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Abstract: Nucleation theory has been widely applied for the interpretation of critical phenomena in
nonequilibrium systems. Ligand-induced receptor clustering is a critical step of cellular activation.
Receptor clusters on the cell surface are treated from the nucleation theory point of view. The authors
propose that the redistribution of energy over the degrees of freedom is crucial for forming each
new bond in the growing cluster. The expression for a kinetic barrier for new bond formation in
a cluster was obtained. The shape of critical receptor clusters seems to be very important for the
clustering on the cell surface. The von Neumann entropy of the graph of bonds is used to determine
the influence of the cluster shape on the kinetic barrier. Numerical studies were carried out to assess
the dependence of the barrier on the size of the cluster. The asymptotic expression, reflecting the
conditions necessary for the formation of receptor clusters, was obtained. Several dynamic effects
were found. A slight increase of the ligand mass has been shown to significantly accelerate the
nucleation of receptor clusters. The possible meaning of the obtained results for medical applications
is discussed.
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1. Introduction

Modern concepts of critical phenomena in physicochemical nonequilibrium systems
were formed after a well-known work, in which the concept of the critical size of a new
phase nucleus was introduced [1]. For the first time, an expression for the nucleation rate
was obtained in the work of Becker and Döring [2]. The approaches developed within
the framework of this theory find their application in the interpretation of a wide range
of phenomena in systems demonstrating first-order phase transitions [3–6]. Recently,
approaches based on the concepts of nucleation theory were applied to analyze critical
phenomena in biological systems [7–9].

In physical chemistry, the macroscopic features of nonequilibrium transitions were
studied in detail [10–14]. It became clear that various biological systems (especially systems
of the sensory type) undergo nonequilibrium transitions similar to a first-order phase
transition [9,15,16].

The processes of cell receptor clustering play an important role in recognition and
regulation [17–19]. The conditions for receptor clustering are actively being studied at
present [20–25]. Several studies claim that clustering mechanisms are responsible for the
sensitivity, specificity, and speed of ligand detection [26–28]. Significant progress has
been achieved in the study of receptor clusters located on T cells [29], B cells [30], and
platelets [31]. Nevertheless, relevant dynamic mechanisms of the formation of receptor
clusters upon interaction with ligands remain poorly understood [27,28]: the conditions
for critical nucleation during clustering are not clear. The influence of ligand mass on
clustering processes is also unclear.

Clustering of receptors, under certain conditions, can occur on the cell surface even in
the absence of any specific ligands [8,17,32]. These phenomena seem to be isomorphic to
homogeneous nucleation in nonequilibrium systems [3–5].

Entropy 2021, 23, 1245. https://doi.org/10.3390/e23101245 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-5579-9820
https://doi.org/10.3390/e23101245
https://doi.org/10.3390/e23101245
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23101245
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23101245?type=check_update&version=2


Entropy 2021, 23, 1245 2 of 19

The processes of receptor clustering, stimulated by external ligands, are similar to
the processes of heterogeneous nucleation [9]. Investigating ligand properties that can
significantly boost the probability of nucleation is a matter of great interest.

In this work, the goal is to apply the approaches developed earlier in the framework
of nucleation theory and its physicochemical applications to the analysis of ligand-receptor
biological clustering.

In the course of the analysis, an asymptotic expression reflecting the conditions
necessary for the formation of receptor clusters was obtained. In particular, a slight increase
of the ligand’s mass should significantly accelerate the nucleation of receptor clusters. The
possible meaning of the obtained results for medical applications is discussed.

2. Materials and Methods
2.1. Background

The cell membrane is considered a two-dimensional surface that contains a certain
number of receptors. Some of these receptors are in a free (not bonded) state. Other
receptors, however, may have varying degrees of association with each other. With some
probability, there can be associates consisting of two, three, or more receptors. Due to
stochastic processes of association and dissociation, multimeric receptor clusters containing
tens, and even hundreds, of receptors can arise [20,24,29,33,34].

In the present work, only clusters with a compact structure of sufficiently large sizes
were assumed to be able to activate intracellular signaling pathways. Below, we will call
such clusters productive.

Within the framework of the developed approach, nucleation processes are assumed
to play an essential role in the formation of productive receptor clusters on the membrane.
Clusters subcritical in size are believed to be statistically unstable: they spontaneously
disintegrate with a high probability. At the same time, clusters of supercritical size are
capable of explosive growth in systems with a sufficient level of receptor “supersaturation”.
In those cases when the cell is in a metastable “waiting mode”, the concentration of
single receptors Cr on its surface is higher than the saturated concentration Cr0. However,
clustering does not occur until nucleation seeds appear.

Elucidation of the conditions for forming supercritical receptor clusters on the mem-
brane is of interest because the latter evolution ultimately leads to the formation of pro-
ductive clusters capable of initiating intracellular signals. The spread of signals along the
signaling pathways of the cell leads to a change in the gene expression of the cell nucleus
that controls the response of the cell to external stimulation [35–37].

In this work, the receptor cluster is treated as a complex association of a group of
receptors perceived as a separate long-lived structure. The structure of receptor clusters
may differ significantly from droplets considered within the framework of traditional
nucleation theory. The bonds of the receptors in the cluster may change, but on average
bonds exist much longer than the sedentary life in a liquid phase. In the developed
approach, oscillations of receptors have an essential role in the cluster dynamics.

According to the many-particle theories, each receptor cluster is a statistical ob-
ject [38–40]. Dissipation issues in statistical ensembles have been studied previously
in connection with the problem of energy equipartition over the degrees of freedom [41–43].
In particular, the energy equipartition over the degrees of freedom, even in simple finite-
dimensional systems, was found to not always take place for times comparable to the
characteristic oscillation time of individual cluster elements [44,45].

In cases when energy redistribution between the degrees of freedom is absent, and the
oscillatory system is characterized by a high “quality factor”, formation of each new bond
between the receptors may lead to energy consolidation after a period of whole cluster
oscillations on the newly formed bond. Moreover, since the momenta of the particles in
this state are opposed to the initial momenta, this process should break the bond. Thus, the
retention of a new element by the cluster does not take place. These short-lived bonds in
the cluster growth dynamics will not be considered.
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The formation rate of the reaction complex is determined by the stochastic mixing of
trajectories in the configuration space of the cluster. The energy redistribution over the
degrees of freedom within the cluster itself affects the formation of the new long-lived
bond to a much greater extent than the thermodynamic energy dissipation by the friction of
cluster elements with the environment. Thus, the redistribution of energy over the degrees
of freedom during receptor clustering should play a limiting role in nucleation processes.

2.2. Mathematical Model

In the theory of chemical reactions, the formation of long-lived bonds is described by
the dynamics of reactants along a single reaction coordinate. The equation for assessing
the reaction rate is:

v = v0 exp
(
−∆G#/kBT

)
(1)

where v is the reaction rate of bond formation, v0 is the rate of the thresholdless reaction,
∆G# is the formation energy of the intermediate complex, kB is the Boltzmann constant,
and T is the temperature [46,47].

In this case, “thermalization” (equipartition of energy) in the intermediate reaction
complex proceeds along the transversal degrees of freedom to the reaction coordinate [48].
The problem of energy redistribution in critical states is common to many-particle the-
ories [49–51]. This issue was studied by Izrailev and Chirikov [44]. An analysis of the
one-dimensional dynamics of bound masses was carried out to study energy redistribution
over the degrees of freedom. The authors considered the system of equations:

ml
..
xl = k(xl+1 + xl−1 − 2xl)× {1− β[(xl+1 − xl)

2 + (xl − xl−1)
2 + (xl+1 − xl)(xl − xl−1)]} (2)

where ml is the mass of the lth bound particle, xl is the deviation of the lth particle from the
equilibrium position, k is the bond stiffness, and β is the nonlinear bond coefficient. The in-
termediate complex in this system corresponds to one of the unstable equilibrium positions.

Analysis of energy dissipation processes in receptor clusters having complex structures
(characterized by Laplacian matrices [52,53]) implies the need to construct a multidimen-
sional analog of Equation (2). In this respect, the movement of receptors included in the
cluster was considered within the framework of the nonlinear matrix equation:

M
..
X = −kLX

(
I − βXL2X

)
(3)

where X = diag(x1, y1, x2, y2 . . . xN , yN) is the matrix of receptor coordinates, M = diag
(M1, M1, M2, M2 . . . MN , MN) is the mass matrix, L is the Laplacian matrix for the graph
of receptor bonds in the cluster, I is the identity matrix, k is the bond stiffness, and β is
the nonlinear bond coefficient. The dimensions of the square matrices X, M, and L are
given by the doubled number of receptors 2N × 2N, where N is the number of receptors in
the cluster.

Equation (3) was used in the present work to assess the efficiency of clustering pro-
cesses in cases when receptor clusters can be considered as random graphs having limited
degrees of the vertices [54].

To characterize the ability of the cluster configuration to redistribute energy over the
degrees of freedom, the von Neumann entropy HL was used [55,56]:

HL = −∑i
λi

∑j λj
ln

λi

∑j λj
(4)

where λi are eigenvalues of the Laplacian matrix L.
Expression (4) shows that the larger the von Neumann entropy is, the “denser” the

spectrum of the eigenvalues of the Laplacian matrix. The eigenvalues are proportional
to the square of the natural frequencies of the normal modes. The smaller the difference
in natural frequencies at the corresponding degrees of freedom, the more efficient the
redistribution of energy between the degrees of freedom [57]. In this regard, the von
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Neumann entropy appears to be a probabilistic measure of the energy redistribution over
the degrees of freedom in a cluster with a given Laplacian matrix.

To assess the biochemical “potency” of a ligand, the association constant Klr is used:

Klr = Clr/ClCr (5)

where Clr is the concentration of receptor–ligand complexes, Cr is the concentration of the
receptors, and Cl is the concentration of the ligands [58,59].

Typically, only a small proportion of receptors are associated with a ligand: Clr/Cr � 1 [24].
Keeping this consideration in mind, Expression (5) for the “potency” of ligand κl can be
easily transformed to the form:

κl ≈
1

mr
mlKlrCl (6)

where mr is the receptor mass and ml is the ligand mass.
When the receptor can bind to several different ligands (for example, see [34,60,61]), the

value characterizing the “potency” of the ligands was described by the following equation:

κ ≈ 1
mr

∑i mlKlrCl (7)

3. Results
3.1. The Potential Barrier of New Bond Formation in a Cluster

The receptor bond breaking energy was found in accordance with the Lagrange
method of virtual displacements [62,63]. All receptor bonds except one were considered
fixed. The latter elongates under the influence of a virtual external force from a stable
equilibrium position to an unstable equilibrium position of an intermediate complex (see
Figure 1a,b). The asymptotic expression for the height of the potential barrier, Ep, which
must be overcome to break the bond, was found (see Figure 1c) and has the following form
(see Appendix A for details):

Ep = k/4β (8)

where k is the bond stiffness and β is the nonlinear bond coefficient. Equation (8) reflects
that in the ligand-receptor system, described by Equation (3), the bond force depends
not only on the elongation of the emerging bond, but also on the adjacent bonds. It was
taken into account that when one of the bonds is close to its critical length, its elongation
is far bigger than the elongation of the adjacent bonds. Thus, the force on such bond
can be assessed with high accuracy based only on the emerging bond elongation (see
Appendix A).

In the absence of dissipation, the energy and phase diagrams look as shown in
Figure 2a,d, respectively. A separatrix line separates the areas of stable bond and lack
of bond; these areas are dynamically isolated. If the dissipation over the period of cluster
oscillation is small with respect to oscillation energy, the phase and energy diagrams look
as shown in Figure 2b,e. The smaller the value of dissipation during the period of cluster
oscillation is, the smaller the width of the energy spectrum, which corresponds to the tra-
jectories leading to the formation of long-lived bonds. In cases when the energy dissipation
is high enough (see Figure 2c,f), a significant set of trajectories corresponding to E > Ep
lead to the formation of a long-lived bond.

3.2. The Kinetic Barrier of Bond Formation

To estimate the kinetic barrier Ek, the energy redistribution over the degrees of freedom
of the cluster described by Laplacian matrix L was analyzed. The energy of the ligand-
receptor system can transfer from the reaction coordinate to oscillations of other bonds in
the cluster. Accordingly, the spectral decomposition of the matrix Equation (3) was carried
out. Equations of motion were transformed to “normal coordinates”. The nonlinear terms
in these equations act as perturbations of independent motion in the normal coordinates.
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Nonlinear perturbations lead to a slow (much longer than the mode oscillation period)
energy redistribution between coordinates at low kinetic energy. However, when the kinetic
energy exceeds the threshold calculated in the framework of the Kolmogorov–Arnold–
Moser theory [57], a fast (four times shorter than the period of the mode oscillations)
redistribution of energy between the modes should occur. That is, there must be an
intracluster energy conversion. Concerning Equation (3), the value of the threshold, found
within the framework of the Kolmogorov–Arnold–Moser theory, Ek, reflects the kinetic
barrier of bond formation.
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potential barrier Ep.

For the value of the kinetic barrier Ek, in this work, the following expression was obtained:

Ek =
3π

1+
eHL

κN
Ep (9)

where HL is the von Neumann entropy of the Laplacian matrix of bonds in a cluster, N is
the number of receptors in a cluster, and is the ratio of the total ligand mass to the total
receptor mass in the cluster (see Appendix A for details). Thus, the kinetic barrier depends
not only on the reaction coordinate dynamics, but also on the dynamics of all receptors in
the cluster described by Laplacian matrix L.

Energy redistribution between the degrees of freedom takes place at a sufficiently large
nonlinear term in Equation (3). In the phase diagram, this area is separated by a vertical
dashed line (see Appendix A and Figure 3). Rapid energy redistribution to other degrees of
freedom begins when the trajectory crosses this line. Figure 3 shows that for a wide range
of energies, energy dissipation is sufficient for the formation of a long-lived bond.
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at this coordinate (ordinate). (d,e) The same trajectories but in phase space in the coordinate q (abscissa) and momentum
p (ordinate) of the oscillations of the entire cluster. Trajectories that do not overcome the potential barrier are marked in
purple. Green—trajectories correspond to a bound state. Yellow—trajectories that lead to the formation of long-lived bonds.
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Figure 3. Phase diagram accounting for the energy redistribution between modes. (a) The projection of the phase space on
the coordinate axis q and momentum p of oscillations of the entire cluster; (b) the axis of energy falling on the remaining
degrees of freedom E⊥. Trajectories that do not lead to bond formation are marked in purple. Red—trajectories that lead to
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Figure 4 shows diagrams for the case with energy dissipation into the environment.
The energy spectra of the system, in which the formation of long-lived bonds can take
place, are very close to those shown in Figure 3. Therefore, the consideration begins with a
simplified model, within which the dissipation to the external medium was assumed to be
negligible (see Figure 3). Then, the consideration proceeded to the construction of phase
portraits with nonzero dissipation (see Figure 4).
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long-lived bonds. Magenta—trajectories that do not lead to the formation of long-lived bond after energy redistribution.

The methods used enabled us to reveal the stratification of phase flows in the system
under consideration (see Equation (3)). Moreover, it was possible to determine separatrix
lines (surfaces) and to find both threshold values: the potential energy of new bond
formation, Ep, and the kinetic energy, Ek. When the latter is exceeded, the energy is
redistributed from one degree of freedom to the others.

3.3. Von Neumann Entropy Approximation

The height of the kinetic barrier depends on the von Neumann entropy (see Equation (9)).
The value of the von Neumann entropy significantly depends on the cluster configura-
tion [55]. Computing the von Neumann entropy is generally a difficult task [64]. However,
for some classes of graphs, the task is more manageable. Particularly, for fully connected
graphs, it was possible to find the expression that approximated the von Neumann en-
tropy. In this case, the von Neumann entropy is given by the asymptotic expression
HL ≈ ln N [55,56].

In real receptor clusters, the full connectivity of the corresponding graphs, as a rule, is
not achieved due to steric constraints. In further consideration, the maximum number of
bonds per receptor will be denoted as ξ. The results of our calculations of the von Neumann
entropy for random receptor clusters are shown in Figure 5 (see Appendix B). It can be
easily seen from Figure 5 that the von Neumann entropy for the random clusters with
greater than 10 receptors (N > 10) is approximated with high accuracy by the expression:

HL ≈ σ ln N (10)
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where σ is the coefficient of proportionality. From the results presented in Figure 5, it
follows that for random graphs of bonds between receptors in a cluster, the best agreement
between the data of numerical calculations and the data obtained from the Equation (10) is
achieved at a value of σ = 0.93.
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interpolation of averaged entropy values for random bond graphs with constraints on the vertex
degrees (see Appendix B). The area around solid line is the standard deviation in data. The dashed
line is the approximation of the von Neumann entropy in accordance with Equation (10).

3.4. Critical Size of Receptor Cluster

The value of the potential barrier Ep, as follows from Expression (8), does not depend
on the total number of receptors in the cluster N. The value of the kinetic barrier Ek,
as follows from Equations (9) and (10), hyperbolically depends on N: Ek ∝ 1/N(1−σ).
Consequently, there is a certain N∗ at which Ek = Ep. Formally, when condition (N > N∗)
is satisfied, the concentration of free receptors Cr0 on the cell surface (at which the rates of
attachment and detachment of free receptors to clusters are the same) corresponds to the
state of thermodynamic equilibrium. Within the framework of the developed approach, in
real cells the condition N � N∗ is assumed to be fulfilled. Therefore, Ek > Ep.

For a nucleus smaller than the critical size, the rate of attachment of receptors to
this nucleus is lower than the rate of detachment, and, on average, these smaller nuclei
will degrade. When the critical size is exceeded, the attachment speed is greater than the
detachment speed. Assuming the same cross-section for the attachment and detachment
reactions, we obtain the following equation for the critical size (see Appendix C):

Nc =

(
3πεp

εp + ln(Cr/Cr0)

) 1
1−σ

(11)

where εp = Ep/kBT is the normalized bond breaking potential barrier, Cr is the con-
centration of free receptors on the cell surface, and Cr0 is the saturated concentration of
free receptors.
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The total number of receptors on the cell surface can be changed due to functional and
pathological reasons, resulting in ligand sensitivity variation. In the developed approach,
an increase in ligand sensitivity corresponds to a decrease of critical size Nc due to an
increase of Cr (see Equation (11) and Figure 6).
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3.5. Heterogenous Nucleation Efficiency

Let us estimate the change in the formation rate of supercritical clusters upon the
addition of ligands according to Equation (1). For this, by substituting Equation (7) into
Equation (9), the expression for the heterogeneous nucleation efficiency (HNE) can be
easily found:

HNE(t) = ln
.

pl
.

p0
≈ ξNc

mrσεp
∑l mlKlCl(t) (12)

where
.

pl is the probability of forming a supercritical receptor cluster per unit time as
a result of the interaction of receptors in the presence of ligands, and

.
p0 is the relevant

probability in the absence of ligands.
Using Equation (12), one could obtain the probability pl(t) of the ligand-induced

formation of a supercritical cluster at time t:

pl(t) = 1− exp
{
− 1

τr

∫ t

0
exp[HNE(τ)]dτ

}
(13)

where τr = p0/
.

p0 is the characteristic time of a supercritical cluster formation in the
absence of ligands.

3.6. Homologous Series in T Cell Activation by Oligomeric MHC

In light of the results received, novel methods for searching of the “homologous series”
in several biologically important families of receptor-ligand systems become possible.
Oligomeric ligands are of particular interest. In that case, receptor clusters nucleation
depends only on ligands mass ml and the concentration of ligands Cl(t). In particular,
the homologous series for oligomers of Major Histocompatibility Complexes (MHC) was
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investigated (see Figure 7 and Appendix D). It was found that there is a linear dependence
of concentration logarithm on oligomericity M:

ln Cl = κ − θ·M (14)

where coefficients κ and θ are given by Equations (15) and (16):

κ = ln
(
− τr

tγ
ln(1− pl(t))

)
(15)

θ =
ξNcKlCαmm

mrσεp
(16)

where mm is the single monomer mass and γ is the proportionality constant (see Appendix D).
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Equation (14) is used to fit data from Cochran’s, Cameron’s, and Stern’s paper on
the activation of T cells by Major Histocompatibility Complex oligomers [65]. The best
agreement between Equation (14) and the data is achieved at κ = −5.26 and θ = 0.92.

4. Discussion

The approach developed for the description of receptor cluster nucleation is a gen-
eralization of the classical theory of nucleation [2]. The focus is on the redistribution of
energy over the degrees of freedom in the formation of new bonds between receptors. The
effects of energy redistribution over the degrees of freedom made it possible to reveal the
dependence of the critical cluster size Nc on the concentration of free receptors present on
the cell surface Cr (see Equation (11)).

Energy redistribution over the degrees of freedom is an essentially dynamic effect
and, as far as the authors know, has never been considered before in describing nucleation
effects [66]. Our analysis of the dynamics of ligand–receptor complexes made it possible to
establish how the rate of nucleation processes should depend on the mass of heterogeneous
agents (ligands). We obtained an asymptotic expression for the kinetic barrier Ek (see
Equation (9)), exceeding which the effects of energy redistribution become decisive.
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The attachment of ligands to receptors brings together the eigenfrequencies of oscil-
lations in the cluster, thereby leading to an increase in the probability of the formation
of long-lived bonds. With this in mind, we compared the rates of “heterogeneous” and
“homogeneous” nucleation. The concentration of heterogeneous ligands Cl exponentially
enters the expression for the probability of formation of a supercritical receptor cluster
twice (see Equations (12) and (13)). The approach developed seems to be quite general. It
allows one to assess situations both with individual ligands and with a mixture of several
types of ligands that competitively bind to receptors, including those with time-varying
concentrations (see Equation (12)).

In the developed approach, the response of the cell to the appearance of specific
ligands implies a particular sequence of events:

1. The formation of supercritical clusters by the mechanism of heterogeneous nucleation;
2. The growth of these clusters to a productive state that initiates cell’s intrinsic signal-

ing pathways;
3. Signal transmission along the signaling pathway to the cell nucleus, where gene

expression takes place.

Rigorously speaking, the expressions obtained in this work correspond to the first
stage, which is assumed to be limiting. Indeed, the second stage seems to be inevitable from
the point of view of general nucleation theory [3–5]. The third stage (intracellular signal
transduction) is widely described in the literature as being extremely sensitive [35–37].

In the framework of Eyring’s classical theory [46], the attachment of one particle
to another in the course of a chemical reaction is assumed to occur along one selected
reaction coordinate, and the remaining (transverse) degrees of freedom serve only for
energy relaxation. Generally, dynamics along several degrees of freedom can take on a
more complex, substantially multidimensional character [67–69]. One example of such
dynamics is the threshold energy redistribution within the cluster described above.

Traditionally, the thermodynamic approach has been used to determine the critical
size of the nucleus [1,3–5]. In this case, the critical condition is determined by the equality
of the chemical potentials in the supersaturated phase and the nucleus. However, within
the thermodynamic approach, the energy equilibration after the formation of a bond is
assumed to be fast enough. This work shows that, when this is not the case, the critical size
of the nucleus and the height of the kinetic barrier of bond formation Ek is determined by
the dynamic parameters, particularly the masses of ligands and receptors.

To some degree, the developed approach is reminiscent to the “evolution of views”
that took place in the description of epigenetic processes. In his pioneering work, Wadding-
ton proposed the concept of an epigenetic landscape, along which the state of the cell
smoothly moves from one less “energetically favorable” to a more “energetically favorable”
position [70]. After Rene Thom developed the theory of elementary catastrophes [71], he
entered into correspondence with Waddington. They concluded that in the landscape,
in principle, there can be “canopies”, as a result of which leaps should be present in the
epigenetics of cells—elementary catastrophes [72]. The latter seems to be similar to the
threshold effects in the redistribution of energy in the dynamics of clusters discussed in the
present work.

From a formal mathematical point of view, the suggested approach for the description
of the dissipation in an intermediate complex is isomorphic to the approach describing
energy distribution processes in developed turbulent flows [73]. Within the framework
of the turbulence theory, energy is fragmented during the decay of large vortices, and
slow dissipation occurs mainly on the microscale [73–75]. The approach developed by
us assumes fragmentation of energy by degrees of freedom and the slow dissipation of
the fragmented energy in the vicinity of local equilibrium, which ultimately leads to the
formation of a long-lived bond.

Due to the presence of an exponential in Equation (13), the summation over the
types of ligands in Equation (12) is manifested in the effect of competitive ligands on the
probability of cluster formation being multiplicative. That is, for a “weak” (nonspecific)
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ligand the HNE value is of the order of unity. So, the presence of the relevant term in
Equation (12) will reduce the characteristic time of cluster nucleation by approximately
e ≈ 3 times. At the same time, the HNE value of the “strong” (specific) ligand can be on the
order of 10. Therefore, the “strong” ligand by itself is capable of reducing the characteristic
nucleation time by e10 ≈ 2× 104 times. In the presence of a “weak” ligand, the nucleation
time decreases even more, decreasing by e11 ≈ 6× 104 times. This, in our opinion, can
explain the observation of a significant increase in sensitivity to the specific ligands upon
the addition of nonspecific ones [28].

The nature of the bonds between receptors in the cluster continues to be discussed [22].
One of the most promising areas of discussion concerns the clustering effects that are
based on the attachment of receptors to the actin cytoskeleton located under the cell
membrane [76]. In light of our consideration, actin filaments seem to be able to provide
oscillations of receptors with a sufficiently high “quality factor”, which, in principle, facili-
tates intermodal energy transfer, making the developed approach of interest to specialists
studying actin cytoskeleton dynamics [77].

Receptor clustering occurs in many types of cells [29–31,34]. In this regard, the
developed approach should formally work when describing the processes of clustering
receptors of various types of cells. From one side, Equation (13) seems to be rather general.
From another side, the actual boundaries (limits) of its applicability require further research.
At first glance, the developed approach seems to be oversimplified. Within its framework,
many essential aspects of ligand–receptor interactions remain behind the scenes. However,
considering the dynamic redistribution of energy over the degrees of freedom during the
formation of critical receptor clusters makes it possible to consider the effects caused by
the mass of interacting elements. In principle, this consideration makes it possible to assess
the contribution of structurally similar (homologous) ligands to nucleation processes.

In particular, Equation (12) can be used for a qualitative comparison of similar ligands
of the same origin (homologous). This is in analogy to the homologous series originally
found by Vavilov N.I. for cereals [78]. Figure 7 shows the results of the calculations for the
dependency of the rate of naive T cell receptor clustering on the MHC oligomericity. All of
the ligands are represented by the points falling on a single line within the margin of error.

Equation (12) can be used to assess the sensitivity of platelets to conformational
changes in the von Willebrand factor. This kind of ligand–receptor interaction is character-
ized by the “condensation” of receptor clusters on the linear structure of the von Willebrand
factor [79,80]. Within the framework of the developed approach, this consideration is for-
mally expressed in an increase of the effective local concentration of the ligands (monomers
of the multimeric von Willebrand factor) at the platelet surface. Thus, von Willebrand
factors, “heavier” in molecular weight, should make a noticeably greater contribution to
platelet activation due to the clustering of GPIb receptors on their surface. Recently, similar
experimental indications have been published [81,82].
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Appendix A

In the problem under consideration, the equation of motion of receptors in a cluster
has the following form:

M
..
X = −kLX

(
I − βXL2X

)
(A1)

where X = diag(x1, y1, x2, y2 . . . xN , yN) is the matrix of receptor coordinates, M = diag
(M1, M1, M2, M2 . . . MN , MN) is the mass matrix, L is the Laplacian matrix for the graph
of receptor bonds in the cluster, I is the identity matrix, k is the bond stiffness, and β is
the nonlinear bond coefficient. The dimensions of the square matrices X, M, and L are
given by the doubled number of receptors 2N × 2N, where N is the number of receptors in
the cluster.

The equation of motion of a sole receptor with one bond, if the rest are fixed, is
as follows:

m
..
z = −kz

(
1− βz2

)
(A2)

where m is the mass of one receptor, and z is the displacement along the bond axis.
We will assume that the bond breaks at an unstable equilibrium point, defined by

1− βz2
m = 0 (see Equation (A2)). We obtain Expression (A3) for the distance at which the

bond breaks and, integrating the right-hand side of Equation (A2), we obtain an expression
for the bond energy (A4):

zm = 1/
√

β (A3)

Ep =

zm∫
0

kz
(

1− βz2
)

dz =
k

4β
(A4)

Let us carry out the spectral decomposition of Equation (A1) and write out the ith
component corresponding to one oscillation mode:

mµi
..
qi = −kλiqi

(
1− βλ2

i q2
i

)
(A5)

where µi is the dimensionless mass of the oscillation mode, qi is the phase coordinate of
the oscillation mode, and λi are eigenvalues of matrix L.

The characteristic order of frequencies is given by Equation (A6), and the specific
frequency of the mode is given by Equation (A7):

ω0 =
√

k/m (A6)

ωi = ω0
√

λi/µi (A7)

When applied to a system with multiple oscillation modes, the quasi-periodicity
condition has the form ∆ω/ f > 1, where ∆ω is the average distance between the excited
and the neighboring modes, and f is the separatrix size [57]. Concerning our system, the
condition for the destruction of quasi-periodicity can be estimated as:

βλ2
i q2

im > 3πω2
i /2Nω2

0 = 3πλi/2Nµi (A8)

where qim is the maximum value of the phase coordinate of the mode, and N is the number
of receptors in the cluster.

The following expression is the energy for each mode:

Ei = mµiq′
2
im/2 = mµiω

2
i q2

im/2 = kλiq2
im (A9)
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Then the total energy of oscillations will be equal to:

E =
2N

∑
i=1

Ei = k
2N

∑
i=1

λiq2
im ≈ kq2

m

2N

∑
i=1

λi (A10)

where qm is the RMS value of the phase coordinate.
Substituting Equation (A10) into Equation (A8) and taking the logarithm, we get

the following:

ϕi = ln
4βNE
3πk

+ ln
λi

∑j λj
+ ln µi > 0 (A11)

where ϕi is the dimensionless characteristic of the mode stochastization.
To assess the destruction of the quasi-periodicity of motion in all modes, we introduce

the dimensionless characteristic of the system stochastization:

Φ =
2N

∑
i=1

Ei ϕi
E

= ln
4βNE
3πk

+
2N

∑
i=1

λi

∑j λj

(
ln

λi

∑j λj
+ ln µi

)
(A12)

For a more convenient representation, we introduce two quantities: the von Neumann
entropy of the Laplacian matrix of the graph of connections HL (see Equation (A13)) иand
the mass cross-entropy Λ (see Equation (A14)).

HL = −
2N

∑
i=1

λi

∑j λj
ln

λi

∑j λj
> 0 (A13)

Λ =
2N

∑
i=1

λi

∑j λj
ln µi ≥ 0 (A14)

The boundary quasi-periodicity energy Eq will be reached at Φ = 0 and can be
expressed as the following:

Ek =
k

4β

3π

N
exp(HL −Λ) = 3πEp exp(HL −Λ)/N (A15)

Suppose we average all possible rearrangements of ligands over receptors in the
cluster. In that case, the dimensionless masses of the oscillation modes µi become equal to
each other, as well as the ratio of the mass of the cluster with ligands to the mass of the
receptors of this cluster µ:

µ = 1 +
2N

∑
i=1

mi
N·m = 1+ (A16)

where mi is the ith ligand mass, and is the ligands mass ratio to the mass of the receptors
in the cluster.

Then a simplified expression can be obtained for Ek:

Ek = 3πEp exp HL/(1+)N (A17)

where mc is the total mass of the cluster.

Appendix B

We seek approximation for von Neumann entropy of Laplacian matrix HL in the form
of linear dependence on cluster size N logarithm:

HL ≈ σ ln N (A18)

where σ is the coefficient of proportionality.
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To obtain the data needed to fit the proportionality coefficient, we generated random
graphs and computed their von Neumann entropies (see Equation (4)). We restricted the
maximum number of receptor bonds ξ by generating random graphs with limited vertex
degrees [54]. After generating 100,000 graphs with different ξ, they were grouped by the
number of vertices N. These dependencies were fitted against Equation (A18), and at a
number of receptors greater than 10 (N > 10) were approximated with high accuracy.
There was practically no difference between ξ = 3 and ξ = 7. The best agreement between
Equation (A18) and the data is at σ = 0.93.

Appendix C

For small sizes of receptor clusters, shedding receptors is faster than attaching new
receptors. At larger sizes of receptor clusters, attaching may become faster than shedding.
If it exists, the size at which the speeds are equal is called a critical size [3–6].

To determine this size, we found the dependence of shedding and attaching speeds.
Firstly, the speed of shedding receptors from cluster v−(N) is determined by reaction
cross-section and potential barrier (see Equation (1)):

v−(N) = k−s−(N) exp
(
−Ep/kBT

)
(A19)

where k− is the speed of thresholdless reaction, s−(N) is the shedding reaction cross-section,
Ep is the energy of potential barrier, kB is the Boltzmann constant, and T is the temperature.

Similarly, we obtain the expression for the speed of the attachment of new receptors
to sufficiently large clusters (N > N∗ see Section 3.4) speed v∗+(N, Cr):

v∗+(N, Cr) = Crk+s+(N) exp
(
−
(

Ep − E f

)
/kBT

)
(A20)

where Cr is the concentration of free receptors around the cluster, k+ is the speed of the
thresholdless reaction, s+(N) is the attaching reaction cross-section, and E f is the energy
of free receptors.

For smaller clusters (N < N∗), the kinetic barrier is larger than the potential barrier and
therefore the expression for the speed of the attachment of new receptors speed v+(N, Cr)
takes form:

v+(N, Cr) = Crk+s+(N) exp
(
−
(

Ek(N)− E f

)
/kBT

)
(A21)

where Ek(N) is the energy of the kinetic barrier.
Let us define the saturated concentration Cr0 of free receptors as one that satisfies

this property:
v∗+(N∗, Cr0) = v−(N∗) (A22)

We substitute Equations (A19) and (A20) into Equation (A22) to find expression for
saturated concentration. An approximate expression is derived by assuming that cross-
sections of shedding and attaching are equal, as follows:

Cr0 =
k−s−(N∗)
k+s+(N∗)

exp
(
−

E f

kBT

)
≈ k−

k+
exp

(
−

E f

kBT

)
(A23)

Let us define the critical size of the cluster Nc at the concentration of free receptors Cr
as one that satisfies this property:

v+(Nc, Cr) = v−(Nc) (A24)

We substitute Equations (A19) and (A21) into Equation (A24) to find another expres-
sion for saturated concentration.

Cr exp
(
−

Ek(N)− Ep

kBT

)
=

k−s−(N∗)
k+s+(N∗)

exp
(
−

E f

kBT

)
= Cr0 (A25)
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We proceed with finding the expression for the energy of the kinetic barrier:

Ek(Nc) = Ep + kBT ln(Cr/Cr0) (A26)

Another expression for the energy of kinetic barrier can be found by substituting
Approximation (10) into Equation (9):

Ek(N) =
3π

N1−σ
Ep (A27)

where σ is the coefficient of proportionality from the approximation.
Finally, by combining Equations (A26) and (A27), we obtain the expression for criti-

cal cluster

Nc =

(
3πεp

εp + ln(Cr/Cr0)

) 1
1−σ

(A28)

where εp = Ep/kBT is the normalized bond-breaking potential barrier.

Appendix D

Equations (13) and (12) should formally describe receptor cluster nucleation in various
types of cells. In practice, the direct comparison of different cell types is hindered by
variation in the critical cluster size Nc (see Results Section 3.4). On the contrary, the
influence of characteristics of ligands on cell response does not have this problem since the
critical cluster size stays constant. Oligomeric ligands are of particular interest. In that case,
receptor clusters’ nucleation depends only on ligands mass ml and the concentration of
ligands Cl(t).

The local concentration of ligand-binding sites increases drastically when the oligomeric
ligand is near the cell surface. This large concentration is assumed to be similar between
oligomers of different sizes because ligand monomers are at the same distance. Therefore,
the local concentration of ligands is assumed to be some constant Cα when the oligomer is
near the cell surface and zero otherwise. The proportion of the time that oligomers spend
near the cell’s surface is proportional to oligomer’s concentration in solution Cl :

tv/t = γCl (A29)

where tv is the time oligomers spent near the cell surface, t is the overall time, and γ is the
proportionality constant.

After substituting Equation (A29) into Equations (12) and (13) we obtain the expression
for the probability of receptor cluster nucleation pl(t):

pl(t) = 1− exp
(
− tγCl

τr
exp

(
ξNcKlCαmm

mrσεp
M
))

(A30)

where τr is the characteristic time of a supercritical cluster formation in the absence of
ligands, ξ is the maximum number of bonds per receptor, Nc is the critical size of receptor
cluster, mm is the mass of one ligand monomer, mr is the receptor mass, σ is the coefficient
of proportionality for von Neumann entropy approximation, εp is the normalized bond-
breaking potential barrier, and M is the number of monomers in an oligomer (oligomericity).

After a series of transformations on Equation (A30), we rewrite it as a linear depen-
dence of the concentration logarithm on oligomericity:

ln Cl = κ − θ·M (A31)

where coefficients are given by Equations (A32) and (A33):

κ = ln
(
− τr

tγ
ln(1− pl(t))

)
(A32)
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θ =
ξNcKlCαmm

mrσεp
(A33)

Equation (A31) is used to fit data from Cochran’s, Cameron’s, and Stern’s paper on
the activation of T-cells by Major Histocompatibility Complex oligomers [65]. The best
agreement between Equation (A31) and the data is at κ = −5.26 and θ = 0.92.
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