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Abstract: Multilabel feature selection is an effective preprocessing step for improving
multilabel classification accuracy, because it highlights discriminative features for multiple labels.
Recently, multi-population genetic algorithms have gained significant attention with regard to
feature selection studies. This is owing to their enhanced search capability when compared to that
of traditional genetic algorithms that are based on communication among multiple populations.
However, conventional methods employ a simple communication process without adapting it to
the multilabel feature selection problem, which results in poor-quality final solutions. In this paper,
we propose a new multi-population genetic algorithm, based on a novel communication process,
which is specialized for the multilabel feature selection problem. Our experimental results on 17
multilabel datasets demonstrate that the proposed method is superior to other multi-population-based
feature selection methods.

Keywords: communication; evolutionary algorithm; multilabel feature selection; multi-population
genetic algorithm

1. Introduction

Multilabel feature selection (MLFS) involves the identification of important features that depend
on a given set of labels. It is often used as an effective preprocessing step for complicated learning
processes, because noisy features in relationships between multiple labels can be eliminated from
subsequent training, resulting in improved multilabel classification performance [1,2]. Given an
original feature set F = { f1, . . . , f|F|}, MLFS identifies a feature subset S ⊂ F composed of n � |F|
features that are dependent on the label set L = {l1, . . . , l|L|}. Conventional studies on MLFS have
indicated that population-based evolutionary algorithms are promising, owing to their global search
capability [3,4].

Conventional genetic algorithms that are based on a single population have suffered from
premature convergence of the population, resulting in local optimal solutions [5]. Multi-population
genetic algorithms (MPGAs) have recently gained significant attention as a means for circumventing
the aforementioned issue. This is because they enable one sub-population to avoid premature
convergence by referencing individuals or solutions from other sub-populations [6–8]. With regard to
the feature selection problem, the communication process would improve the search capability of the
sub-populations, because they can acquire hints regarding important features by referencing the best
individuals from other sub-populations [9].

To the best of our knowledge, most studies have used a traditional communication process
to solve the MLFS problem, even though it is intended for solving a single-label feature selection
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problem [4,5]. A novel communication process should be designed to maximize the benefit of using
the MPGA for solving the MLFS problem. In this paper, we propose a new MPGA that specializes in
solving the MLFS problem by enhancing the communication process. Specifically, an individual to be
referenced is chosen from other sub-populations based on the concept of label complementarity from
the viewpoint of the discriminating power corresponding to each label; then, the chosen individual is
used in our improved update process. In this regard, our primary contributions are as follows:

• We proposed an MPGA that specializes in solving the MLFS problem by introducing a novel
communication process and improving the update process.

• We introduced a new concept of label complementarity derived from the fact that feature subsets
with a high discriminating power for different label subsets can complement each other.

2. Related Work

Recent MLFS methods can be broadly classified into filter-based and wrapper-based methods.
The filter-based methods assess the importance of features through their own measure based on feature
and label distributions. Thereafter, the top-n features with the highest scores are selected. Li et al. [10]
proposed a granular MLFS method that attempts to select a more compact feature subset using
information granules of the labels instead of the entire label set. Kashef and Nezamabadi-pour [11]
proposed a Pareto dominance-based multilabel feature filter for online feature selection, which concerns
the number of features being added sequentially. Gonzalez-Lopez et al. [12,13] proposed distributed
models that measure the quality of each feature based on mutual information on Apache Spark.
Seo et al. [14] proposed a generalized information-theoretic criterion for MLFS. They introduced
entropy approximation generalized to cardinality, which was chosen by users based on the trade-off
between approximation precision and computational cost. However, the classification performance of
these methods is limited, because they work independently of the subsequent learning algorithm.

In contrast, wrapper-based methods evaluate the superiority of candidate feature subsets that are
based on a specific learning algorithm such as a multilabel naive Bayes classifier [15]. They generally
outperform the filter-based methods in terms of classification accuracy [16]. Among the wrapper-based
methods, population-based evolutionary search methods are frequently used for feature selection,
owing to their stochastic global search capability [17]. Lu et al. [18] proposed a new functional
constriction factor to avoid premature convergence in traditional particle swarm optimization.
Mafarja and Mirjalili [19] proposed binary variants of a whale optimization algorithm and applied
them to the feature selection. Nakisa et al. [20] used five population-based methods in order to
determine the best subset of electroencephalogram features. Dong et al. [21] improved a genetic
algorithm using granular computing to select important features in high-dimensional data with a
low sample size. Moreover, Lim and Kim [22] proposed an initialization method for evolutionary
search-based MLFS algorithms by approximating conditional mutual information. Lee et al. [23]
introduced a score function to deal with multilabel text datasets without problem transformation in a
memetic search. However, these single population-based methods suffer from premature convergence
of the population, resulting in limited search capability. Although methods, such as a multi-niche
crowding genetic algorithm [24], can be used to mitigate premature convergence, they are still sensitive
to the initialization of the population.

To resolve these issues, recent single-label feature selection studies have considered
multi-population-based methods while using multiple isolated sub-populations. Ma and Xia [25]
proposed a tribe competition-based genetic algorithm that attempts to ensure the diversity of solutions
by allowing the sub-populations to generate feature subsets with different numbers of features.
Additionally, it explores an entire search space by competitively allocating computing resources to the
sub-populations. Zhang et al. [26] proposed an enhanced multi-population niche genetic algorithm.
To avoid local optima, it included a process of exchanging the best individuals or solutions between
the sub-populations during the search process. It also reduced the chances of similar individuals
being selected as parents, based on the Hamming distance. Wang et al. [27] proposed a bacterial
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colony optimization method by considering a multi-dimensional population. Similar to the study that
was conducted by Ma and Xia, the entire search space was divided based on the number of features
selected, and the sub-populations explored different search spaces.

3. Label Complementary Multi-Population Genetic Algorithm for Mlfs

3.1. Preliminary

Table 1 summarizes the terms used for elucidating the proposed method. Conventional MPGAs
for single-label feature selection entail the following processes.

Table 1. Notation used for describing/elucidating the proposed method.

Terms Meanings

D A multilabel dataset
L A label set in D, L = {l1, . . . , l|L|}
F A feature set in D, F = { f1, . . . , f|F|}
S A final feature subset, |S| ≤ n
t Number of generations
m Number of sub-populations
n Maximum number of selected features

indi An i-th individual
Pk A k-th sub-population, Pk = {ind1, . . . , ind|Pk |}
vk Fitness values for the individuals of the Pk
Ak Label-specific accuracy matrix for individuals of Pk, Ak = (aij) ∈ R|Pk |×|L|

indc A complementary individual
ci A degree of complementarity for indi

Step 1: Initialization of sub-populations. Each sub-population Pk consists of individuals whose
number is a pre-defined parameter. Furthermore, each individual represents a feature subset.
For example, in the genetic algorithm, each individual is represented as a binary vector called
a chromosome, which comprises ones and zeros that represent selected and unselected features,
respectively. In particle swarm optimization, each individual is represented as a probability vector.
The components of a particle are regarded as the probabilities that the corresponding features will be
selected. In most studies, the individuals are initialized randomly.

Step 2: Evaluation using a fitness function. The individuals of each sub-population can be
evaluated using a fitness function. Given a feature subset represented by each individual indi,
a learning algorithm, such as a naive Bayes classifier, is trained, and trained classifier is used to
predict the label for each test pattern. Given a correct label and the predicted label, a fitness value can
be computed using evaluation metrics, such as accuracy. Intuitively, a feature subset that results in
better single-label prediction has better a fitness value.

Step 3: Communication among sub-populations. The sub-populations communicate with each
other based on the best individuals in terms of the fitness value. In each sub-population, the worst
individual (with the lowest fitness value) is replaced by the best individual of another sub-population.

Step 4: Sub-population update. The individuals generate offspring via genetic operators.
First, each sub-population chooses the parents based on fitness values. For example, roulette-wheel
selection employs the fitness value percentage of each individual in each subpopulation, as the
probability that the individual will be chosen as a parent. Subsequently, the offspring are generated
via the crossover of parents or mutation.

Whenever the individuals are modified in Step 4, they are evaluated in the same manner as in
Step 2. During the search process, MPGAs repeat Step 3→Step 4→Step 2 until a stopping criterion is
met. In the left side of Figure 1, the aforementioned process is presented as a flowchart.
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Figure 1. Schematic overview of proposed method.

3.2. Motivation and Approach

We designed a novel MPGA that specializes in solving the MLFS problem. To extend the benefits
of the communication process used in conventional studies to the MLFS problem, the following issues
should be considered:

• Through communication between the sub-populations, the discriminating power of multiple
labels should be complemented. Additionally, the referenced individuals should be used to
generate offspring that are superior to the previous generation.

• Feature subsets with high discriminating power for different label subsets can complement
each other. Therefore, each sub-population should refer to an individual with the highest
discriminating power for a subset of labels that are relatively difficult to discriminate, resulting in
improved search capability for the MLFS.

Existing fitness-based parent selection methods may not fully use the individuals referenced from
other sub-populations, because they are selected, regardless of fitness in our method. This issue can be
resolved by ensuring that one of the important individuals in each sub-population is involved when
generating the offspring.
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Figure 1 presents a schematic overview of the proposed MPGA for solving the MLFS
problem. Particularly, we modified the communication and update process of the existing MPGA.
First, with regard to sub-population communication, the conventional method communicates by
exchanging the best individuals among sub-populations. Specifically, the sub-population P1 imports
the best individual ind4 of P2; then, the worst individual ind3 is replaced by ind4 of P2. Similarly,
ind2 of P2 is replaced by ind1 of P1. In the proposed label complementary communication for
MLFS, the evaluation of the individuals is performed similarly to that performed in the conventional
methods for single-label feature selection; however, the learning algorithm is replaced by a multilabel
classification algorithm, such as a multilabel naive Bayes classifier (MLNB) [15], which uses a series
of functions that predict each label. Therefore, the discriminating power corresponding to each label
can be obtained by reusing the learning algorithm that was trained to evaluate the fitness values of
individuals; a detailed description of this process is presented in Section 3.3. As shown in Figure 1,
the best individual ind1 of P1 lacks sufficient classification performance with regard to the label l2.
To complement the discriminating power with regard to l2, P1 refers to individual ind3 of P2, which
best discriminates l2.

In the sub-population updating step, the conventional method stochastically or deterministically
selects the parents of P1 via fitness-based selection. Here, the individual ind3 that is imported from P2

is selected and used with a high probability, because it had the highest fitness in P2. In contrast, in the
proposed label complementary updating step, the complementary individual indc referenced from
P2 is chosen, regardless of fitness. Because the important individuals of P1 are the complementary
individual indc and the best individual ind1, one of them is selected as a parent. In other words,
one of the important individuals is always involved in the generation of offspring. For diversity,
another parent is selected from the remaining individuals at random. Finally, the selected parents
generate offspring while using a genetic operator.

If a MPGA begins with a promising initial sub-populations, then a good-quality feature subset
can be found by spending fewer time than that begins with a randomly-initialized sub-populations.
In this study, we introduce a simple but effective initialization method. Given an original feature set
F = { f1, . . . , f|F|} and the number of sub-populations m, the spherical k-means algorithm partitions F
into m clusters [28]; herein, each of the clusters are composed of different features without overlapping,
such that |C1|+ |C2|+ · · ·+ |Ck|+ · · ·+ |Cm| = |F|. Subsequently, each sub-population Pk is intialized
based on repetitive entropy-based stochastic sampling from cluster Ck. Section 3.3 presents a detailed
description of the sampling process.

3.3. Algorithm

Algorithm 1 represents the pseudocode of the proposed method. Each individual (chromosome)
is represented by a binary string that is composed of ones and zeros, representing selected and
unselected features, respectively. For simplicity, each sub-population is represented as a set of
individuals, i.e., Pk = {ind1, . . . , ind|Pk |}. Additionally, all of the sub-populations have the same
number of individuals. In the initialization step (line 4), the individuals of each sub-population are
initialized by Algorithm 2, and then evaluated to obtain their fitness values (line 6). In this study,
the MLNB is used as the learning algorithm. Given the trained learning algorithm, the fitness values
are computed according to the multilabel evaluation metrics detailed in Section 4.1. To evaluate the
discriminating power corresponding to each label, our algorithm uses an accuracy metric used in the
fitness evaluation of single-label feature selection methods. For each individual indi that belongs to Pk,
the label-specific accuracy vector ai = [ai1, . . . , ai|L|] is computed by reusing the already trained learning
algorithm; here, aij is the accuracy corresponding to the j-th label predicted by indi. Consequently,
the label-specific accuracy matrix Ak ∈ R|Pk |×|L| is computed across all individuals of Pk (line 7).
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Algorithm 1 Label Complementary multi-population genetic algorithm for multilabel feature selection

1: Input: D, m; . the multilabel dataset D, the number of sub-populations m
2: Output: S; . the final feature subset S
3: t← 0;
4: [P1(t), . . . , Pm(t)]← initialization(m) . use Algorithm 2
5: for each sub-population Pk do
6: vk(t)← evaluate Pk(t) using D; . compute fitness values via a fitness function
7: Ak(t)← compute the label-specific accuracy matrix for individuals of Pk(t); . reuse the fitness

function
8: end for
9: while (not termination-condition) do

10: for each sub-population Pk do
11: indc ← communication(Pk(t), A); . use Algorithm 3
12: Pk(t + 1)← update(Pk(t), indc); . use Algorithm 4
13: vk(t + 1)← evaluate Pk(t + 1) using D;
14: Ak(t + 1)← compute the label-specific accuracy matrix for individuals of Pk(t + 1);
15: t← t + 1;
16: end for
17: end while
18: S← the best feature subset so far;

Algorithm 2 Initialization function

1: input: m; . the number of sub-populations m
2: output: P1, . . . , Pk, . . . , Pm; . the initial sub-populations P1, . . . , Pk, . . . , Pm

3: for each feature fi ∈ F do . the original feature set F
4: if H( fi) = 0 then
5: F ← F \ fi;
6: end if
7: end for
8: [C1, . . . , Ck, . . . , Cm]← patition F into m clusters; . use the spherical k-means algorithm
9: for k = 1 to m do

10: for each individual indi ∈ Pk do
11: indi ← initialize by selecting n features via stochastic sampling; . use Equation (1)
12: end for
13: end for

After the initialization process, the sub-populations complement each other via the proposed
label complementary communication (line 11), i.e., Algorithm 3. Specifically, each sub-population
identifies a complementary individual indc that can complement itself from the other sub-populations.
Next, our algorithm updates the sub-populations while using indc via Algorithm 4. All of the
sub-populations repeat these processes until the termination condition is met. We use the number of
fitness function calls (FFCs) as the termination criterion, and the algorithm conducts the search until
the available FFCs are exhausted. Finally, Algorithm 1 outputs the best feature subset.
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Algorithm 2 represents the procedure of initialization process for each sub-population.
With regard to lines 3–7, if the entropy of any feature is zero, then it is preferentially removed because
it does not have any information. Each cluster Ck of features is generated by the spherical k-means
algorithm (line 8), and it is used to initialize each sub-population Pk (lines 9–13). Given each feature
f k
i ∈ Ck, its importance score pk

i ∈ [0, 1] is calculated as

pk
i =

H( f k
i )

∑ f∈Ck
H( f )

(1)

where H(x) = −∑ P(x) log P(x) is the entropy of a variable x. Finally, each individual of Pk is
initialized via stochastic sampling based on the importance scores (line 11).

Algorithm 3 Communication function

1: input: P, A; . the sub-population P, the label-spcific accuracy matrix A = (aij) ∈ R|P|×|L|

2: output: indc; . the complementary individual indc

3: b← find an index of the best individual in the P; . the best individual indb

4: Le ← find an index set of labels with the highest error based on ab = [ab1, . . . , ab|L|];
5: for each individual indi ∈ P′ do . the other sub-populations P′

6: ci ← ∑j∈Le a′ij; . the degree of complementarity c
7: end for
8: indc ← find a individual with highest c;

Algorithm 3 illustrates the procedure for realizing the label complementary communication
between the sub-populations for multiple labels. For simplicity, an input sub-population and the
others are represented as P and P′, respectively. With regard to lines 3–4, our algorithm finds an
index set Le of labels for which the best individual indb in P yields the lowest accuracies, where the
size of Le is set to half the size of the entire label set b|L|/2c. To find the complementary individual
indc from the other sub-populations P′, our algorithm computes the degree of complementarity ci
for each individual indi in P′, where ci is regarded as the discriminating power with regard to the
labels in Le. Specifically, ci is calculated by adding the accuracies corresponding to the labels in Le

(line 6). In contrast with the simple communication of exchanging the best individuals, the individual
indc referenced from the other sub-populations can complement the discriminating power of the
sub-population P for the entire label set L, which results in an improved search capability for MLFS.

Algorithm 4 Update function

1: input: P(t), indc; . the sub-populations P(t)
2: output: P(t + 1); . the new sub-population P(t + 1)
3: [o1, o2]← generate new offspring by crossover from the indc and best individual of P(t);
4: P(t + 1)← {o1, o2};
5: while |P(t + 1)| < |P(t)| do . keep the number of individuals in the P
6: p1← select an individual at random among the indc and best individual of the P(t);
7: p2← select an individual at random among remaining individuals of P(t);
8: [o1, o2]← generate new offspring by crossover from the p1 and p2;
9: P(t + 1)← P(t + 1) ∪ {o1, o2};

10: end while
11: P(t + 1)← run a mutation on overlapping individuals;
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Algorithm 4 represents the detailed procedure for generating new offspring. Because the
complementary individual indc and the best individual in P(t) are considered to be important,
our algorithm generates offspring from them once (line 3–4). With regard to lines 6–7, our algorithm
conducts parent selection to generate offspring. Particularly, the first parent is randomly selected
between indc and the best individual; consequently, the important individuals are always involved in
the generation of offspring. Furthermore, to generate diverse offspring, the other parent is selected from
one of the remaining individuals. As shown in line 8, the selected parent pair generates offspring via a
restrictive crossover method that is frequently used to control the number of selected features in feature
selection [29]. When compared to updating based on fitness-based parent selection, our algorithm can
generate offspring that are superior to the previous generation by actively using the complementary
individual indc. The generated offspring are sequentially added to P(t + 1) (line 9). To maintain the
number of individuals in each sub-population, the generation process is repeated until the offspring are
as numerous as the number of individuals in P(t), i.e., |P(t + 1)| = |P(t)|. Furthermore, as described
in line 11, a restrictive mutation is conducted on overlapping individuals.

Finally, we conducted the time complexity analysis of the proposed method. The most time
is spent to evaluate feature subsets, because the learning algorithm should be trained through
complicated sub-procedures for multiple labels [30]. Because the numbers of training patterns and
given labels are regarded as constant values during the evaluation process, the computation time
required to evaluate a feature subset S is determined by the number of selected features |S| ≤ n,
i.e., O(nσ), where σ represents the assumed basic time associated with the evaluation of a single
feature [3]. Given the total number of individuals Nind and maximum number of iterations Niter,
the feature subset evaluation is conducted Nind · Niter times. Thus, the time complexity of the proposed
method is O(Nind · Niter · nσ).

3.4. Algorithm: Example

We implement the proposed method on the multilabel toy dataset provided in Table 2 as a
representative example. In the table, each text pattern wi is relevant to multiple labels, where the labels
are represented as one if relevant and zero otherwise. Specifically, the first pattern w1 includes the
terms “Music”, “The”, “Funny”, and “Lovely”, but not “Boring.” This pattern can be assigned to the
labels “Comedy” and “Disney” simultaneously. For simplicity, we set the number of sub-populations
and the number of features as two. Additionally, the number osf individuals in each sub-population
was set to three. To focus on the communication process, in the initialization step, two sub-populations
were initialized at random, as follows:

P1 = {ind1, ind2, ind3} = {10010, 01100, 11000}
P2 = {ind1, ind2, ind3} = {00110, 10010, 00101}

(2)

MLNB and multilabel accuracy are used to evaluate each individual. A detailed description of
the evaluation metrics, including multilabel accuracy, is given in Section 4.1. Additionally, the fitness
values vk for each sub-population Pk are calculated as the average value obtained from 10 repeated
experiments, as follows:

v1 = [0.65, 0.20, 0.37], A1 =

0.90 0.90 0.30
0.27 0.33 0.47
0.67 0.70 0.23


v2 = [0.64, 0.53, 0.33], A2 =

0.77 0.77 0.40
1.00 1.00 0.23
0.30 0.33 0.87


(3)
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where the label-specific accuracy matrix Ak for Pk is calculated using the MLNB that was pretrained
for fitness evaluation.

Table 2. Multilabel toy dataset.

Features Labels

Pattern f1 f2 f3 f4 f5 l1 l2 l3
Boring Music The Funny Lovely Comedy Documentary Disney

w1 0 1 1 1 1 1 0 1
w2 1 0 1 0 1 0 1 1
w3 1 1 1 0 1 0 1 1
w4 0 1 0 1 0 1 0 0
w5 0 0 1 1 0 1 0 0
w6 1 0 0 0 0 0 1 0
w7 0 0 1 1 1 1 0 1

In the communication process for P1, our algorithm determines the index set Le of labels for which
the lowest accuracies are yielded by the best individual ind1 = 10010, as it has the highest fitness 0.65 in
P1. We indicate important individuals in the sub-population P1 using bold font. In A1 = (aij), ind1 has
the lowest accuracy, 30% for l3, as minlk∈L a1k is 0.30 when k = 3 because |Le| = b|L|/2c = b3/2c = 1,
Le = {3}. To complement P1, our algorithm finds the complementary individual indc from P2. Based on
A2 and Le, the degree of complementarity ci for each individual indi of P2 is calculated as

c1 = ∑
j∈{3}

a1j = a13 = 0.40

c2 = ∑
j∈{3}

a2j = a23 = 0.23

c3 = ∑
j∈{3}

a3j = a33 = 0.87

(4)

Because the individual ind3 belonging to P2 has c3 = 0.87, the complementary individual for
P1 is indc = 00101. Conventional methods import the best individual ind1 = 00110 that belongs to
P2. Our example exhibits a low accuracy of 40% for l3. However, our method refers to ind3 = 00101
of P2, which has the highest accuracy with regard to l3. This indicates that our method can further
complement the discriminating power of P1 for multiple labels and increase the likelihood of avoiding
local optima, resulting in improved multilabel accuracy. This process is similar for P2.

In the update process, P1 selects its best individual ind1 and indc to be the parental pair once.
Next, one of ind1 or indc is selected as a parent, and one of ind2 or ind3 is selected as the other parent
at random. The selected parent pair generates offspring via the genetic operators used in conventional
methods. Given ind1 = 10010 and indc = 00101 as the parent pair, our algorithm generates offspring
00110 and 10001 via the restrictive crossover. As a result, a feature subset { f1, f5} represented by
the offspring 10001 achieved a multilabel accuracy of 91%. This search process is repeated until the
stopping criterion is met.

4. Experimental Results

4.1. Datasets and Evaluation

We conducted experiments using 17 multilabel datasets corresponding to various domains;
these datasets can be obtained from http://mulan.sourceforge.net/datasets-mlc.html [31]. Specifically,
the Emotions dataset [32] consists of 8 rhythmic features and 64 timbre features. The Enron dataset [33]
was sampled from a large email message set, the Enron corpus. The Genbase and Yeast datasets [34,35]
contain information regarding the functions of biological proteins and genes. The Medical dataset [36]

http://mulan.sourceforge.net/datasets-mlc.html
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is a subset of a large corpus that is associated with suicide letters in clinical free text. The Scene
dataset [37] has indexing information on still images containing multiple objects. The remaining 11
datasets were obtained from the Yahoo dataset collection [38], composed of more than 10,000 features.
Table 3 indicates standard statistics for the 17 datasets used in our experiments. It includes the number
of patterns |W|, number of features |F|, types of features, and number of labels |L|. If the feature type
was numeric, we discretized the features while using label-attribute interdependence maximization,
which is a discretization method that is specialized for multilabel data [39]. The label cardinality Card.
represents the average number of labels in each pattern, and label density Den. is the label cardinality
for the total number of labels. Further, Distinct. indicates the number of unique label subsets in L,
and Domain represents the applications that are related to each dataset.

Table 3. Standard statistics of multilabel datasets.

Dataset |W | |F| Type |L| Card. Den. Distinct. Domain

Arts 7484 23,146 Numeric 26 1.654 0.064 599 Text
Business 11,214 21,924 Numeric 30 1.599 0.053 233 Text

Computers 12,444 34,096 Numeric 33 1.507 0.046 428 Text
Education 12,030 27,534 Numeric 33 1.463 0.044 511 Text
Emotions 593 72 Numeric 6 1.869 0.311 27 Music

Enron 1702 1001 Nominal 53 3.378 0.064 753 Text
Entertainment 12,730 32,001 Numeric 21 1.414 0.067 337 Text

Genbase 662 1185 Nominal 27 1.252 0.046 32 Biology
Health 9205 30,605 Numeric 32 1.644 0.051 335 Text

Medical 978 1449 Nominal 45 1.245 0.028 94 Text
Recreation 12,828 30,324 Numeric 22 1.429 0.065 530 Text
Reference 8027 39,679 Numeric 33 1.174 0.036 275 Text

Scene 2407 294 Numeric 6 1.074 0.179 15 Image
Science 6428 37,187 Numeric 40 1.450 0.036 457 Text
Social 12,111 52,350 Numeric 29 1.279 0.033 361 Text

Society 14,512 31,802 Numeric 27 1.670 0.062 1,054 Text
Yeast 2417 103 Numeric 14 4.237 0.303 198 Biology

We compared the proposed method with three state-of-the-art multi-population-based methods
that have exhibited promising performance for solving the feature selection problem: TCbGA [25],
EMPNGA [26], and BCO-MDP [27]. We set the parameters for each method to the values used in
the corresponding original study. For fairness, we set the maximum number of allowable FFCs and
selected features to 300 and 50, respectively. The total population size was set to 50. The MLNB and
a holdout cross-validation method were used in order to evaluate the quality of the feature subsets
obtained by each method. Furthermore, 80% and 20% of each dataset were used as the training and
test sets, respectively. We repeated each experiment 10 times and used the average value of the results.
In the proposed method, we set the number of sub-populations to five; thus, each sub-population size
was 10.

We used four evaluation metrics to evaluate the quality of the feature subsets: Hamming loss,
one-error, multilabel accuracy, and subset accuracy [40–42]. Let T = {(wi, λi)|1 ≤ i ≤ |T|} be a given
test set, where λi ⊆ L is a correct label subset that is associated with a pattern wi. Given a test pattern
wi and a multilabel classifier, such as MLNB, estimate a predicted label set Yi ⊆ L. Specifically, a series
of functions {g1, g2, . . . , g|L|} is induced from the training patterns. Next, each function gk determines
the class membership of lk with respect to each pattern, i.e., Yi = {lk|gk(wi) > θ, 1 ≤ k ≤ |L|}, where θ

is a predetermined threshold, such as 0.5. The four metrics can be computed given λ and Y according
to the test patterns. The Hamming loss is defined as

hloss(T) =
1
|T|

|T|
∑
i=1

1
|L| |λi4Yi| (5)
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where4 denotes the symmetric difference between two sets. Furthermore, one-error is defined as

onerr(T) =
1
|T|

|T|
∑
i=1

[ arg max
lk∈L

gk(wi) /∈ λi] (6)

where [ · ] returns one if the proposition stated in the brackets is true and zero otherwise.
Multilabel accuracy is defined as

mlacc(T) =
1
|T|

|T|
∑
i=1

|λi ∩Yi|
|λi ∪Yi|

(7)

It computes the Jaccard coefficient between two sets. Finally, subset accuracy is defined as

setacc(T) =
1
|T|

|T|
∑
i=1

[λi = Yi] (8)

It determines whether two sets are exactly identical. A superior feature subset will exhibit
higher values of the multilabel and subset accuracies and lower values of the Hamming loss and
one-error metrics.

We conducted additional statistical tests in order to verify the statistical significance of our results.
First, we conducted a paired t-test [43] at 95% significance level to compare the proposed method
with each of other MLFS methods on each of datasets; because there are three comparison algorithms,
the paired t-test is performed three times. Here, three null hypotheses (i.e., two methods have equal
performance) can either be rejected or accepted. We also performed the Bonferroni–Dunn test in order
to compare the average ranks of the proposed and other methods [44]. If the difference between
the average rank of one comparison method and that of the proposed method is within the critical
difference (CD), its performance is considered to be similar to that of the proposed method. In our
experiments, we set the significance level α to 0.05, and, thus, the CD can be computed as 1.0601 [45].

4.2. Comparison Results

Tables 4–7 present the experimental results of the proposed method and compare them with
those of the other methods on 17 multilabel datasets. The resulting values are represented by their
average performances with the corresponding standard deviations; herein, a better average value is
indicated by bold font on each dataset. In addition, for each dataset, the paired t-test was conducted
at the 95% significance level. As shown in Tables 4–7, H(M) indicates that the corresponding method
is significantly worse(better) than the proposed method based on the paired t-test. Table 4 shows
that the proposed method is statistically superior or similar than TCbGA on 88% of the datasets and
than EMPNGA and BCO-MDP on all datasets in terms of the Hamming loss. Table 5 shows that the
proposed method is statistically superior or similar than other methods on 94% of the datasets in terms
of the one-error. Particularly, Tables 6 and 7 show that the proposed method is statistically superior or
similar than other methods on all datasets in terms of the multilabel accuracy and the subset accuracy.
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Table 4. Comparison results of four methods in terms of Hamming loss(↓) (H/M indicates that the
corresponding method is significantly worse/better than proposed method based on paired t-test at
95% significance level).

Dataset Proposed TCbGA EMPNGA BCO-MDP

Arts 0.0629 ± 0.001 0.0635 ± 0.001 0.0642 ± 0.001 H 0.0638 ± 0.001 H
Business 0.0297 ± 0.001 0.0289 ± 0.001 M 0.0297 ± 0.001 0.0293 ± 0.001
Computers 0.0428 ± 0.001 0.0432 ± 0.001 0.0435 ± 0.001 0.0435 ± 0.001
Education 0.0443 ± 0.001 0.0444 ± 0.000 0.0449 ± 0.001 0.0447 ± 0.001
Emotions 0.2336 ± 0.022 0.2370 ± 0.013 0.2376 ± 0.023 0.2366 ± 0.032
Enron 0.0663 ± 0.006 0.0628 ± 0.004 0.0892 ± 0.008 H 0.0840 ± 0.007 H
Entertainment 0.0641 ± 0.001 0.0650 ± 0.002 0.0646 ± 0.002 0.0650 ± 0.002
Genbase 0.0074 ± 0.003 0.0338 ± 0.006 H 0.0315 ± 0.004 H 0.0277 ± 0.006 H
Health 0.0465 ± 0.003 0.0498 ± 0.001 H 0.0490 ± 0.001 H 0.0489 ± 0.002
Medical 0.0138 ± 0.002 0.0206 ± 0.003 H 0.0186 ± 0.001 H 0.0181 ± 0.003 H
Recreation 0.0626 ± 0.001 0.0638 ± 0.001 H 0.0638 ± 0.001 H 0.0641 ± 0.002 H
Reference 0.0342 ± 0.002 0.0359 ± 0.000 H 0.0358 ± 0.001 0.0358 ± 0.001 H
Scene 0.1341 ± 0.007 0.1372 ± 0.007 0.1416 ± 0.006 H 0.1396 ± 0.012
Science 0.0367 ± 0.001 0.0362 ± 0.001 M 0.0376 ± 0.001 0.0368 ± 0.001
Social 0.0297 ± 0.002 0.0323 ± 0.001 H 0.0309 ± 0.001 H 0.0315 ± 0.002 H
Society 0.0586 ± 0.001 0.0598 ± 0.001 H 0.0595 ± 0.001 H 0.0590 ± 0.001
Yeast 0.2208 ± 0.009 0.2233 ± 0.007 0.2253 ± 0.005 0.2241 ± 0.006

Avg. Rank 1.24 2.71 3.35 2.71

Table 5. Comparison results of four methods in terms of one-error(↓) (H/M indicates that the
corresponding method is significantly worse/better than the proposed method based on paired t-test
at 95% significance level).

Dataset Proposed TCbGA EMPNGA BCO-MDP

Arts 0.7354 ± 0.140 0.7717 ± 0.120 H 0.7684 ± 0.122 H 0.7640 ± 0.126 H
Business 0.3930 ± 0.417 0.3935 ± 0.418 0.3933 ± 0.418 0.3935 ± 0.418
Computers 0.4530 ± 0.011 0.4616 ± 0.008 H 0.4566 ± 0.009 0.4626 ± 0.008 H
Education 0.6520 ± 0.020 0.6756 ± 0.011 H 0.6777 ± 0.011 H 0.6776 ± 0.014 H
Emotions 0.2992 ± 0.029 0.3085 ± 0.054 0.2915 ± 0.060 0.2992 ± 0.068
Enron 0.5797 ± 0.327 0.5982 ± 0.318 0.6074 ± 0.317 H 0.5976 ± 0.316 H
Entertainment 0.6085 ± 0.023 0.6710 ± 0.023 H 0.6339 ± 0.014 H 0.6483 ± 0.023 H
Genbase 0.7197 ± 0.441 0.8652 ± 0.207 0.8235 ± 0.272 0.8045 ± 0.303
Health 0.7659 ± 0.299 0.7935 ± 0.266 H 0.7900 ± 0.270 H 0.7885 ± 0.272 H
Medical 0.7713 ± 0.293 0.8395 ± 0.206 0.8138 ± 0.236 0.8287 ± 0.216
Recreation 0.7062 ± 0.035 0.7531 ± 0.010 H 0.7533 ± 0.014 H 0.7482 ± 0.021 H
Reference 0.7130 ± 0.247 0.7171 ± 0.243 0.7126 ± 0.247 0.7164 ± 0.244
Scene 0.3168 ± 0.029 0.2927 ± 0.027 M 0.2844 ± 0.026 M 0.2871 ± 0.023 M
Science 0.7097 ± 0.019 0.7342 ± 0.019 H 0.7265 ± 0.018 H 0.7445 ± 0.013 H
Social 0.4872 ± 0.183 0.5637 ± 0.161 H 0.5441 ± 0.164 H 0.5677 ± 0.156 H
Society 0.4880 ± 0.019 0.4963 ± 0.013 0.4859 ± 0.019 0.4901 ± 0.014
Yeast 0.2369 ± 0.023 0.2431 ± 0.019 0.2652 ± 0.020 H 0.2513 ± 0.019 H

Avg. Rank 1.35 3.41 2.41 2.76
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Table 6. Comparison results of four methods in terms of multilabel accuracy(↑) (H/M indicates that the
corresponding method is significantly worse/better than proposed method based on paired t-test at
the 95% significance level).

Dataset Proposed TCbGA EMPNGA BCO-MDP

Arts 0.0924 ± 0.021 0.0330 ± 0.007 H 0.0464 ± 0.009 H 0.0518 ± 0.016 H
Business 0.6772 ± 0.009 0.6784 ± 0.008 0.6767 ± 0.011 0.6760 ± 0.010
Computers 0.4155 ± 0.008 0.4148 ± 0.007 0.4159 ± 0.010 0.4147 ± 0.010
Education 0.0748 ± 0.026 0.0291 ± 0.007 H 0.0367 ± 0.015 H 0.0410 ± 0.022 H
Emotions 0.5323 ± 0.036 0.5267 ± 0.035 0.5202 ± 0.031 0.5329 ± 0.031
Enron 0.3445 ± 0.021 0.3315 ± 0.019 0.3173 ± 0.019 H 0.3389 ± 0.034
Entertainment 0.1904 ± 0.051 0.0586 ± 0.022 H 0.1116 ± 0.016 H 0.1218 ± 0.046 H
Genbase 0.8907 ± 0.058 0.3789 ± 0.130 H 0.4238 ± 0.088 H 0.5471 ± 0.157 H
Health 0.4277 ± 0.027 0.4074 ± 0.016 0.4120 ± 0.019 0.4026 ± 0.015 H
Medical 0.5772 ± 0.089 0.3545 ± 0.084 H 0.3628 ± 0.055 H 0.4498 ± 0.117 H
Recreation 0.1001 ± 0.026 0.0477 ± 0.012 H 0.0574 ± 0.007 H 0.0573 ± 0.017 H
Reference 0.4048 ± 0.015 0.3568 ± 0.125 0.4066 ± 0.012 0.4005 ± 0.011
Scene 0.5730 ± 0.038 0.5663 ± 0.021 0.5705 ± 0.016 0.5712 ± 0.034
Science 0.0744 ± 0.041 0.0256 ± 0.008 H 0.0360 ± 0.011 H 0.0385 ± 0.011 H
Social 0.4935 ± 0.047 0.0720 ± 0.027 H 0.1907 ± 0.168 H 0.1187 ± 0.033 H
Society 0.2423 ± 0.135 0.1617 ± 0.162 0.2586 ± 0.165 0.2873 ± 0.126
Yeast 0.4468 ± 0.012 0.4435 ± 0.012 0.4448 ± 0.012 0.4418 ± 0.013

Avg. Rank 1.35 3.53 2.59 2.53

Table 7. Comparison results of four methods in terms of subset accuracy(↑) (H/M indicates that the
corresponding method is significantly worse/better than proposed method based on paired t-test at
the 95% significance level).

Dataset Proposed TCbGA EMPNGA BCO-MDP

Arts 0.0666 ± 0.015 0.0287 ± 0.009 H 0.0422 ± 0.010 H 0.0438 ± 0.016 H
Business 0.5326 ± 0.011 0.5326 ± 0.012 0.5322 ± 0.012 0.5334 ± 0.013
Computers 0.3386 ± 0.012 0.3365 ± 0.007 0.3379 ± 0.009 0.3318 ± 0.007 H
Education 0.0599 ± 0.019 0.0162 ± 0.006 H 0.0327 ± 0.013 H 0.0317 ± 0.010 H
Emotions 0.2534 ± 0.039 0.2593 ± 0.043 0.2508 ± 0.041 0.2525 ± 0.055
Enron 0.1076 ± 0.020 0.1168 ± 0.020 0.0418 ± 0.028 H 0.0947 ± 0.034
Entertainment 0.1709 ± 0.051 0.0791 ± 0.025 H 0.0903 ± 0.023 H 0.0862 ± 0.033 H
Genbase 0.8485 ± 0.041 0.2576 ± 0.092 H 0.4288 ± 0.070 H 0.5098 ± 0.123 H
Health 0.3386 ± 0.028 0.3160 ± 0.014 H 0.3293 ± 0.017 0.3129 ± 0.017 H
Medical 0.4636 ± 0.071 0.2600 ± 0.047 H 0.3472 ± 0.049 H 0.3138 ± 0.096 H
Recreation 0.0829 ± 0.021 0.0393 ± 0.016 H 0.0475 ± 0.011 H 0.0478 ± 0.021 H
Reference 0.3579 ± 0.014 0.3532 ± 0.009 0.3654 ± 0.013 0.3265 ± 0.112
Scene 0.4341 ± 0.025 0.4168 ± 0.033 0.3819 ± 0.027 H 0.4472 ± 0.028
Science 0.0602 ± 0.030 0.0258 ± 0.003 H 0.0351 ± 0.011 H 0.0311 ± 0.008 H
Social 0.4185 ± 0.051 0.0667 ± 0.036 H 0.2850 ± 0.183 H 0.0981 ± 0.041 H
Society 0.2222 ± 0.060 0.1187 ± 0.132 0.1926 ± 0.125 0.2257 ± 0.116
Yeast 0.1029 ± 0.014 0.0969 ± 0.014 0.1085 ± 0.006 0.0988 ± 0.016

Avg. Rank 1.41 3.29 2.59 2.65

Figure 2 illustrates the CD diagrams, showing the relative performance of the four methods.
Here, the horizontal axis represents the average rank of each method, where the higher ranks are
placed on the right side of each subfigure. In addition, the methods within the same CD as that
of the proposed method are connected by a bold red line, which means that the difference among
them is not significant. Figure 2b indicates that the proposed method significantly outperformed
the TCbGA and BCO-MDP in terms of the one-error. The results for the one-error indicate that the
simple communication of exchanging the best individuals in the EMPNGA can also yield good results,
because the one-error is evaluated based only on the label predicted with the highest probability.
In contrast, Figure 2a,c,d indicates that the proposed method significantly outperformed all other
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methods in terms of the Hamming loss, multilabel accuracy, and subset accuracy. The three metrics
are evaluated based on the predicted label subsets; thus, the proposed method, which employs label
complementary communication, can outperform the existing methods.

(a) Hamming loss (b) One-error

(c) Multilabel accuracy (d) Subset accuracy

Figure 2. Bonferroni-Dunn test results of four comparison methods with four evaluation measures.

4.3. Analysis

We conducted an in-depth analysis to determine whether the proposed communication process
is effective for solving the MLFS problem via additional experiments on eight datasets using the
MLNB. To validate the effectiveness of label complementary communication in the proposed method,
we designed Proposed-SC, which is equivalent to the proposed method, except that it does not
include the proposed communication process, i.e., Algorithm 3. Specifically, the Proposed-SC uses
the simple communication method of exchanging the best individuals and roulette wheel selection
as the fitness-based parent selection method. For improved readability, we named the proposed
method described in Section 3 as the Proposed-LCC. In addition, we designed Proposed-NC, which is
equivalent to Proposed-SC, except that it does not conduct any communication process. Figure 3
shows the search capability of each sub-population during the search process. The vertical axis
indicates the multilabel accuracy for the best individual in each method; herein, the baseline indicates
the multilabel accuracy obtained by random prediction from 10 repetitions and it is regarded as the
baseline performance. As stated in Section 4, the numbers of maximum FFCs and the total number of
individuals are 300 and 50, respectively. Therefore, the sub-populations communicate with each other
every 50 FFCs. Additionally, the number of sub-populations is five.

As shown in Figure 3, the Proposed-LCC exhibited a better search capability than Proposed-SC
and Proposed-NC on eight multilabel datasets. We note that, in MLFS, Proposed-SC and Proposed-NC
exhibited a similar level of search capability in MLFS, and it even revealed worse search capability than
a method without communication on the Education datasets. It implies that the simple communication
method of exchanging the best individuals failed to deal with the multiple labels. In contrast,
Proposed-LCC conducted effective MLFS searches. Particularly, in Figure 3c, the initial sub-populations
of Proposed-LCC revealed relatively low multilabel accuracy (50 FFCs). This is because each of
sub-populations consists of different features by our initialization method and, thus, may not be
related to entire label set. During search process, Proposed-LCC exhibited an effective improvement in
multilabel accuracy. This indicates that the proposed label complementary communication method
can improve the search capability of the sub-populations by referencing individuals from other
sub-populations based on the discriminating power of subsets with regard to labels that are difficult
to classify.
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Figure 3. Multilabel accuracy(↑) for the best individual in each sub-population, obtained using three methods
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Figure 3. Multilabel accuracy(↑) for the best individual in each sub-population, obtained using three methods
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Figure 3. Multilabel accuracy(↑) for the best individual in each sub-population, obtained using
three methods.

We also conducted the paired t-test at 95% significance level in order to determine whether the
three methods were statistically different. For fairness, Proposed-SC and Proposed-NC also obtained
results from 10 repetitions on the eight datasets, respectively. Figure 4 presents the pairwise comparison
results on each of datasets in terms of the multilabel accuracy; the p-values for each of tests are shown
in each subfigure and the asterisk indicates that corresponding hypothesis was rejected. As shown in
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Figure 4, the Proposed-LCC significantly outperformed Proposed-SC on seven datasets, except for the
Recreation dataset and outperformed Proposed-NC on all datasets. On the other hand, Proposed-SC
and Proposed-NC have equal performance on all datasets. As a result, the additional experiment and
statistical test verify that the proposed label complementary communication successfully improves the
search capability of the sub-populations with regard to MLFS.
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5. Conclusions

In this paper, we proposed a novel MPGA, with label complementary communication, which
specializes in solving the MLFS problem. It is aimed at improving the search capability of
sub-populations through a communication process that employs the complementary discriminating
powers of sub-populations with regard to multiple labels. Our experimental results and
statistical tests verified that the proposed method significantly outperformed three state-of-the-art
multi-population-based feature selection methods on 17 multilabel datasets.

Future studies can be conducted to overcome the limitation of the proposed method: we have
simply set the number of labels to be complemented to half the total number of labels. As the search
progresses, this value can be adjusted according to the improvement in the discriminating power for
each label. For example, the proposed label complementary communication may only be conducted
for labels for which the discrimination performance is not better than that in the previous generation.
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