as an indicator of spectral statistics. For regular
systems with Poisson statistics 〈r〉P ≈ 0.386, while 〈r〉COE ≈ 0.527 for circular orthogonal
ensemble (COE) of random matrices [34]. We plot 〈r〉 as a function of κ for α = 4π/7 in
Figure 3f. One can see that 〈r〉 exhibits a crossover from 〈r〉P to 〈r〉COE with κ increasing.
This is in agreement with the behavior of P(s), as observed in Figure 3a–d. Moreover,
we notice that the behavior of 〈r〉 is similar to the level of the repulsion exponent β
(cf. Figure 3e).

Even though the level statistics becomes a standard probe in the studies of quan-
tum chaos, it cannot detect the local chaotic features in quantum systems. In order to
characterize the phase space structure and get more insight into the quantum-classical cor-
respondence, we consider the multifractal properties of the coherent states in the following.

2.3. Coherent States

The coherent states have wide applications in many fields [112–116]. As the uncer-
tainty of coherent states tends to zero in the classical limit, one can expect that the phase
space structure and the quantum-classical correspondence can be unveiled through ap-
propriate properties of coherent states. For our purpose, we use the generalized SU(2)
coherent spin states, which are constructed by applying an appropriate rotation on the
state |j, j〉 [113,114],

|ϑ, ϕ〉 = exp
[
iϑ(Jx sin ϕ− Jy cos ϕ)

]
|j, j〉, (22)

where ϑ, ϕ provide the orientation of J. Further simplification of |ϑ, ϕ〉 is available by
performing Taylor expansion and the final result is given by [114,117]

|ϑ, ϕ〉 = eζ J−

(1 + |ζ|2)j |j, j〉 =
j

∑
m=−j

ζ j−m

(1 + |ζ|2)j

√
(2j)!

(j + m)!(j−m)!
|j, m〉, (23)

where J− = Jx − i Jy and ζ = tan(ϑ/2)eiϕ. It is straightforward to show that the uncertainty
of the coherent spin state |ϑ, ϕ〉 in Equation (23) vanishes as j→ ∞.

Here, it is worth noting that the coherent states have been exploited to explore the
quantum and classical structures of the kicked-top model in several works [90,118]. The
quantum-classical correspondence for various structures has been established. In partic-
ular, those works have shown that some valuable information of the scarred eigenstates,
which are localized along the classical unstable periodic orbits, can be extracted from the
properties of the coherent states.

3. Multifractality of Coherent States

The notion of multifractality was originally introduced to describe complex fluctua-
tions observed in fluid turbulence [50]. It has been recognized as a valuable tool to analyze
a variety of classical complex phenomena. Moreover, it has been found that the multifractal
phenomenon was also visible in a quantum state. Quantum state multifractality reflects its
unusual statistical properties and has attracted much attention as it plays a prominent role
in the phase transitions of different quantum systems [55–61,69,119]. The characterization
of the multifractality is quantified by the so-called generalized fractal dimensions, denoted
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by Dq. To define Dq, let us consider a quantum state |Φ〉 expanded in a given orthonormal
basis {|k〉} with dimension N ,

|Φ〉 =
N
∑
k=1

ck|k〉, (24)

where ck = 〈k|Φ〉 and satisfies ∑k |ck|2 = 1. Then, Dq is defined as [53,69]

Dq =
Sq

lnN and Sq =
1

1− q
ln

(
N
∑
k=1
|ck|2q

)
, (25)

where Sq is the Rényi entropy (or participation entropy). For finite N , the values of Dq are
defined in the interval Dq ∈ [0, 1] and decrease with increasing q for q ≥ 0 [68]. The fractal
dimensions, D∞

q , are obtained as N → ∞, so that D∞
q = limN→∞ Dq [53,68]. The degree

of ergodicity of a quantum state in Hilbert space is measured by the fractal dimensions.
For a perfectly localized state D∞

q = 0 for q > 0, whereas D∞
q = 1(∀q) corresponds to an

ergodic state. The multifractal states are the extended non-ergodic states and identified by
0 < D∞

q < 1.
Among all Dq, we focus on the cases where q = 1, 2, and ∞. As the Rényi entropy

reduces to the Shannon entropy, S1 = −∑k |ck|2 ln |ck|2, in the limit q→ 1, the dimension
D1, also known as information dimension, controls the scaling of Shannon information
entropy. For q = 2, S2 = ln(∑k |ck|4)−1 is the logarithm of the well-known participation
ratio [57,58,120], which measures the degree of delocalization of the state in Hilbert space.
Hence, the exponent D2 quantifies the scaling of the participation ratio. At q = ∞, the
Réyni entropy turns into S∞ = − ln pm with pm = maxk|ck|2 and D∞ = − ln pm/ lnN ,
determining the extreme value statistics of the intensities of the quantum state.

In our study, we analyze the multifractal properties of the generalized SU(2) coherent
spin states (cf. Equation (23)) in the eigenvectors of the Floquet operator. Therefore, we
first expand |ϑ, ϕ〉 on the basis of {|νi〉} as follows

|ϑ, ϕ〉 = ∑
i

wi|νi〉, (26)

where wi = 〈νi|ϑ, ϕ〉 is the overlap between the basis vector |νi〉 and the coherent state
|ϑ, ϕ〉, fulfilling the normalization condition ∑i |wi|2 = 1. Then, using Equation (25), the
fractal dimensions are calculated for coherent states that are centered at different points
(θ, φ) of the classical phase space.

In Figure 4, we plot D1, D2, and D∞ as a function of φ and θ for different kicking
strengths κ. By comparing with the classical phase space portraits in Figure 1a, we observe
that the underlying classical dynamics has strong effects on the properties of the fractal
dimensions. The regular regions around the fixed points give rise to Dq ≈ 0, indicating
the coherent states located at these points are the localized states, as seen in the first and
second columns of Figure 4. In the chaotic phase space, the fractal dimensions have larger
values and exhibit an approximately uniform distribution in the phase space (see the last
column of Figure 4). These features imply that the coherent states have high degree of
ergodicity for large kicking strength. For the mixed phase space, it is evident from the third
column of Figure 4 that the regular regions are identified by smaller fractal dimensions,
while larger Dq correspond to the chaotic sea. The obvious correspondence between the
fractal dimension and the classical phase space dynamics and the Lyapunov exponents,
as shown in Figure 1a,b, suggests that Dq are particularly useful to detect the signatures
of quantum chaos. We further notice that 0 < Dq < 1 still holds even if the system is
governed by regular dynamics.
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Figure 4. Color scaled plot of multifractal dimensions Dq for (a1–a4) q = 1, (b1–b4) q = 2, and
(c1–c4) q = ∞, calculated on a grid of 100× 100 coherent states. The different columns correspond to
(from left to right): κ = 0.4, κ = 1.7, κ = 3, and κ = 7. Other parameters: j = 150 and α = 4π/7. All
quantities are dimensionless.

To further demonstrate that Dq can enable us to discern the regular and chaotic
characters of the quantum system, we assess the phase-space-averaged fractal dimensions,
defined as

Dq =
1

4π

∫
dSDq. (27)

Figure 5a–c show, respectively, D1, D2 and D1 as a function of κ for different system sizes j.
We see that the dependence of fractal dimensions on κ is similar for different j. The fractal
dimensions change slowly with increasing κ for smaller κ and exhibit a rapid growth as
soon as κ > 2. Then, Dq eventually approach their saturation values when κ > 5. Moreover,
we also observe that Dq are almost independent of j for κ < 2, while they increase with
increasing j as long as κ > 5.

Figure 5. The variation in phase-space-averaged multifractal dimensions D1 (a), D2 (b), and D∞

(c) with kicking strength κ for different j are denoted by color scales. The phase space average is
performed over 104 coherent states in phase space. Other parameters: α = 4π/7. All quantities are
dimensionless.

In Figure 6, we plot the scaling of Dq with 1/ lnN for κ = 0.4 and κ = 7. Here, N is
the Hilbert space dimension of the system. For the regular regime with κ = 0.4 (Figure 6a),
Dq follow the linear scaling of the form Dq = 1/2− fq/ lnN with fq depending on the
value of q. In particular, the scaling behaviors of Dq imply that Dq tend to 1/2 rather than
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zero as N → ∞. On the other hand, according to RMT, Dq in a fully chaotic regime obey
the following asymptotic behavior [68,69,121]

Ds
q =


1−

gq

lnN for q = 1, 2,

1− g∞
ln(lnN )

lnN for q = ∞.
(28)

As the kicked top becomes a strongly chaotic system at larger κ, one can expect that the
scaling behaviors of Dq should be in agreement with the above results and should approach
unity in the thermodynamic limit. This is indeed what we see in panel (b) of Figure 6, which
shows how Dq vary with 1/ lnN at κ = 7. A good agreement between the numerical data
and Ds

q in Equation (28) leads us to conclude that the coherent states in strongly chaotic
regimes become ergodic in the eigenstates of the Floquet operator.

Figure 6. Phase-space-averaged fractal dimensions Dq with q = 1, 2, ∞ versus 1/ lnN for κ = 0.4 (a) and
κ = 7 (b). Here,N denotes the dimension of Hilbert space. Dq were calculated from 104 coherent states
in phase space. Dashed lines in panel (a) are of the form 1/2− fq/ lnN , with f1 = 0.421, f2 = 0.267
and f∞ = −0.0758. In panel (b), dashed lines for q = 1, 2 are of the form 1− gq/ lnN with g1 = 0.484
and g2 = 0.779, while the dashed line for q = ∞ is given by 1 − g∞ ln(lnN )/ lnN with g∞ = 1.097.
Other parameters: α = 4π/7. All quantities are dimensionless.

More insights into the ergodic property of the coherent states in the eigenvectors
of the Floquet operator can be obtained through the statistics of the rescaled expansion
coefficients {xi = N |wi|2}. For fully chaotic systems, it has been demonstrated that the
probability distribution of {xi} for different ensembles are unified in the χ2

ν distribution, as
shown in [35,39–42],

Pν(x) =
(

ν

2〈x〉

)ν/2 xν/2−1

Γ(ν/2)
exp

(
− νx

2〈x〉

)
, (29)

where 〈x〉 is the mean value of {xi} and ν = 1, 2, 4 for orthogonal, unitary, and symplectic
ensembles, respectively. In particular, Pν(x) turns into the well-known Porter–Thomas
distribution [37] when ν = 1. The width of the distribution becomes narrower with
increasing ν, indicating the larger of the value of ν, the smaller the fluctuations of {xi}.

For the coherent state considered here, the expansion coefficients are complex numbers,
and their distribution in the fully chaotic regime should be expected to be given by χ2

ν

distribution with ν = 2 [38,122]. Moreover, due to the large amount of small coefficients,
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we explore the distribution of {ln xi} instead of {xi}. From Equation (29), Pν(ln x), is
given by

Pν(ln x) =
Pν(x)

d ln x/dx
=

(
ν

2〈x〉

)ν/2 xν/2

Γ(ν/2)
exp

(
− νx

2〈x〉

)
. (30)

The relation Pν(ln x) = xPν(x) implies that P(ln x) has the maximal value at x = 〈x〉.
In the main panels of Figure 7, we show P(ln x) and compare with P2(ln x) for several

values of κ. The numerical data are obtained from 104 coherent states that are uniformly
located in the phase space. As expected, for the regular case with smaller κ values, the
larger number of small coefficients leads to larger fluctuations around its averaged value
and a greater deviation from P2(ln x), as shown in Figure 7a,b. However, the peak of
P(ln x) around ln x ∼ 2 results in moments of P(x) that are q-dependent, which means
non-zero multifractal dimensions Dq(q > 0) at smaller κ values. With further increasing κ,
the distribution of P(ln x) shifts its location to larger values of ln x and becomes narrower
(Figure 7c). For even larger κ values, the distribution P(ln x) eventually converges to
P2(ln x), as visible in Figure 7d. Here, we would like to point out that the peaks observed in
panels (a) and (b) of Figure 7 have nothing to do with the regularity and/or chaos. In fact,
their appearance depends on the computation basis that we used to expand the quantum
state, as has been stressed in [41]. The regularity of a system is only manifested in the long
flat tail of P(ln x).

Figure 7. Histograms of P(ln x) for κ = 0.4 (a), κ = 1.7 (b), κ = 3 (c), and κ = 7 (d). The purple
solid lines in the main panels denote P2(ln x) [cf. Equation (30)]. The inset in each panel plots their
cumulative distributions with blue solid curve corresponds to numerical result, while the red dashed
curve represents F2(x) (cf. Equation (32)). P(ln x) has been computed from 104 coherent states in
phase space. Other parameters: j = 150 and α = 4π/7. All quantities are dimensionless.

The convergence between the distributions of P(x) and P2(x) as κ increases is also con-
firmed in the behavior of the corresponding cumulative distributions. For the distribution
P(x), the cumulative distribution is defined as

F(x) =
∫ x

0
P(t)dt, (31)

while the cumulative distribution of Pν(x) is given by

Fν(x) =
∫ x

0
Pν(t)dt =

γ[ν/2, νx/(2〈x〉)]
Γ(ν/2)

, (32)

where γ(s, x) =
∫ x

0 ts−1e−tdt is the lower incomplete gamma function. The insets in
Figure 7 show F(x) and F2(x) for different κ values. It can be seen that the deviation
between F(x) and F2(x) decreases with increasing κ, in accordance with the behavior of
P(ln x) observed in the main panels.

To quantify the distance between P(x) and P2(x), we use two different deviation
measures, namely the square root of the Kullback–Leibler divergence (SKLD) [123,124]
and the root-mean-square error (RMSE) [125,126]. For the observed distribution P(x)
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and predicted distribution Pν(x), the SKLD (RMSE), denoted as D(ν)
KL (R

(ν)
d ), measures the

difference between observed and predicted probability (cumulative) distributions. The
definitions of SKLD and RMSE are, respectively, given by

D(ν)
KL =

{∫ xm

x0

P(x) ln
[

P(x)
Pν(x)

]
dx
}1/2

, (33)

R(ν)
d =

{
1

xm − x0

∫ xm

x0

[F(x)− Fν(x)]dx
}1/2

, (34)

where x0 and xm are the minimum and maximum values of {xi}, respectively. Both D(ν)
KL

andR(ν)
d are defined in the interval D(ν)

KL ,R(ν)
d ∈ [0, ∞). When D(ν)

KL = R(ν)
d = 0, we have

P(x) = Pν(x), whereas larger D(ν)
KL ,R(ν)

d values imply a larger deviation between P(x)
and Pν(x).

The variation in distance between P(x) and P2(x), measured by D(2)
KL andR(2)

d , with κ

for different j values, is shown in Figure 8. We see that D(2)
KL andR(2)

d behave in a similar
way with increasing κ. For the regular regime with weak kicking strength κ < 2, both of
them have high values and decrease slowly as κ increases. This means that the coherent
states are far from ergodicity in the regular regime. Then, they exhibit a rapid decrease in
the region 2 . κ . 5, which corresponds to the crossover from the integrability to full chaos.
Finally, for κ > 5, as the system becomes globally chaotic, both D(2)

KL andR(2)
d decrease to

very small values and are almost independent of κ. Hence, the coherent states are ergodic
states in a fully chaotic regime. Moreover, the degree of ergodicity of coherent states in a
strongly chaotic regime can be enhanced by increasing the system size, as illustrated in the
insets of Figure 8.

Figure 8. Panel (a): D(2)
KL as a function of κ for different system sizes. Inset: D(2)

KL as a function of

Hilbert space dimension N with κ = 8. Panel (b): R(2)
d as a function of κ for different j values.

Inset: R(2)
d versus Hilbert space dimension N for κ = 8. Other parameter: α = 4π/7. All quantities

are dimensionless.

Here, an interesting point deserves discussing, namely the connection between the frac-
tal dimensions Dq and other quantum chaos probes. Among all detectors of quantum chaos,
we focus on spectral form factor (SFF) and out-of-time-ordered correlators (OTOCs). Both
of them have been extensively used in numerous recent studies [18–22,100–103,127–134].

Let us first consider the relation between Dq and SFF. The SFF is a powerful tool for
detecting the spectral properties of a system and is defined as the Fourier transform of the
two-point correlation function of the level density [135]. It is known that the behavior of
SFF for integrable systems is drastically different from the chaotic systems, mainly due
to the fact that the regular and chaotic systems have different spectral statistics [20]. This
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means that the SFF can be used as an efficient and sensitive indicator of quantum chaos. As
SFF measures the correlation between energy levels, while Dq characterizes the complexity
of quantum states in a given basis, there is no obvious relation between them. Although,
for some particular cases, Dq and SFF have been connected in several works [64,136], a
more general connection between them is still an open question, beyond the scope of the
present work. We will explore this subject in our future work.

We now discuss the comparison of Dq with OTOCs. As the main criterion employed
to decide whether a quantum system is chaotic or not, OTOC quantifies the sensitivity
with respect to the initial condition and information scrambling in quantum systems. It
has been demostrated that both the early and late behaviors of OTOC serve as useful
diagnostics of quantum chaos [100–103,137,138]. Since the chaotic dynamics leads to rapid
growth and large long-time saturation value in the behavior of OTOC, one can, therefore,
expect that the growth rate of the OTOC as well as its long-time saturation value may
be correlated with Dq. However, a more detailed and general connection between them
remains an open question. To date, only a formal relationship between D2 and OTOCs has
been established [139,140].

We finally point out that the degree of extension of a quantum state usually increases
with the degree of chaoticity of the system. Hence, we believe that qualitatively similar
results should be obtained for generic quantum states and for other quantum systems.
Moreover, our main conclusions still hold if the coherent states are expanded to another
more localized basis, even if the fractal dimensions are dependent on the choice of the
basis.

4. Conclusions

In this work, we explored the quantum characters of chaos in the quantum kicked top
model by means of multifractal analysis. The kicked top model is a prototype model in the
studies of quantum chaos, and its experimental realization has been achieved in several
experiments [79–82]. The signatures of classical chaos have been revealed in various works.
It was known that the phase space of classical kicked top has complex structures during the
transition from regular to chaotic dynamics. Therefore, understanding how to capture the
local chaotic features in quantum system becomes a crucial point in order to understand
the quantum-classical correspondence. Although the indicators of quantum chaos, such
as level spacing statistics and mean ratio of level spacings, are able to unveil the global
signatures of chaos in quantum systems, they cannot detect the local chaotic behaviors. In
the present work, with the help of the generalized coherent spin states, we investigated
the local chaotic properties of quantum kicked top through the multifractal dimensions of
coherent states.

The multifractal analysis of the coherent states is performed by expanding them in
orthonormal basis composed by the eigenstates of the Floquet operator. We explicitly
demonstrated that the regular regions in the mixed phase space clearly correspond to
small values of multifractal dimensions. For the strong chaotic case, the multifractal
dimensions exhibit uniform distribution in phase space. Moreover, we have shown that
the phase-space-averaged multifractal dimensions serve as indicators of quantum chaos.
With kicking strength increasing, the averaged multifractal dimensions undergo a rapid
growth, indicating the transition from regular to chaotic dynamics of the system. Coherent
states within the strongly chaotic regime become ergodic, with multifractal dimensions
tending to unity in the thermodynamic limit, in accordance with the predictions of RMT.
However, coherent states’ multifractal dimensions in the regular regime are not equal to
zero. Instead, they approach a finite value as the system size goes to infinity.

To get more insight into the multifractal characters of the coherent states and their
connections with the underlying chaotic dynamics, we further investigated the probabil-
ity distribution of the expansion coefficients. Such distribution is expected to follow the
so-called χ2

ν distribution for the fully chaotic systems. We have shown that the devia-
tion between the distribution of coefficients and χ2

2 distribution decreases as the kicking
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strength is increased. For the kicking strengths that lead to the fully chaotic dynamics, the
distribution of coefficients exhibits a quite good agreement with χ2

2 distribution, implying
the strong ergodicity of coherent states. On the contrary, the distribution of coefficients in
the regular regime displays a remarkable difference from χ2

2 distribution and its long flat
tail reveals the localization character of coherent states. In particular, the non-zero fractal
dimensions for the regular case can be understood as a consequence of the sharp peak
appearing in the probability distribution of coefficients. As the existence of the peak in
the distribution of coefficients for the regular regime is a basis-dependent phenomenon,
one can therefore expect that the fractal dimensions in regular systems should be equal
to zero if a suitable computation basis has been selected. Understanding how to identify
an appropriate basis used in the multifractality analysis is an interesting topic for future
studies. We also discuss how to measure the distance between the observed distribution
of coefficients and the expected χ2

2 distribution. We have shown that the transition from
regular to chaotic dynamics of the system can be identified by the dramatic decrease in the
behavior of different distance measures.

As a final remark, we would like to point out that the recent experimental advances
enable a direct observation of multifractality of wave packets in several quantum sys-
tems [141–144]. Hence, the multifractal properties of our studied Floquet system are
readily accessible for state-of-the-art experimental platforms.
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